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Scattering amplitudes

Theory ←− |A|2 −→ Experiment

Scattering amplitudes cannot be calculated exactly → need for
high accuracy loop corrections.

dσ = dσLO + αsdσ
NLO︸ ︷︷ ︸

10−30%

+α2
sdσ

NNLO︸ ︷︷ ︸
1−10%

+ . . .
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Typical workflow

Calculating loop corrections to scattering amplitudes has several typical steps:

1 Draw all relevant Feynman diagrams

2 Write down the integrand

3 Reduce the amplitude onto a set of master integrals

4 Evaluate the result at a chosen phase-space point
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Feynman diagrams

C-number

LARGE
intermediate expressions
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Complexity

• Complexity increases with loop order and multiplicity.

• Current QCD frontier: 2→ 3 scattering at NNLO.

• Massless case: results for all relevant Feynman integrals available.

• One external mass: results for all planar + some non-planar integrals now
available.

one-mass, planar: Nov ’15 [Papadopoulos, Tommasini, Wever] (one penta-box, MPLs)
May ’20 [Abreu, Ita, Moriello, Page, Tschernow, Zeng] (DEs+numerical sols)
Sep ’20 [Canko, Papadopoulos, Syrrakos] (MPLs)
Dec ’20 [Syrrakos] (1L pentagon, MPLs)

one-mass, non-planar Oct ’19 [Papadopoulos, Wever] (one hexa-box, MPLs)
July ’21 [Abreu, Page, Ita, Tschernow] (hexa-box, DEs+numerical sols)
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Recent work

• pp →W /H + bb̄ at 2L (leading colour, massless b quarks)

W±

[Badger, Hartanto, Zoia, Feb ’21]

H

[Badger, Hartanto, Kryś, Zoia, July ’21]

• W (→ ` ¯̀′) + 4-partons at 2L (leading colour, massless quarks)
[Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, Oct ’21]
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Finite fields

• To avoid analytic complexity in intermediate steps, use numerical evaluations
over finite fields

• We work with rational numbers modulo a large prime number:

q =
a

b
−→ q mod p ≡

(
a× (b−1 mod p)

)
mod p

3

7
≡ 2 mod 11

• One can reconstruct the analytic result from its many numerical evaluations

• FiniteFlow [Peraro, ’19]
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pp → bb̄H

• Three channels are relevant:
• 0→ b̄(p1) + b(p2) + g(p3) + g(p4) + H(p5)

• 0→ b̄(p1) + b(p2) + q̄(p3) + q(p4) + H(p5)

• 0→ b̄(p1) + b(p2) + b̄(p3) + b(p4) + H(p5)

• After colour-decomposition, amplitude can be written as:

A =
∑

T∈topologies

∫
ddk1d

dk2

∑
i ci ({p})moni ({k , p})∏

j∈T Dj({k , p})

• Coefficients ci (p(x)) are given a rational parametrisation using momentum
twistors x

(Begin finite field sampling)
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pp → bb̄H

• The amplitude is mapped onto scalar integrals within 15 maximal topologies
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pp → bb̄H

• The amplitude is mapped onto scalar integrals within 15 maximal topologies

• Scalar integrals are IBP-reduced onto a master integral basis
[Laporta, ’01], [Lee, ’13]

A =
∑
i

di (ε, p(x))×MIi (ε, p)

• We work with MIs that satisfy:

d
→
MI = ε

(
58∑
i=1

ai × d logwi

)
→
MI

[Henn, ’13], [Abreu et al., ’20]
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pp → bb̄H

• Subtract the poles to get the finite remainder:

F (L) =
∑
i

ri (p(x))mi (f ) ,

where mi (f ) are monomials formed from elements of the finite remainder
function basis

• Reconstruct the coefficients, now free of ε

(End finite field sampling)
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Evaluating special functions

• The finite remainder function basis is written in terms of Chen’s iterated
integrals [Chen, ’77]

• The iterated integrals expose cancellations in finite remainders

• They satisfy differential equations as well, order-by-order up to O(ε4)
• Solve them numerically in DiffExp using the method of generalised series

expansions [Moriello, ’19], [Hidding, ’20]

s0 s

γ(t)
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Results

The finite remainders of
the gg channel interfered
with tree-level amplitudes,
evaluated at a univariate
phase-space slice.

p1 =
y1
√
s

2
(1 , 1 , 0 , 0) p2 =

y2
√
s

2
(1 , cos θ ,− sin θ sinφ ,− sin θ cosφ)

p3 =

√
s

2
(−1 , 0 , 0 ,−1) p4 =

√
s

2
(−1 , 0 , 0 , 1)
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Conclusion

• Calculated two-loop QCD amplitudes for pp → bb̄H

• Developed a Mathematica + FORM + FiniteFlow routine that can be
adapted to other processes as needed

• Implemented several tools to overcome the complexity

• Integrals for non-planar topologies needed for pp → H + 2j and for
pp → V + 2j beyond leading colour
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Details of reconstruction

1 Linear relations between rational coefficients: F (L) =
∑

i ri (p(x))mi (f )
• Coefficients ri are not independent
• Find relations between them and choose the independent ones based on the

lowest polynomial degree

2 Factor matching:
• Aid the reconstruction by providing an ansatz of factors related to the letters{

〈ij〉, [ij ], 〈i |p5|j ], sij , sij − skl , si5 − p2
5 , p

2
5 , tr5,∆1,∆2,

s15(s13 + s34)− p2
5s34, s25(s24 + s34)− p2

5s34

}
• All denominator factors guessed + some of the numerator

3 Univariate partial fractioning
• Having guessed the denominator, construct a partial-fractioned ansatz
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Details of reconstruction

b̄bggH
helicity

configurations
ri (x) independent ri (x)

partial
fraction in x5

points

F (2),1 + + ++ 63/57 52/46 20/6 3361
+ + +− 135/134 119/120 28/22 24901
+ +−− 105/111 105/111 22/12 4797

F (2),nf + + ++ 45/41 45/41 16/6 1381
+ + +− 94/95 94/95 17/6 1853
+ +−− 89/95 62/69 18/3 2492

F (2),n2
f + + ++ 12/8 9/7 0/0 3

+ + +− 11/16 11/16 3/0 22
+ +−− 12/20 8/16 8/0 242

Maximum numerator/denominator polynomial
degrees and the sample points needed for the
reconstruction of the finite remainder coefficients.

F (L) =
∑
i

ri (p(x))mi (f )
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Chen’s iterated integrals

Defined as:

[wi1 , . . . ,win ]s0
(s) =

∫ 1

0
dt

d logwin (γ(t))

dt

[
wi1 , . . . ,win−1

]
s0

(γ(t)) , [ ]s0
:= 1

The number of integration kernels wi is known as transcendental weight.

They have several advantages:

1 Automatically implement functional relations

2 Singularities or branch points only where one of the letters vanishes or
diverges

3 Simplify the finite remainder function basis through analytic cancellations

s0 s
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Our workflow

Feynman diagrams Colour decomposition Collect in topologies

Integrand reduction onto
maximal topologies

IBP reduction
Expansion of MIs onto
special function basis

Pole subtraction Finite remainder

QGRAF Mathematica/FORM

finite fields

d = 4− 2ε

ε→ 0

17 / 17


