

Indirect detection of long-lived particles via a less-simplified dark Higgs portal

<u>K. Jodłowski^a</u>, L. Roszkowski^{b,a}, S. Trojanowski^{b,a}

^a National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland
 ^b Astrocent, Nicolaus Copernicus Astronomical Center Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

AstroCeNT

Young Theorists' Forum (YTF 2021), Durham, December 16-17, 2021

Supported by: NCN grant No. 2015-18-A-ST2-00748. Based on: 2112.xxxxx

Goal

Heavy WIMP & LLP

- 1. An interesting theoretical framework and a promising experimental target.
- 2. Study Indirect Detection of LLPs to constrain popular BSM scenario with scalar-vector portal.

Model

- ▶ Two-component heavy DM (χ, η) coupled to SM
- \blacktriangleright through <u>light dark-Higgs</u>—dark photon portal

peak due to "diffusion

from the GC"

 $m_{A'}$ [GeV]

Extra contribution due to

<u>LLPs that are produced close</u>

<u>to the GC and decay emitting</u>

photons along los.

 $R_0 \sim 8 \; \mathrm{kpc}$ For fixed observational angle θ , min distance of los to GC is $l_{min} = R_0 \sin \theta = (8 \sin \theta) \; \mathrm{kpc}$. If $d \sim l_{min}$, there is enhanced contribution coming from the GC.

ID, CMB & IFS complementarity

- \blacktriangleright Intensity frontier searches for h_D
 - ★ MATHUSLA: Alpigiani et al., 2009.01693
 - ★ SHiP: Ahdida et al, 1504.04956
 - ★ FASER: Feng et al, <u>1708.09389</u>
 - ★ CODEX-b: Aielli et al., 1911.00481
- ▶ Indirect Detection
 - * dSph limits, <u>1503.02641</u>
 - * CTA GC sensitivity, <u>2007.16129</u>
- ▶ Future CMB limits
 - * PIXIE, 1105.2044
 - * PRISM, 1310.1554

Takeaway

Indirect Detection of LLPs provides important coverage <u>complementary to the intensity frontier searches</u>, while <u>non-local effects</u> definitively distinguish LLPs from WIMPs: i) "diffusion from the GC" increases the flux and ii) the flux decreases faster as a function of d for dSph than for GC, which evades constraints.