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Heterotic String Theory and String Phenomenology

Two of the five superstring theories

Low energy: 10D N=1 SUGRA, coupled to SYM
o Gauge Group E8 X E8 or SO(32) - both contain the standard model as subgroups

S = f%of d%x,/—ge=%* (R — |H5[% + 4092 — & [tr(F?) — tr(R?)] + (fermions))

Need to compactify, subject to two constraints My = R1:3 x Mg
o Solves equations of motion of S
o Looks like the standard model coupled to gravity

First attempt: “Vacuum Configurations for Superstrings” - Candelas, Horowitz,
Strominger and Witten 1985

o There are other approaches! F-Theory, intersecting D-Branes...
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Calabi-Yau Manifolds (N=1 SUSY in 4D)

e Different choices of M6Ieads to different 4D physics

e Simplest choice for Mcis T¢
o Leadsto N=4SUSY in 4D
o Need a manifold with reduced holonomy

e (Calabi-Yau 3-folds

o 3 complex dimensions, with SU(3) holonomy
o Leadsto N=1 SUSY in 4D - phenomenologically viable!

o  Gives access to powerful computational techniques (Algebraic Geometry)

e Note, we will have extra scalar fields in 4D

o Couplings appear as functions of these scalars
o  “Moduli Stabilisation”
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Vector Bundles (Non-Trivial Gauge Fields)

e Vector bundles (collections of fields on a manifold)

o Fibre-Bundle B over M, looks locally like M x F

o Vector Bundle - F is a vector space

e Sections of bundles are F-valued field configurations over M/ ™ e

base manifold

e Can have non-trivial topology

fiber bundie
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e The gauge fields are forced to have a non-trivial value in the hidden
dimensions - encoded by a bundle

H # dB,
H = dB; — o'/4[w3(A) — w3(R)]
= C(TX) — (V) =0

e This looked very restrictive -> Standard Embedding
Can actually add non-perturbative physics, and is actually less restrictive

= Co(TX)=~c2(V) = (NS5—Branes)
e Different choice of V, lead to different 4D physics
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Monad Bundles

e Ignore one of our E8 factors (Hidden Bundle)
e Consider a 4D SO(10) GUT theory made from the other E8 factor

o Hidden dimensions will need an SU(4) bundle Eg D) 50(10) X SU(4)
e Constructing Non-Abelian bundles on a Calabi-Yau is hard!

o Our approach - build it out of simpler objects

e Line bundles are the simplest vector bundle

o Look locally like C x M (or R x M for real)
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Monad Bundles

e We can classify line bundles by a vector of integers

e We can construct two sums of line bundles B and C
o rk(B) - rk(C) = #LB(B) - #LB(C) = 4 for SU(4) bundle
e Define a Monad bundle V by a short-exact sequence

0=V B —->0-=0

e Intuitively: V ~ B/C

V is now given by a large number of integers
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Modern Computational Methods

Reinforcement Learning (RL): An agent is trained to find gain rewards by exploring some

large parameter space.

Genetic Algorithms (GA): Survival of the fittest, starting with a random population from a

large parameter space.

See “Data science applications to string theory” by Fabian Ruehle for a review

https://www.sciencedirect.com/science/article/pii/S0370157319303072
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Modern C

e AimofRL-I
e Aim of GA -
e String Mode

o Suchas

e Define arew

| property

comment

index match

term in v(B,C)
2|ind(V') — 7|
hM3

7 = =3|I'| is the target index,
ind(V') computed from Eq. (2.20)

h

stability V'

hM3

anomaly # Z min (c2;(7X) — ¢2:(V),0) | no penalty if anomaly condition satisfied,
i=1
¢2i(V') computed from Eq. (2.20)
bundleness —(daeg + 1) dgeg = dimension of degeneracy locus
as discussed in Sec. 2.4; if the degeneracy
locus is empty, dgeg is to be taken as —1
split bundle —TNgplit ngplit = number of splits in V'
equivariance | — Z mod(ind(U), |T'|) U runs over all line bundles in B,C
UucB,C
or blocks of same line bundles,
as discussed in Sec. 2.4
trivial bundle | —ngyivial Nirivial = number of trivial line bundles
~ max(0, h°(X, B) — h°(X, C))

tests Hoppe’s criterion for V/,

cohomologies from formulae in Sec. 2.3

stability V*

_ max(0, A(X, B*) — h9(X,C"))
e

tests Hoppe's criterion for V*,

cohomologies from formulae in Sec. 2.3

Table 2: Contributions to the intrinsic value for the monad environment. The intrinsic value v(B,C) is
the sum of all eight terms and M = max(bmax, Cmax)-

i\dard model
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Modern Computational Methods

e Aim of RL - Maximise Reward
e Aim of GA - Maximise Fitness

e String Model building often requires searching large parameter spaces
o  Such as the large spaces of integers to define a monad bundle

e Define a reward/fitness that is maximised when a theory looks like the standard model
o  Agent can move through the integer lattice of theories/monad bundles

e These were hugely successful, on sizes up to 10*22!

o 28 unique models found for the rank-(6,2) bicubic

m after removing redundancies and further checks

o Only one was known before!



Reinforcement Learning Plots
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Figure 6: Training metrics for the bicubic monad environment with (rg,r¢) = (6,2).



Genetic Algorithms Plots
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Figure 1: Performance measures for a typical GA initialisation on the bicubic.




RL Vs GA
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Conclusions

e (Can construct the SM from ST is by compactifying Heterotic ST
e The low energy theory is specified by the choice of a vector bundle and

manifold

o We chose a CY3 for N=1 SUSY in 4D and computational control

o Monad bundles are specified by a large number of integers
e We can, and have, used RL and GA to find models on these spaces
o 28 onthe (6,2) bicubic, including the one known model

Thank you for listening!




