Cosmological and Quantum Gravity applications of QRG

On polygons

Spacetime at Plank scale

Quantum spacetime hypothesis: space-time coordinates better modelled as noncommutative due to quantum gravity effects

Quantum Riemannian Geometry

Differential calculus

- An algebra A over a field K
- An A-bimodule Ω^{1}
$(a \cdot \omega) \cdot b=a \cdot(\omega \cdot b), a, b \in A, \omega \in \Omega^{1}$
- A linear map $d: A \rightarrow \Omega^{1}$
$d(a b)=(d a) \cdot b+a \cdot(d b)$
- $\Omega^{1}=\operatorname{span}\{a \cdot d b \mid a, b \in A\}$

Surjectivity

- $\operatorname{Ker} d=k \cdot 1_{A}, k \in K, 1_{A} \in A$

Connectedness (Optional)

- $d: \Omega^{n} \rightarrow \Omega^{n+1}$
$d^{2}=0$

Geometrical Structures on a differential calculus $\left(A, \Omega^{1}, d\right)$

$$
g \in \Omega^{1} \otimes_{A} \Omega^{1}
$$

$$
(,): \Omega^{1} \otimes_{A} \Omega^{1} \rightarrow A
$$

$$
\nabla: \Omega^{1} \rightarrow \Omega^{1} \otimes_{A} \Omega^{1}
$$

$$
\sigma: \Omega^{1} \otimes_{A} \Omega^{1} \rightarrow \Omega^{1} \otimes_{A} \Omega^{1} \quad \text { Braiding map }
$$

Ricci $\in \Omega^{1} \otimes_{A} \Omega^{1}$

$$
S=(,) \text { Ricci }
$$

$$
i: \Omega^{2} \rightarrow \Omega^{1} \otimes \Omega^{1}
$$

$$
\nabla(f \omega)=\mathrm{d} f \otimes \omega+f \nabla \omega \quad \nabla(\omega f)=\sigma(\omega \otimes \mathrm{d} f)+(\nabla \omega) f
$$

$$
\nabla(\omega \otimes \eta)=\nabla \omega \otimes \eta+(\sigma \otimes \mathrm{id})(\omega \otimes \nabla \eta)
$$

QLC

$$
\nabla g=0
$$

$$
T_{\nabla}: \Omega^{1} \rightarrow \Omega^{2}
$$

$$
T_{\nabla}=\wedge \nabla-\mathrm{d}
$$

Quantization of \mathbb{Z}_{n}

J. N. Argota-Quiroz and S. Majid, Quantum gravity on polygons and $\mathbb{R} \times \mathbb{Z}_{n}$ FLRW model, Class. Quantum Grav. (2020) 245001 (43pp)

$$
\begin{gathered}
\text { Algebra } A=\mathbb{C}\left(\mathbb{Z}_{n}\right) \\
e^{ \pm} f=R_{ \pm} f e^{ \pm}, \quad \mathrm{d} f=\sum_{ \pm} \partial_{ \pm} f e^{ \pm} ; \quad\left(R_{ \pm} f\right)(i)=f(i \pm 1), \quad \partial_{ \pm}=R_{ \pm}-\mathrm{id}
\end{gathered}
$$

Calculus Ω

N-gon

Edge symmetry condition

$$
g=a e^{+} \otimes e^{-}+b e^{-} \otimes e^{+}
$$

Inverse metric

$$
\left(e^{+}, e^{-}\right)=1 / R_{+}(b) \quad\left(e^{-}, e^{+}\right)=1 / R_{-}(a) \quad\left(e^{ \pm}, e^{ \pm}\right)=0
$$

Ω^{2} calculus
$\left(e^{ \pm}\right)^{2}=0, \quad e^{+} \wedge e^{-}+e^{-} \wedge e^{+}=0, \quad \mathrm{~d} e^{ \pm}=0$

