Precision Calculation for quark flavour Physics Hang Yu

Theoretical Physics Division, Department of Mathematical Science, University of Liverpool

Hang.Yu@liverpool.ac.uk — +44 077 2486 4776

The History

- Parity P-violation in Co-60 weak decay was discovered in Wu-experiment, 1956[1].
- James Cronin and Val Fitch first discovered (charge, parity) CP-

of internal quarks , weak and/or Goldstone bosons. All the diagrams have mass dimension -2 and the weak vertices contribute the prefactor in (3). Here are some techniques

• We have ignored the light quark masses except top as

violation in kaon $(s\bar{d}, \bar{s}d)$ decay ,1964[2].

- The C-conjugation cannot compensate P-violation and CP-violation in weak interaction is recognised as a nature in universe.
- A parameter is proposed for CP-violation in K^0 , \bar{K}^0 mixing and measured as[3]

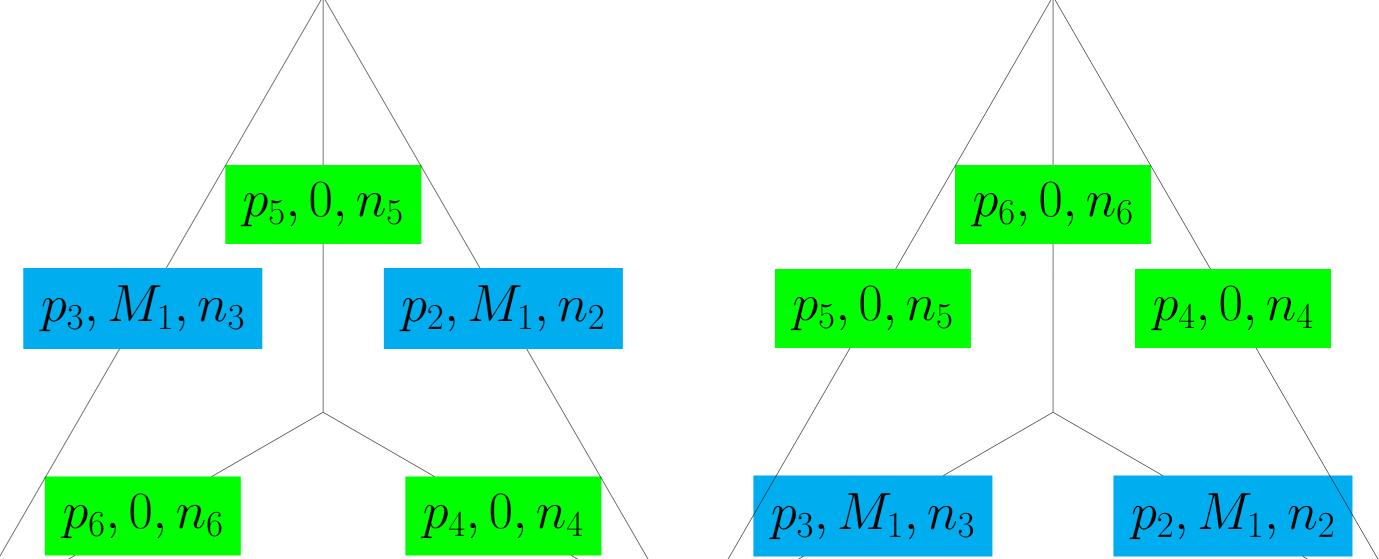
 $|\epsilon_K| = (2.228 \pm 0.011) \times 10^{-3}.$ (1)

CP violation and $\bar{s}d \rightarrow s\bar{d}$

We are now calculating the NNLO QCD contribution to CP-violation parameter[4]

$$\epsilon_K \equiv \frac{1}{2} \arg\left(\frac{-M_{12}}{\Gamma_{12}}\right) e^{i\phi_\epsilon} \sin\phi_\epsilon.$$
 (2)

in K^0 , \overline{K}^0 mixing. The constants ϕ_{ϵ} is from experiments. Both M_{12} and Γ_{12} describe mixing. M_{12} can be found via effective Hamiltonian


$$\mathcal{H} = \frac{g^4}{64\pi^2 m_W^2} (\lambda_t^2 \mathcal{C}^{tt} + \dots) \left(\bar{s}_L \gamma_\mu d_L \right) \otimes \left(\bar{s}_L \gamma^\mu d_L \right)$$
(3)

with the CKM element product $\lambda_t \equiv V_{ts}^* V_{td}$ and the dots standing for contribution from other CKM elements and other orders of α_s . The Wilson Coefficient C^{tt} bound to λ_t^2 is calculated.

 $m_t, m_W \gg m_u, m_d, m_c, m_s, m_b$

and the C associated with λ_t in (3) contains no quarks masses except top.

