Exotic SUSY Higgs at the LHC

Stefan Hesselbach IPPP, University of Durham

based on

D. Eriksson, SH, J. Rathsman, EPJ C 53 (2008) 267 [hep-ph/0612198] SH, S. Moretti, S. Munir, P. Poulose, accepted by EPJ C, arXiv:0706.4269 A. Belyaev, SH, S. Lehti, S. Moretti, A. Nikitenko, C. Shepherd-Themistocleous, in preparation

IPPP Seminar, Durham, 18 January 2008

Outline

- Introduction
- H^{\pm} search at LHC with $H^{\pm}W^{\mp}$ production channel
 - CP-conserving MSSM: maximal mixing and resonant scenarios
 - CP-violating MSSM
- Impact of SUSY CP violation on $H \rightarrow \gamma \gamma$ channel at LHC
- Light pseudoscalars in NMSSM: $h_1 \rightarrow a_1 a_1 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$
- Outlook: Beyond Higgs at LHC

Supersymmetry (SUSY)

- Symmetry fermions ↔ bosons
- "Standard" particles get superpartners with spin $\pm \frac{1}{2}$
- Supersymmetry is broken \Rightarrow soft SUSY parameters
- Motivation: unification of gauge couplings, hierarchy problem

Minimal Supersymmetric Standard Model (MSSM)

- Minimal extension of Standard Model (SM)
- SM gauge group
- Minimal Higgs sector: 2 doublets
- Many of MSSM parameters can be complex \rightarrow CP violation
- Higgs sector could be extended \rightarrow NMSSM

Introduction CP-violating MSSM

- - May help to explain baryon asymmetry of universe
 - Constraints from electric dipole moments (EDMs) of e, n, Hg, TI
 [Ibrahim, Nath, '99; Barger, Falk, Han, Jiang, Li, Plehn, '01; Abel, Khalil, Lebedev, '01]
 [Oshima, Nihei, Fujita, '05; Pospelov, Ritz, '05; Olive, Pospelov, Ritz, Santoso, '05]
 [Abel, Lebedev, '05; Yaser Ayazi, Farzan, '06, '07]
- Global U(1) symmetries: some phases eliminated E.g. M₂ : real SU(2) gaugino mass parameter
- Physical phases remain for the parameters
 - A_f : trilinear couplings of sfermions
 - μ : Higgs-higgsino mass parameter
 - M_1 : U(1) gaugino mass parameter
 - M_3 : SU(3) gaugino mass parameter (gluino mass)

Introduction MSSM Higgs sector

MSSM: 2 Higgs doublets

 \rightarrow 5 physical Higgs particles at tree-level (h, H, A, H^{\pm})

- \tilde{t} and \tilde{b} loops ⇒ explicit CP violation in Higgs sector [Pilaftsis, '98] [Pilaftsis, Wagner, '99; Demir, '99, Carena, Ellis, Pilaftsis, Wagner, '00, '01; Choi, Drees, Lee, '00]
- CP-even (h, H) and CP-odd (A) neutral Higgs mix

 \rightarrow 3 neutral mass eigenstates (H_1 , H_2 , H_3), mixing matrix O

- Impact on Higgs search [LEP Higgs Working Group, hep-ex/0602042] → MSSM Higgs search at LEP: no universal limit on m_{H_1}
- **Spectrum calculation (masses** m_{H_i} and mixing matrix O)
 - CPsuperH [Carena, Ellis, Pilaftsis, Wagner '00; Ellis, Lee, Pilaftsis, '06]
 [Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner '03; Lee, Carena, Ellis, Pilaftsis, Wagner, '07]
 - **FeynHiggs** [Heinemeyer '01; Frank, Heinemeyer, Hollik, Weiglein '02] [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, '06; Heinemeyer, Hollik, Rzehak, Weiglein, '07]

Introduction Extended SUSY models – NMSSM

Next-to-Minimal Supersymmetric Standard Model (NMSSM)

- "Simplest" extension of MSSM
- SM gauge group
- Additional singlet/singlino superfield \hat{S}

→ extended Higgs sector: 2 doublets + 1 singlet and neutralino sector: 5 neutralinos