- $g=a e^{+} \otimes e^{-}+R_{-}(a) e^{-} \otimes e^{+}$
- $\nabla e^{+}=(1-\rho) e^{+} \otimes e^{+}$,
$\nabla e^{-}=\left(1-R_{-}^{2} \rho^{-1}\right) e^{-} \otimes e^{-}$
- $R_{\nabla} e^{+}=\partial_{-} \rho e^{+} \wedge e^{-} \otimes e^{+}, \quad R_{\nabla} e^{-}=-\partial_{+}\left(R_{-}^{2} \rho^{-1}\right) e^{+} \wedge e^{-} \otimes e^{-}$
- $\operatorname{Ricci}=\frac{1}{2}\left(\partial_{-}\left(R_{-} \rho\right) e^{-} \otimes e^{+}-\partial_{-} \rho^{-1} e^{+} \otimes e^{-}\right)$,
- $S=\frac{1}{2}\left(-\frac{\partial_{-} \rho^{-1}}{a}+\frac{\partial_{-}\left(R_{-} \rho\right)}{R_{-} a}\right)$,
- $\Delta f=-\frac{R_{-}(\rho)+1}{a}\left(\partial_{+}+\partial_{-}\right) f$

$$
\int S=\sum_{\mathbb{Z}_{n}} a S=\frac{1}{4} \sum_{\mathbb{Z}_{n}} \rho\left(\partial_{+}+\partial_{-}\right) \rho \quad \text { Hilbert-Einstein Action }
$$

$$
\rho=\frac{R_{+}(a)}{a}
$$

Curvature

Ricci tensor

Ricci scalar

$$
\partial_{ \pm} f(i)=f(i+1) \pm f(i)
$$

Laplacian

Quantum Gravity Applications

Closed boundary condition $\rho_{0} \rho_{1} \cdots \rho_{n-1}=1$ constraint manifold with metric \mathfrak{g}_{ρ}
Measure for integration over ρ

$$
\begin{array}{r}
\mathcal{D} \rho=\left(\prod_{i=0}^{n-2} \mathrm{~d} \rho_{i}\right) \sqrt{\operatorname{det}\left(\mathfrak{g}_{\rho}\right)} \\
\operatorname{det}\left(\mathfrak{g}_{\rho}\right)=1+\frac{1}{\rho_{0}^{4} \rho_{1}^{2}}+\frac{1}{\rho_{0}^{2} \rho_{1}^{4}}
\end{array}
$$

Taking $\mathrm{n}=3$, and ρ_{0}, ρ_{1} as coordinates

$$
Z=\int_{0}^{\infty} \mathrm{d} \rho_{0} \int_{0}^{\infty} \mathrm{d} \rho_{1} \sqrt{\operatorname{det}\left(\mathfrak{g}_{\rho}\right)} e^{-\frac{1}{2 G}\left(\rho_{0}^{2}+\rho_{1}^{2}+\rho_{2}^{2}-\rho_{0} \rho_{1}-\rho_{1} \rho_{2}-\rho_{2} \rho_{0}\right)}
$$

For large G

$$
\begin{aligned}
& \frac{\Delta \rho_{i}}{\left\langle\rho_{i}\right\rangle} \sim 1.1 \\
& \frac{\left\langle\rho_{i} \rho_{j}\right\rangle}{\left\langle\rho_{i}\right\rangle\left\langle\rho_{j}\right\rangle} \geq .808
\end{aligned}
$$

For small G

$$
\Delta \rho_{i} \rightarrow 0
$$

$$
A=\left(\prod_{i} a_{i}\right)^{\frac{1}{n}}
$$

With the variables

$$
b_{i}=a_{i} / A
$$

And the restriction $b_{0} b_{1} \ldots b_{n}=1$

Mesure $\mathrm{d} a_{0} \mathrm{~d} a_{1} \mathrm{~d} a_{2}=\frac{3 A^{2}}{b_{0} b_{1}} \mathrm{~d} b_{0} \mathrm{~d} b_{1} \mathrm{~d} A . \quad$ Action $S_{g}=\frac{1}{2}\left(\frac{b_{0}}{b_{1}}+\frac{b_{1}}{b_{2}}+\frac{b_{0}}{b_{2}}-\left(\frac{b_{1}}{b_{0}}\right)^{2}-\left(\frac{b_{2}}{b_{1}}\right)^{2}-\left(\frac{b_{0}}{b_{2}}\right)^{2}\right)$

Partition function $Z=\int_{0}^{\infty} \mathrm{d} b_{0} \int_{0}^{\infty} \mathrm{d} b_{1} \frac{1}{b_{0} b_{1}} e^{\frac{1}{2 G b_{0}^{2} b_{1}^{4}}\left(-1+\left(1+b_{0}^{3}\right) b_{1}^{3}+\left(-1+b_{0}^{3}-b_{0}^{6}\right) b_{1}^{6}\right)}$

