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I will try and be as pedagogical as possible



Heterotic String Theory and String Phenomenology

● Two of the five superstring theories
● Low energy: 10D N=1 SUGRA, coupled to SYM 

○ Gauge Group E8 X E8 or SO(32) - both contain the standard model as subgroups

● Need to compactify, subject to two constraints
○ Solves equations of motion of S
○ Looks like the standard model coupled to gravity

● First attempt: “Vacuum Configurations for Superstrings” - Candelas, Horowitz, 
Strominger and Witten 1985
○ There are other approaches! F-Theory, intersecting D-Branes…
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Calabi-Yau Manifolds (N=1 SUSY in 4D)

● Different choices of        leads to different 4D physics
● Simplest choice for        is 

○ Leads to N=4 SUSY in 4D
○ Need a manifold with reduced holonomy 

● Calabi-Yau 3-folds
○ 3 complex dimensions, with SU(3) holonomy
○ Leads to N=1 SUSY in 4D - phenomenologically viable!
○ Gives access to powerful computational techniques (Algebraic Geometry)

● Note, we will have extra scalar fields in 4D
○ Couplings appear as functions of these scalars
○ “Moduli Stabilisation”
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Vector Bundles (Non-Trivial Gauge Fields)

● Vector bundles (collections of fields on a manifold)
○ Fibre-Bundle B over M, looks locally like M x F

○ Vector Bundle - F is a vector space

● Sections of bundles are F-valued field configurations over M

● Can have non-trivial topology
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Vector Bundles (Non-Trivial Gauge Fields)

● The gauge fields are forced to have a non-trivial value in the hidden 
dimensions - encoded by a bundle

● This looked very restrictive -> Standard Embedding
● Can actually add non-perturbative physics, and is actually less restrictive

● Different choice of V, lead to different 4D physics
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Monad Bundles

● Ignore one of our E8 factors (Hidden Bundle)

● Consider a 4D SO(10) GUT theory made from the other E8 factor
○ Hidden dimensions will need an SU(4) bundle

○ Have a new method of breaking GUT down to standard model by introducing Wilson lines on 

the hidden dimensions

● Constructing Non-Abelian bundles on a Calabi-Yau is hard!
○ Our approach - build it out of simpler objects

● Line bundles are the simplest vector bundle
○ Look locally like C x M (or R x M for real)
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● We can classify line bundles by a vector of integers

● We can construct two sums of line bundles B and C
○ rk(B) - rk(C) = 4 for SU(4) bundle

● Define a Monad bundle V by a short-exact sequence

● Intuitively: 

● V is now given by a large number of integers
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Modern Computational Methods

Reinforcement Learning (RL): An agent is trained to find gain rewards by exploring some 

large parameter space.

Genetic Algorithms (GA): Survival of the fittest, starting with a random population from a 

large parameter space.

See “Data science applications to string theory” by Fabian Ruehle for a review

https://www.sciencedirect.com/science/article/pii/S0370157319303072 
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Modern Computational Methods

● Aim of RL - Maximise Reward

● Aim of GA - Maximise Fitness

● String Model building often requires searching large parameter spaces
○ Such as the large spaces of integers to define a monad bundle

● Define a reward/fitness that is maximised when a theory looks like the standard model
○ Agent can move through the integer lattice of theories/monad bundles

● These were hugely successful, on sizes up to 10^22!
○ 28 unique models found for the rank-(6,2) bicubic

■ after removing redundancies and further checks

○ Only one was known before
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Reinforcement Learning Plots



Genetic Algorithms Plots



RL Vs GA

RL

GA



Conclusions

● Can construct the SM from ST is by compactifying Heterotic ST

● The low energy theory is specified by the choice of a vector bundle and 

manifold
○ We chose a CY3 for N=1 SUSY in 4D and computational control

○ Monad bundles are specified by a large number of integers

● We can, and have, used RL and AG to find models on these spaces

● Thank you for listening!
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