- Superpotential: μ term replaced by $W \supset \lambda \hat{H_1} \hat{H_2} \hat{S} + \frac{\kappa}{3} \hat{S}^3$
- Image potential: $V \supset \lambda A_{\lambda} \hat{H}_{1} \hat{H}_{2} \hat{S} + \frac{\kappa}{3} A_{\kappa} \hat{S}^{3}$
- Solution of μ problem: $\mu \rightarrow \mu_{eff} = \lambda \langle S \rangle$
- Larger mass of lightest scalar Higgs possible \Rightarrow less fine-tuning

Introduction Particle content

	"standard" particles	superpartners		
	e, μ, au	$ ilde{e}_{L,R}, ilde{\mu}_{L,R}, ilde{ au}_{1,2}$	sleptons	
	$ u_e, u_\mu, u_ au$	$ ilde{ u}_e, ilde{ u}_\mu, ilde{ u}_ au$	sneutrinos	
	$u,c,t \ d,s,b$	$egin{array}{l} ilde{u}_{L,R}, ilde{c}_{L,R}, ilde{t}_{1,2} \ ilde{d}_{L,R}, ilde{s}_{L,R}, ilde{b}_{1,2} \end{array}$	squarks	
	g	$ ilde{g}$	gluino	
	H^{\pm}, W^{\pm}	$ ilde{H}^{\pm}, ilde{W}^{\pm}$	charginos ${ ilde \chi}^\pm_{1,2}$	
MSSM	$\begin{array}{ccc} \gamma, Z \\ h, H, A & \xrightarrow{\text{CPV}} & H_1, H_2, H_3 \end{array}$	$\left. \begin{array}{c} \tilde{\gamma}, \tilde{Z} \\ \tilde{H}_{1}, \tilde{H}_{2} \end{array} \right\}$	neutralinos $\tilde{\chi}^0_{1,,4}$	
NMSSM	γ, Z h_1, h_2, h_3, a_1, a_2	$\left. \begin{array}{c} \tilde{\gamma}, \tilde{Z} \\ \tilde{H}_{1}, \tilde{H}_{2}, \tilde{S} \end{array} \right\}$	neutralinos $\tilde{\chi}^{0}_{1,,5}$	

$H^{\pm}W^{\mp}$ at LHC Introduction

- Discovery of charged Higgs $(H^{\pm}) \Rightarrow$ new physics
- Main search channels at LHC: $gb \rightarrow H^-t$ and $gg \rightarrow H^-t\bar{b}$
- $H^{\pm}W^{\mp}$ production: large cross section [Barrientos Bendezú, Kniehl, '98; Brein, '02; Asakawa, Brein, Kanemura '05]
- $H^{\pm} \rightarrow tb$ decay: large irreducible background from $t\bar{t}$ production [Moretti, Odagiri, '98]
- Here: $H^{\pm}W^{\mp}$ production and $H^{\pm} \rightarrow \tau^{\pm}\nu$ decay

[Eriksson, SH, Rathsman, EPJ C 53 (2008) 267, hep-ph/0612198]

- Suppression of background by appropriate cuts
- In MSSM with real and complex parameters
 - → Resonance enhancement possible

[Akeroyd, Baek, '01; Mohn, Gollub, Assamagan, '05]

→ Effects of CP violation, CP asymmetry

[Akeroyd, Baek, '00]

$H^{\pm}W^{\mp}$ at LHC Introduction

- At hadron colliders: $b\bar{b} \rightarrow H^{\pm}W^{\mp}$ and $gg \rightarrow H^{\pm}W^{\mp}$
- Here: focus on $m_{H^{\pm}} \sim m_t$ and large tan β with large $BR(H^{\pm} \to \tau \nu)$

 $\rightarrow b\bar{b} \rightarrow H^{\pm}W^{\mp}$ dominates:

- Cross section calculation
 - Implemented as external process in PYTHIA [Sjöstrand et al.]
 - FEYNHIGGS: masses, mixing and BR of Higgs bosons

$H^{\pm}W^{\mp}$ at LHC Signature

- Simulation of $pp \rightarrow W^{\pm} + H^{\mp} \rightarrow jj + \tau \nu$
- Decays $H^{\pm} \to \tau \nu$ and $W^{\pm} \to jj$ in PYTHIA with $BR(H^{\pm} \to \tau \nu)$ from FEYNHIGGS
- Tau decay with TAUOLA → spin effects Focus on hadronic τ decays
- **Signature:** $2j + \tau_{jet} + \not p_{\perp}$
- p_{\perp} from 2 ν : $H^{\pm} \rightarrow \tau \nu \rightarrow \tau_{jet}$ + 2 ν
 - \rightarrow reconstruction of H^{\pm} invariant mass not possible
 - \rightarrow analysis of transverse mass from $p_{\perp \tau_{\text{jet}}}$ and $\not p_{\perp}$:

$$m_{\perp} = \sqrt{2p_{\perp \tau_{jet}} \not p_{\perp} [1 - \cos(\Delta \phi)]}$$

 $\Delta\phi$: angle between $p_{\perp au_{\mathsf{jet}}}$ and $\not\!\!p_{\perp}$

[Golonka et al.]

