

Introduction

Background Finite fields

Results

 $\rho p \rightarrow b \bar{b} H$

Conclusion

$Hb\bar{b}$ production as an example of modern amplitudes calculations

(based on hep-ph/2107.14733)

Jakub Kryś Durham University, Università di Torino

With: Simon Badger, Heribertus Bayu Hartanto and Simone Zoia

YTF 21

Outline

ntroduction

Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

 Introduction Background Finite fields

2 Results $pp \rightarrow b\bar{b}H$

Outline

Introduction

Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

 Introduction Background Finite fields

2 Results $pp \rightarrow b\bar{b}H$

Introduction

Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

Scattering amplitudes

Theory
$$\longleftarrow |\mathcal{A}|^2 \longrightarrow \mathsf{Experiment}$$

Scattering amplitudes cannot be calculated exactly \rightarrow need for high accuracy **loop corrections**.

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{\mathsf{LO}} + \underbrace{\alpha_{\mathsf{s}}\mathrm{d}\sigma^{\mathsf{NLO}}}_{10-30\%} + \underbrace{\alpha_{\mathsf{s}}^{2}\mathrm{d}\sigma^{\mathsf{NNLO}}}_{1-10\%} + \dots$$

Typical workflow

ntroduction

Background Finite fields

 $\frac{\mathsf{Results}}{\mathsf{pp}} \to \mathsf{b\bar{b}H}$

Conclusion

Calculating loop corrections to scattering amplitudes has several typical steps:

- 1 Draw all relevant Feynman diagrams
- 2 Write down the integrand
- 3 Reduce the amplitude onto a set of master integrals
- ④ Evaluate the result at a chosen phase-space point

Complexity

ntroduction

Background Finite fields

Results

 $_{pp} \rightarrow b \bar{b} H$

Conclusion

Introduction Background

Finite fields

Results

 $pp \rightarrow b\bar{b}H$

Conclusion

Complexity

- Complexity increases with **loop order** and **multiplicity**.
- Current QCD frontier: $2 \rightarrow 3$ scattering at NNLO.

- Massless case: results for all relevant Feynman integrals available.
- One external mass: results for all planar + <u>some</u> non-planar integrals now available.

one-mass,	planar:	Nov '15	[Papadopoulos, Tommasini, Wever]	(one penta-box, MPLs)
		May '20	[Abreu, Ita, Moriello, Page, Tschernow, Zeng]	(DEs+numerical sols)
		Sep '20	[Canko, Papadopoulos, Syrrakos]	(MPLs)
		Dec '20	[Syrrakos]	(1L pentagon, MPLs)
one-mass,	non-planar	Oct '19	[Papadopoulos, Wever]	(one hexa-box, MPLs)
		July '21	[Abreu, Page, Ita, Tschernow]	(hexa-box, DEs+numerical sols)

Recent work

• $pp
ightarrow W/H + bar{b}$ at 2L (leading colour, massless b quarks)

Introduction

Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusior

[Badger, Hartanto, Zoia, Feb '21]

[Badger, Hartanto, Kryś, Zoia, July '21]

• $W(\rightarrow \ell \bar{\ell'})$ + 4-partons at 2L (leading colour, massless quarks) [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, Oct '21]

Finite fields

ntroductio Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

- To avoid analytic complexity in intermediate steps, use numerical evaluations over **finite fields**
- We work with rational numbers modulo a large prime number:

$$q = rac{a}{b} \longrightarrow q \mod p \equiv \left(a \times (b^{-1} \mod p)\right) \mod p$$
 $rac{3}{7} \equiv 2 \mod 11$

- One can reconstruct the analytic result from its many numerical evaluations
- FiniteFlow [Peraro, '19]

Outline

ntroduction

Background Finite fields

 $\begin{array}{c} {\sf Results} \\ {}_{\it pp} \rightarrow {}_{\it b\bar{b} \it H} \end{array}$