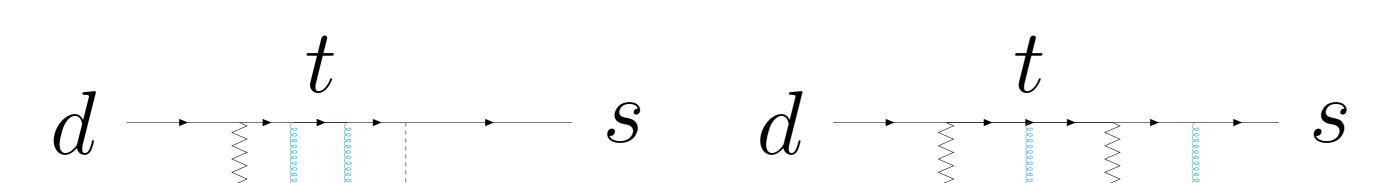
• We unified the 3-loop scalar integrals according to tetrahedron symmetry. These integrands can be represented as tetrahedrons with each of the 6 sides being $(p_i^2 - m_i^2)^{n_i}$ with mass m_i and some integer power n_i . The 6 momenta p_i in loops are $\{p_1, p_2, p_3, p_4 \equiv p_1 - p_2, p_5 \equiv p_1 - p_3, p_6 \equiv p_2 - p_3\}$. All the external momenta are ignored as the matching between full-SM and EFT does not depend on external momenta.

 p_1, M_1, n_1

The Diagrams

All the diagrams at $O(\alpha_s^2)$ from full SM and low-energy effective field theory (EFT) are evaluated and can be summarised as:

• 3-loop full-SM diagrams,


• 1,2-loop full-SM-counter-term diagrams,

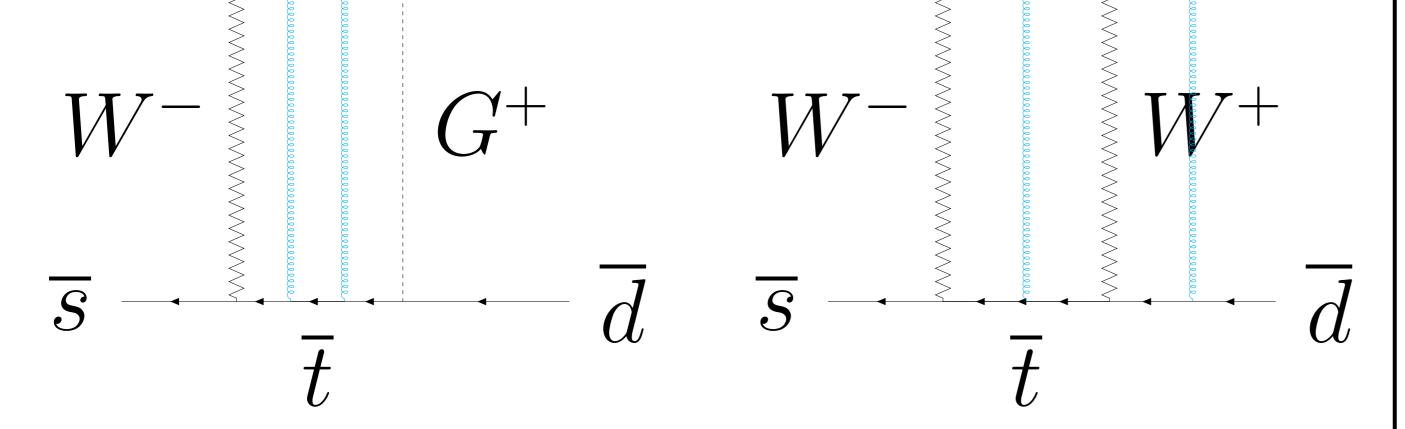
• 2-loop EFT diagrams,

•0,1-loop EFT counter-terms diagrams.

The SM and SM counter-term diagrams are combined for removing ultraviolet UV poles. The EFT diagrams are treated in the same way. Then the infrared (IR) poles still remain due to light quark (only $m_t \neq 0$) and vacuum (no external momenta) assumption. The IR poles cancel during matching the SM and EFT amplitudes and C^{tt} can be deduced.

3-loop Diagram Techniques

The above 2 diagrams represent the same scalar integrals according to 24-order tetrahedron symmetry group $\cong S_4$. The masses are marked with different colours. The unification of equivalent integrals can shrink the size of the output and enhance the efficiency.


 p_1, M_1, n_1

Summary

At the moment, I have created the FORM[5] codes for tetrahedronsymmetry operation on the 3-loop scalar integrals. After the unification, the integrals undergoes reduction into master integrals (with known value) by REDUZE[6]. With the above codes, I have enabled *2loopmass*[7] for 3-loop calculation.

References

- [1] C. S. WU, E. Ambler, R. W. Hayward, D. D. Hqppes and R,P. Hudson, *Experimental Test of Parity Conservation in Beta Decay*, 15 Jan 1957
- [2] Christenson, J. H., Cronin, J. W., Fitch, V. L., Turlay, R., *Evidence* for the 2π Decay of the K_2^0 Meson System, 1964

Evaluating the 3-loop full-SM diagrams is the hardest task for the huge number ($\sim 10^4$) and the complexity of each diagram. The above diagrams are 2 examples with gluonic (cyan) correction to the box made

[3] T. Gershon (Warwick U.) and Y. Nir (Weizmann Inst.), *CP Violation in the Quark Sector*, Revised Aug. 2019
[4] Joachim Brod, Martin Gorbahn and Emmanuel Stamou, *Standardmodel prediction of* ε_K with manifest CKM unitarity, 15 Nov 2019
[5] Geert Jan van Oldenborgh, *An Introduction to FORM*, 1 June 1995
[6] A. von Manteuffel and C. Studerus, *Reduze 2 Tutorial*, 26 October 2016

[7] Joachim Brod, Emmanuel Stamou, Lorenz Hüdepohl, *Manual for 2loopmass*, unknown date