$H^{\pm}W^{\mp}$ at LHC Background

- Dominant irreducible background: $pp \rightarrow W + 2$ jets
- WZ + 2 jets and $Z \rightarrow \nu\nu$ (→ potentially larger p_{\perp}): less than 3% contribution to background after cuts
- Simulation of background with ALPGEN [Mangano, Moretti, Piccinini, Pittau, Polosa, '02]
 - Exact tree-level matrix elements for $2j + \tau + \nu_{\tau}$ final state
 - Includes W + 2 jets, W pair production and contributions where τ and ν not from (virtual) W → e.g.
 - \rightarrow Important for tail of invariant mass $m_{\tau\nu} \gtrsim 100 \text{ GeV}$
- Background distributions cross checked with MADGRAPH [Murayama, Watanabe, Hagiwara, '91; Stelzer, Long, '94; Maltoni, Stelzer, '02] [Alwall, Demin, de Visscher, Frederix, Herquet, Maltoni, Plehn, Rainwater, Stelzer, '07]

$H^{\pm}W^{\mp}$ at LHC Cuts

Smearing of jet momenta \rightarrow first approximation of parton showering, hadronisation and detector effects

9	Basic cuts	Additional cuts
	$ \eta_{ au_{jet}} < 2.5$	$p_{\perp au_{jet}} >$ 50 GeV, $\not\!\!p_{\perp} >$ 50 GeV
	$ \eta_j <$ 2.5	70 GeV $< m_{jj} <$ 90 GeV
	$\Delta R_{jj} >$ 0.4	$m_\perp >$ 100 GeV
	$\Delta R_{ au_{jet} j} > 0.5$	$p_{\perp hj} >$ 50 GeV, $p_{\perp sj} >$ 25 GeV
	$p_{\perp jet} >$ 20 GeV	

- Basic cuts: define signal region ↔ sensitive detector region
- Additional cuts: suppress background, QCD background, detector miss-identifications

$H^{\pm}W^{\mp}$ at LHC Cuts

Results for maximal mixing scenario with $m_{H^{\pm}} = 175$ GeV, tan $\beta = 50$ $\mu = 200$ GeV, $M_{SUSY} = 1$ TeV, $X_t = X_b = 2$ TeV, $M_2 = 200$ GeV, $m_{\tilde{g}} = 800$ GeV

	Integrated cross-section (fb)		
Cut	Background	Signal	S/\sqrt{B}
Basic cuts	560000	63	0.8
$p_{\perp au_{jet}} >$ 50 GeV, $\not\!\!p_{\perp} >$ 50 GeV	22000	25	1.6
70 GeV $< m_{jj} <$ 90 GeV	1700	21	5
$m_\perp >$ 100 GeV	77	15	16
$p_{\perp hj} >$ 50 GeV, $p_{\perp sj} >$ 25 GeV	28	9.3	17

For calculation of S/\sqrt{B} : $\mathcal{L}_{int} = 300 \text{ fb}^{-1}$; 30% τ detection efficiency

Maximal mixing scenario

 μ = 200 GeV, M_{SUSY} = 1 TeV, X_t = X_b = 2 TeV, M_2 = 200 GeV, $m_{\tilde{g}}$ = 800 GeV

$H^{\pm}W^{\mp}$ at LHC Results for real MSSM

Maximal mixing scenario

 μ = 200 GeV, M_{SUSY} = 1 TeV, X_t = X_b = 2 TeV, M_2 = 200 GeV, $m_{\tilde{g}}$ = 800 GeV

→ Fake peak in background!