Conclusion

Introduction Background Finite fields

2 Results $pp \rightarrow b\bar{b}H$

 $pp \rightarrow b\bar{b}H$

$pp ightarrow b ar{b} H$

- Three channels are relevant:
 - $0 \rightarrow \bar{b}(p_1) + b(p_2) + g(p_3) + g(p_4) + H(p_5)$
 - $0 o ar{b}(p_1) + b(p_2) + ar{q}(p_3) + q(p_4) + H(p_5)$
 - $0 o ar{b}(p_1) + b(p_2) + ar{b}(p_3) + b(p_4) + H(p_5)$
- After colour-decomposition, amplitude can be written as:

$$A = \sum_{T \in topologies} \int \mathrm{d}^d k_1 \mathrm{d}^d k_2 \frac{\sum_i c_i(\{p\}) mon_i(\{k, p\})}{\prod_{j \in T} D_j(\{k, p\})}$$

 Coefficients c_i(p(x)) are given a rational parametrisation using momentum twistors x

(Begin finite field sampling)

$pp ightarrow b ar{b} H$

- Introduction
- Background Finite fields
- Results
- $pp \rightarrow b\bar{b}H$
- Conclusion

• The amplitude is mapped onto scalar integrals within 15 maximal topologies

$pp ightarrow b ar{b} H$

Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

 $pp \rightarrow b\bar{b}H$

$pp ightarrow b ar{b} H$

- The amplitude is mapped onto scalar integrals within 15 maximal topologies
- Scalar integrals are IBP-reduced onto a master integral basis [Laporta, '01], [Lee, '13]

$$A = \sum_{i} d_i (\epsilon, p(x)) \times MI_i(\epsilon, p)$$

• We work with MIs that satisfy:

$$\mathrm{d} \stackrel{\rightarrow}{\mathcal{M}} = \epsilon \left(\sum_{i=1}^{58} a_i \times \mathrm{d} \log w_i \right) \stackrel{\rightarrow}{\mathcal{M}}$$

[Henn, '13], [Abreu et al., '20]

$pp ightarrow b ar{b} H$

• Subtract the poles to get the **finite remainder**:

$$F^{(L)} = \sum_{i} r_i(p(x)) m_i(f),$$

 $pp \rightarrow b\bar{b}H$ Conclusion

where $m_i(f)$ are monomials formed from elements of the **finite remainder** function basis

- Reconstruct the coefficients, now free of $\boldsymbol{\epsilon}$

(End finite field sampling)

Evaluating special functions

- ntroduction Background
- Results
- $pp \rightarrow b\bar{b}H$
- Conclusion

- The finite remainder function basis is written in terms of **Chen's iterated integrals** [Chen, '77]
- The iterated integrals expose cancellations in finite remainders
- They satisfy differential equations as well, order-by-order up to $\mathcal{O}(\epsilon^4)$
- Solve them numerically in DiffExp using the method of generalised series expansions [Moriello, '19], [Hidding, '20]

Results

Introductio

Background Finite fields

Results

 $\rho \rho \rightarrow b \bar{b} H$

Conclusio

The finite remainders of the gg channel interfered with tree-level amplitudes, evaluated at a univariate phase-space slice.

$$p_{1} = \frac{y_{1}\sqrt{s}}{2}(1, 1, 0, 0) \qquad p_{2} = \frac{y_{2}\sqrt{s}}{2}(1, \cos\theta, -\sin\theta\sin\phi, -\sin\theta\cos\phi)$$
$$p_{3} = \frac{\sqrt{s}}{2}(-1, 0, 0, -1) \qquad p_{4} = \frac{\sqrt{s}}{2}(-1, 0, 0, 1)$$

Outline

ntroduction

Background Finite fields

 $\frac{\mathsf{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

Introduction Background Finite fields

2 Results $pp \rightarrow b\bar{b}H$

Conclusion

ntroduction

- Background Finite fields
- $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$
- Conclusion

