$H b \bar{b}$ production as an example of modern amplitudes calculations

```
(based on hep-ph/2107.14733)
```

Jakub Kryś
Durham University, Università di Torino

With: Simon Badger, Heribertus Bayu Hartanto and Simone Zoia

Outline

(1) Introduction

Background
Finite fields
(2) Results
$p p \rightarrow b \bar{b} H$
(3) Conclusion
(1) Introduction

Background
Finite fields
(2) Results
$p p \rightarrow b \bar{b} H$
(3) Conclusion

Theory $\longleftarrow|\mathcal{A}|^{2} \longrightarrow$ Experiment
Scattering amplitudes cannot be calculated exactly \rightarrow need for high accuracy loop corrections.

$$
\mathrm{d} \sigma=\mathrm{d} \sigma^{\mathrm{LO}}+\underbrace{\alpha_{s} \mathrm{~d} \sigma^{\mathrm{NLO}}}_{10-30 \%}+\underbrace{\alpha_{s}^{2} \mathrm{~d} \sigma^{\mathrm{NNLO}}}_{1-10 \%}+\ldots
$$

Typical workflow

Calculating loop corrections to scattering amplitudes has several typical steps:
(1) Draw all relevant Feynman diagrams
(2) Write down the integrand
(3) Reduce the amplitude onto a set of master integrals
(4) Evaluate the result at a chosen phase-space point

- Complexity increases with loop order and multiplicity.
- Current QCD frontier: $2 \rightarrow 3$ scattering at NNLO.

- Massless case: results for all relevant Feynman integrals available.
- One external mass: results for all planar + some non-planar integrals now available.

May '20 [Abreu, Ita, Moriello, Page, Tschernow, Zeng]
Sep '20 [Canko, Papadopoulos, Syrrakos] Dec '20 [Syrrakos]
Oct '19
July '21
[Papadopoulos, Wever]
[Abreu, Page, Ita, Tschernow]

[^0]- $p p \rightarrow W / H+b \bar{b}$ at 2 L (leading colour, massless b quarks)

[Badger, Hartanto, Zoia, Feb '21]

[Badger, Hartanto, Kryś, Zoia, July '21]
- $W\left(\rightarrow \ell \overline{\ell^{\prime}}\right)+4$-partons at 2 L (leading colour, massless quarks) [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, Oct '21]

Finite fields

- To avoid analytic complexity in intermediate steps, use numerical evaluations over finite fields
- We work with rational numbers modulo a large prime number:

$$
\begin{aligned}
q=\frac{a}{b} \longrightarrow q \bmod p & \equiv\left(a \times\left(b^{-1} \bmod p\right)\right) \bmod p \\
\frac{3}{7} & \equiv 2 \bmod 11
\end{aligned}
$$

- One can reconstruct the analytic result from its many numerical evaluations
- FiniteFlow [Peraro, '19]
(2) Results
$p p \rightarrow b \bar{b} H$
(3) Conclusion
- Three channels are relevant:
- $0 \rightarrow \bar{b}\left(p_{1}\right)+b\left(p_{2}\right)+g\left(p_{3}\right)+g\left(p_{4}\right)+H\left(p_{5}\right)$
- $0 \rightarrow \bar{b}\left(p_{1}\right)+b\left(p_{2}\right)+\bar{q}\left(p_{3}\right)+q\left(p_{4}\right)+H\left(p_{5}\right)$
- $0 \rightarrow \bar{b}\left(p_{1}\right)+b\left(p_{2}\right)+\bar{b}\left(p_{3}\right)+b\left(p_{4}\right)+H\left(p_{5}\right)$
- After colour-decomposition, amplitude can be written as:

$$
A=\sum_{T \in \text { topologies }} \int \mathrm{d}^{d} k_{1} \mathrm{~d}^{d} k_{2} \frac{\sum_{i} c_{i}(\{p\}) \operatorname{mon}_{i}(\{k, p\})}{\prod_{j \in T} D_{j}(\{k, p\})}
$$

- Coefficients $c_{i}(p(x))$ are given a rational parametrisation using momentum twistors x
(Begin finite field sampling)
- The amplitude is mapped onto scalar integrals within 15 maximal topologies

拳口 $p p \rightarrow b \bar{b} H$

Introduction
Background Finite fields

Results
$p p \rightarrow b \bar{b} H$
Conclusion

- The amplitude is mapped onto scalar integrals within 15 maximal topologies
- Scalar integrals are IBP-reduced onto a master integral basis [Laporta, '01], [Lee, '13]

$$
A=\sum_{i} d_{i}(\epsilon, p(x)) \times M I_{i}(\epsilon, p)
$$

- We work with MIs that satisfy:

$$
\mathrm{d} \overrightarrow{M I}=\epsilon\left(\sum_{i=1}^{58} a_{i} \times \mathrm{d} \log w_{i}\right) \vec{M} I
$$

[Henn, '13], [Abreu et al., '20]

- Subtract the poles to get the finite remainder:

$$
F^{(L)}=\sum_{i} r_{i}(p(x)) m_{i}(f)
$$

where $m_{i}(f)$ are monomials formed from elements of the finite remainder function basis

- Reconstruct the coefficients, now free of ϵ

(End finite field sampling)