$H^{\pm}W^{\mp}$ at LHC Results for real MSSM

Resonant scenario with $m_{H^{\pm}} = 175$ GeV, $\tan \beta = 11$ $\mu = 3.3$ TeV, $M_L = M_E = 500$ GeV, $M_Q = M_U = 250$ GeV, $M_D = 400$ GeV, $A_t = A_b = 0, M_2 = 500$ GeV, $m_{\tilde{g}} = 500$ GeV

 \rightarrow very large 1-loop corrections to CP-odd Higgs mass

(2-loop effects much smaller \rightarrow perturbative expansion under control)

 $\Rightarrow m_A > m_{H^{\pm}} + m_W$ possible

[Akeroyd, Baek, '02]

 \rightarrow resonant s-channel production

$H^{\pm}W^{\mp}$ at LHC Results for CP-violating MSSM

- Higgs sector analysed with FEYNHIGGS Cross checks with CPSUPERH
- Phases ϕ_{μ} and ϕ_{A_t} : largest effects on Higgs sector

$H^{\pm}W^{\mp}$ at LHC Summary

- $pp \rightarrow W^{\pm} + H^{\mp} \rightarrow jj + \tau \nu$ at parton level with smearing of momenta
- Signature: $2j + \tau_{jet} + \not p_{\perp}$
- Dominant irreducible background: $pp \rightarrow W + 2$ jets
- Appropriate cuts on p_{\perp} , m_{jj} , m_{\perp}
- Detectable signal at LHC in MSSM

$$\rightarrow$$
 maximal mixing scenario:

150 GeV
$$\lesssim m_{H^{\pm}} \lesssim$$
 300 GeVif tan β = 50tan $\beta \gtrsim$ 30if $m_{H^{\pm}}$ = 175 GeV

- \rightarrow resonant scenarios: also for smaller tan β
- CP-violating MSSM
 - Large phase effects possible in resonant scenarios
 - CP-odd rate asymmetry $\lesssim 1\%$

$H_1 ightarrow \gamma \gamma$ in CP-violating MSSM

■ $pp \rightarrow H \rightarrow \gamma\gamma$: important search channel at LHC for $m_H \leq 150$ GeV

Decay at 1-loop via f, W, H^{\pm} , \tilde{f} , $\tilde{\chi}^{\pm}$ loops in MSSM

$$H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \\ \gamma \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i} - - + \begin{pmatrix} \gamma \\ f, \tilde{\chi}^{\pm} \end{pmatrix} H_{i$$

- CP violation enters via phase dependence of
 - Masses $m_{H_i} \rightarrow \text{small}$
 - Mixing matrix $O \leftrightarrow H_i$ couplings (also to SM particles)

•
$$\tilde{f}$$
, $\tilde{\chi}^{\pm}$ sector (masses, couplings to H_i)

$H_1 ightarrow \gamma \gamma$ Production and decay in CPV MSSM

• Production $gg \rightarrow H_i$ at LHC

[Choi, Lee, '99; Dedes, Moretti, '99]

 \rightarrow factor 2–5 enhancement/reduction of σ with φ_{μ} and φ_{A_t}

- $gg \rightarrow H_i \rightarrow \gamma \gamma$ at LHC in CPV MSSM

for

$$M_{\tilde{Q},\tilde{U},\tilde{D}} = m_{\tilde{g}} = M_{\text{SUSY}} = 0.5 \text{ TeV},$$

 $|A_t| = |A_b| = \kappa M_{\text{SUSY}}, |\mu| = 2|A_t|,$
 $\Phi = \text{Arg}(A_t\mu) = \text{Arg}(A_b\mu)$

$H_1 ightarrow \gamma \gamma$ Analysis of Branching Ratio

- Here: [SH, S. Moretti, S. Munir, P. Poulose, accepted by EPJ C, arXiv:0706.4269]
 - Investigate possible effects of light sparticles
 - Calculation of m_{H_i} , O, $\Gamma(H_i)$, BR(H_i) with CPSUPERH
 - Detailed discussion of A_f , μ , tan β dependence
 - Leading contributions to (h, H)-A mixing $\propto Im(\mu A_f)$

 $\rightarrow \varphi_{\text{eff}} = \varphi_{\mu} + \varphi_{A_f}$

- \rightarrow Choosing A_f real, analysing $\varphi_{\text{eff}} = \varphi_{\mu}$ effects in the following
- First step: analysis of $BR(H_1 \rightarrow \gamma \gamma)$
- Scan over MSSM parameters [Moretti, Munir, Poulose, '07]
 In average ~ 50% deviation between CPV and CPC case possible for parameter points with m_{H_1} in bins of size 4 GeV