1.015
1.011
1.008
1.004

Cosmological applications

$$
g=-\mathrm{d} t \otimes \mathrm{~d} t-\mathrm{R}^{2}(t) e^{+} \otimes_{s} e^{-}
$$

$$
\nabla \mathrm{d} t=R \dot{R} e^{+} \otimes_{s} e^{-}, \quad \nabla e^{ \pm}=-\frac{\dot{R}}{R} e^{ \pm} \otimes_{s} \mathrm{~d} t
$$

$$
R_{\nabla} e^{ \pm}=-\frac{\ddot{R}}{R} \mathrm{~d} t \wedge e^{ \pm} \otimes \mathrm{d} t \pm\left(\frac{\dot{R}}{R}\right)^{2} R^{2} e^{+} \wedge e^{-} \otimes e^{ \pm}, \quad R_{\nabla} \mathrm{d} t=\ddot{R} R \mathrm{~d} t \wedge e^{+} \otimes_{s} e^{-},
$$

$$
\text { Ricci }=\frac{\ddot{R}}{R} \mathrm{~d} t \otimes \mathrm{~d} t+\frac{1}{2}\left(\frac{\dot{R}^{2}}{R^{2}}+\frac{\ddot{R}}{R}\right) R^{2} e^{+} \otimes_{s} e^{-}, \quad S=-2 \frac{\ddot{R}}{R}-\left(\frac{\dot{R}}{R}\right)^{2}
$$

$$
\text { Eins }=\text { Ricci }-\frac{1}{2} S g=-\frac{1}{2}\left(\frac{\dot{R}}{R}\right)^{2} \mathrm{~d} t \otimes \mathrm{~d} t-\frac{R \ddot{R}}{2} e^{+} \otimes_{s} e^{-} \quad \nabla \cdot \text { Eins }=0
$$

$$
T=f \mathrm{~d} t \otimes \mathrm{~d} t-p R^{2} e^{+} \otimes_{s} e^{-} \quad p=-\frac{1}{8 \pi G}\left(\frac{\ddot{R}}{R}\right), \quad f=\frac{1}{8 \pi G}\left(\frac{\dot{R}}{R}\right)^{2} .
$$

$$
R(t)=R_{0}\left(1+\sqrt{8 \pi G f_{0}}(1+w) t\right)^{\frac{1}{1+w}}
$$

Metric

QLC

Curvature

Ricci

Naive Einstein Tensor

Fluid tensor for a pressure p and density f

With R being constantan (QFT) $<0\left|T\left[\phi_{i}\left(t_{a}\right) \phi_{j}\left(t_{b}\right)\right]\right| 0>=\sum_{k=0}^{n-1} \frac{1}{w_{k}} \cos \left(\frac{2 \pi}{n} k(i-j)\right) e^{-l w_{k}\left|t_{a}-t_{b}\right|}$.

Particle creation in the adiabatic limit $\dot{R} / R \rightarrow 0, \ddot{R} / R \rightarrow 0 \quad w_{k}(t)=\sqrt{m^{2}+\frac{8}{R^{2}(t)} \sin ^{2}\left(\frac{\pi}{n} k\right)}$

$$
\Delta=-\partial_{t}^{2}-2 \frac{\dot{R}}{R} \partial_{t}+\frac{2}{R^{2}}\left(\partial_{+}+\partial_{-}\right) \quad\left(-\Delta+m^{2}\right) \phi=0
$$

No particle creation
$\mathbb{R} \times S^{1}$
$R \propto t^{2}$
$\frac{1}{2} \frac{\ddot{R}}{R}=\frac{1}{4}\left(\frac{\dot{R}}{R}\right)^{2} \quad(m \rightarrow \infty)$
$\mathbb{R} \times \mathbb{Z}_{n}$

$$
\ddot{R}=0(m \rightarrow \infty) \quad R \propto t
$$

$$
\frac{\ddot{R}}{R}=-\frac{1}{2}\left(\frac{\dot{R}}{R}\right)^{2},(m \rightarrow 0)
$$

$$
R \propto t^{\frac{2}{3}}
$$

Thank you for your attention