- Calculated two-loop QCD amplitudes for $pp
 ightarrow b ar{b} H$
- Developed a Mathematica + FORM + FiniteFlow routine that can be adapted to other processes as needed
- Implemented several tools to overcome the complexity
- Integrals for non-planar topologies needed for $pp \to H+2j$ and for $pp \to V+2j$ beyond leading colour

ntroduction

Background Finite fields

Results

 $pp \rightarrow b\bar{b}H$

Conclusion

1 Linear relations between rational coefficients: $F^{(L)} = \sum_{i} r_i (p(x)) m_i(f)$

- Coefficients *r_i* are not independent
- Find relations between them and choose the independent ones based on the lowest polynomial degree

ntroduction

Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

- **1** Linear relations between rational coefficients: $F^{(L)} = \sum_{i} r_i (p(x)) m_i(f)$
 - Coefficients r_i are not independent
 - Find relations between them and choose the independent ones based on the lowest polynomial degree

2 Factor matching:

• Aid the reconstruction by providing an ansatz of factors related to the letters

$$\langle ij \rangle, [ij], \langle i|p_5|j], s_{ij}, s_{ij} - s_{kl}, s_{i5} - p_5^2, p_5^2, tr_5, \Delta_1, \Delta_2,$$

 $s_{15}(s_{13} + s_{34}) - p_5^2 s_{34}, s_{25}(s_{24} + s_{34}) - p_5^2 s_{34} \}$

• All denominator factors guessed + some of the numerator

ntroduction

Background Finite fields

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

- **1** Linear relations between rational coefficients: $F^{(L)} = \sum_{i} r_i (p(x)) m_i(f)$
 - Coefficients r_i are not independent
 - Find relations between them and choose the independent ones based on the lowest polynomial degree

2 Factor matching:

• Aid the reconstruction by providing an ansatz of factors related to the letters

$$\langle ij \rangle, [ij], \langle i|p_5|j], s_{ij}, s_{ij} - s_{kl}, s_{i5} - p_5^2, p_5^2, tr_5, \Delta_1, \Delta_2, s_{15}(s_{13} + s_{34}) - p_5^2 s_{34}, s_{25}(s_{24} + s_{34}) - p_5^2 s_{34} \}$$

- All denominator factors guessed + some of the numerator
- 3 Univariate partial fractioning
 - Having guessed the denominator, construct a partial-fractioned ansatz

ntr		lu	С	ti	0
Bac	kgro	oui	nc		

Finite field

 $\frac{\text{Results}}{pp \rightarrow b\bar{b}H}$

Conclusion

БbggH	helicity configurations	$r_i(x)$	independent $r_i(x)$	partial fraction in <i>x</i> 5	points
$F^{(2),1}$	++++	63/57	52/46	20/6	3361
	+ + + -	135/134	119/120	28/22	24901
	+ +	105/111	105/111	22/12	4797
$F^{(2),n_{f}}$	+ + + +	45/41	45/41	16/6	1381
	+ + + -	94/95	94/95	17/6	1853
	+ +	89/95	62/69	18/3	2492
$F^{(2),n_{f}^{2}}$	+ + + +	12/8	9/7	0/0	3
	+ + + -	11/16	11/16	3/0	22
	+ +	12/20	8/16	8/0	242

Maximum numerator/denominator polynomial degrees and the sample points needed for the reconstruction of the finite remainder coefficients.

$$F^{(L)} = \sum_{i} r_i(p(x)) m_i(f)$$

 $pp \rightarrow b\bar{b}H$

Conclusion

Chen's iterated integrals

Defined as:

$$\left[w_{i_1},\ldots,w_{i_n}\right]_{s_0}(s) = \int_0^1 \mathrm{d}t \frac{\mathrm{d}\log w_{i_n}(\gamma(t))}{\mathrm{d}t} \left[w_{i_1},\ldots,w_{i_{n-1}}\right]_{s_0}(\gamma(t)), \quad [\]_{s_0} \coloneqq 1$$

The number of integration kernels w_i is known as transcendental weight.

- They have several advantages:
 - 1 Automatically implement functional relations
 - Singularities or branch points only where one of the letters vanishes or diverges
 - **3** Simplify the finite remainder function basis through analytic cancellations