Evaluating special functions

- The finite remainder function basis is written in terms of Chen's iterated integrals [Chen, '77]
- The iterated integrals expose cancellations in finite remainders
- They satisfy differential equations as well, order-by-order up to $\mathcal{O}\left(\epsilon^{4}\right)$
- Solve them numerically in DiffExp using the method of generalised series expansions [Moriello, '19], [Hidding, '20]

$$
\begin{aligned}
& \begin{array}{ll}
p_{1}=\frac{y_{1} \sqrt{s}}{2}(1,1,0,0) & p_{2}=\frac{y_{2} \sqrt{s}}{2}(1, \cos \theta,-\sin \theta \sin \phi,-\sin \theta \cos \phi) \\
p_{3}=\frac{\sqrt{s}}{2}(-1,0,0,-1) & p_{4}=\frac{\sqrt{s}}{2}(-1,0,0,1)
\end{array}
\end{aligned}
$$

疁 Outline
(2) Results

$$
p p \rightarrow b \bar{b} H
$$

(3) Conclusion

Conclusion

- Calculated two-loop QCD amplitudes for $p p \rightarrow b \bar{b} H$
- Developed a Mathematica + FORM + FiniteFlow routine that can be adapted to other processes as needed
- Implemented several tools to overcome the complexity
- Integrals for non-planar topologies needed for $p p \rightarrow H+2 j$ and for $p p \rightarrow V+2 j$ beyond leading colour

Details of reconstruction

(1) Linear relations between rational coefficients: $\quad F^{(L)}=\sum_{i} r_{i}(p(x)) m_{i}(f)$

- Coefficients r_{i} are not independent
- Find relations between them and choose the independent ones based on the lowest polynomial degree
(1) Linear relations between rational coefficients: $\quad F^{(L)}=\sum_{i} r_{i}(p(x)) m_{i}(f)$
- Coefficients r_{i} are not independent
- Find relations between them and choose the independent ones based on the lowest polynomial degree
(2) Factor matching:
- Aid the reconstruction by providing an ansatz of factors related to the letters

$$
\begin{array}{r}
\left\{\langle i j\rangle,[i j],\langle i| p_{5} \mid j\right], s_{i j}, s_{i j}-s_{k l}, s_{i 5}-p_{5}^{2}, p_{5}^{2}, \operatorname{tr}_{5}, \Delta_{1}, \Delta_{2}, \\
\left.s_{15}\left(s_{13}+s_{34}\right)-p_{5}^{2} s_{34}, s_{25}\left(s_{24}+s_{34}\right)-p_{5}^{2} s_{34}\right\}
\end{array}
$$

- All denominator factors guessed + some of the numerator
(1) Linear relations between rational coefficients: $\quad F^{(L)}=\sum_{i} r_{i}(p(x)) m_{i}(f)$
- Coefficients r_{i} are not independent
- Find relations between them and choose the independent ones based on the lowest polynomial degree
(2) Factor matching:
- Aid the reconstruction by providing an ansatz of factors related to the letters

$$
\begin{array}{r}
\left\{\langle i j\rangle,[i j],\langle i| p_{5} \mid j\right], s_{i j}, s_{i j}-s_{k l}, s_{i 5}-p_{5}^{2}, p_{5}^{2}, \operatorname{tr}_{5}, \Delta_{1}, \Delta_{2}, \\
\left.s_{15}\left(s_{13}+s_{34}\right)-p_{5}^{2} s_{34}, s_{25}\left(s_{24}+s_{34}\right)-p_{5}^{2} s_{34}\right\}
\end{array}
$$

- All denominator factors guessed + some of the numerator
(3) Univariate partial fractioning
- Having guessed the denominator, construct a partial-fractioned ansatz

Details of reconstruction

$\bar{b} b g g H$	helicity configurations	$r_{i}(x)$	independent $r_{i}(x)$	partial fraction in x_{5}	points
$F^{(2), 1}$	++++	$63 / 57$	$52 / 46$	$20 / 6$	3361
	+++-	$135 / 134$	$119 / 120$	$28 / 22$	24901
	++--	$105 / 111$	$105 / 111$	$22 / 12$	4797
$F^{(2), n_{f}}$	++++	$45 / 41$	$45 / 41$	$16 / 6$	1381
	+++-	$94 / 95$	$94 / 95$	$17 / 6$	1853
	++--	$89 / 95$	$62 / 69$	$18 / 3$	2492
$F^{(2), n_{f}^{2}}$	++++	$12 / 8$	$9 / 7$	$0 / 0$	3
	+++-	$11 / 16$	$11 / 16$	$3 / 0$	22
	++--	$12 / 20$	$8 / 16$	$8 / 0$	242

Maximum numerator/denominator polynomial degrees and the sample points needed for the reconstruction of the finite remainder coefficients.

$$
F^{(L)}=\sum_{i} r_{i}(p(x)) m_{i}(f)
$$

Defined as:

$$
\left[w_{i_{1}}, \ldots, w_{i_{n}}\right]_{s_{0}}(s)=\int_{0}^{1} \mathrm{~d} t \frac{\mathrm{~d} \log w_{i_{n}}(\gamma(t))}{\mathrm{d} t}\left[w_{i_{1}}, \ldots, w_{i_{n-1}}\right]_{s_{0}}(\gamma(t)), \quad[]_{s_{0}}:=1
$$

The number of integration kernels w_{i} is known as transcendental weight.
They have several advantages:
(1) Automatically implement functional relations
(2) Singularities or branch points only where one of the letters vanishes or diverges
(3) Simplify the finite remainder function basis through analytic cancellations

Our workflow

finite fields

[^0]: (one penta-box, MPLs)
 (DEs+numerical sols) (MPLs)
 (1L pentagon, MPLs)
 (one hexa-box, MPLs)
 (hexa-box, DEs+numerical sols)