$H_1 ightarrow \gamma \gamma$ Numerical results

m_{H_1} as function of $m_{H^{\pm}}$

for $M_{(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)} = 1 \text{ TeV}, \ |\mu| = 1 \text{ TeV}, \ A_f = 1.5 \text{ TeV}, \ \varphi_{\mu} = 0, \ \varphi_{\mu} = 90^{\circ}$

 \rightarrow deviations $\Delta m_{H_1}(\varphi_{\mu})$ within experimental uncertainty

$H_1 ightarrow \gamma \gamma$ Numerical results

BR($H_1 \rightarrow \gamma \gamma$) as function of $m_{H^{\pm}}$

for $M_{(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)} = 1 \text{ TeV}, \ |\mu| = 1 \text{ TeV}, \ A_f = 1.5 \text{ TeV}, \ \tan \beta = 20$

$H_1 ightarrow \gamma \gamma$ Numerical results

BR($H_1 \rightarrow \gamma \gamma$) as function of $m_{H^{\pm}}$

for $M_{(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)} = 1 \text{ TeV}, \ |\mu| = 1 \text{ TeV}, \ A_f = 0.5 \text{ TeV}, \ \tan \beta = 20$

 \rightarrow strong A_f dependence

BR($H_1 \rightarrow \gamma \gamma$) in CP-violating MSSM

- Impact of light sparticles
 - \rightarrow light stops (\tilde{t}_1): possibly large effect
 - \rightarrow other light sparticles ($\tilde{b}_1, \tilde{\tau}_1, \tilde{\chi}_1^{\pm}$): small effect
- Strong A_f dependence
- Smaller $|\mu| = 500 \text{ GeV} \rightarrow \varphi_{\mu}$ dependence decreases
- Smaller tan $\beta = 5 \rightarrow$ sensitivity to φ_{μ} considerably reduced
- Conclusion: Strong phase dependence of $BR(H_1 \rightarrow \gamma \gamma)$ Increase or decrease depends on SUSY scenario
- Outlook: Analysis of full production and decay process at LHC Work in progress ...

NMSSM Higgs sector

[e.g. Elliott, King, White, '93; Franke, Fraas, '95] [Ellwanger, Hugonie, '99; Miller, Nevzorov, Zerwas, '03; Barger, Langacker, Lee, Shaughnessy, '06]

- 2 doublets + 1 singlet
 - \Rightarrow 3 scalars h_1, h_2, h_3 , 2 pseudoscalars a_1, a_2 and 2 charged Higgs H^{\pm}

 \rightarrow (3 \times 3), (2 \times 2) mass matrices for neutral Higgs

● 6 parameters (tree-level): $\lambda, \kappa, A_{\lambda}, A_{\kappa}, \tan \beta, \mu_{\text{eff}} = \lambda \langle S \rangle$

where
$$\tan \beta = \frac{v_2}{v_1}$$
, $v_{1,2} \equiv \langle H_{1,2} \rangle$

 h_1 mass bound

• Tree-level:
$$m_{h_1}^2 < m_Z^2 \cos^2 2\beta + \lambda^2 (v_1^2 + v_2^2) \sin^2 2\beta$$

- Including loop corrections: $m_{h_1} \leq 140 \text{ GeV}$
- Spectrum calculator: NMSSMTools: NMHDECAY, NMSPEC [Ellwanger, Gunion, Hugonie, '04; Ellwanger, Hugonie, '05, '06; Domingo, Ellwanger, '07]

Difficult NMSSM scenario for LHC

[Ellwanger, Gunion, Hugonie, Moretti '03, '04; Miller, Moretti '04; Gunion, Szleper, '04]
 [Ellwanger, Gunion, Hugonie, '05; Moretti, Munir, '06; Moretti, Munir, Poulose, '06]
 [Chang, Fox, Weiner, '06; Arhrib, Cheung, Hou, Song, '06; Cheung, Song, Yan, '07]
 [Carena, Han, Huang, Wagner, '07; Forshaw, Gunion, Hodgkinson, Papaefstathiou, Pilkington, '07]

Singlet-like a_1 and/or h_1 can be light in large region of parameter space

- Large $BR(h_1 \rightarrow a_1a_1)$ or $BR(h_2 \rightarrow h_1h_1)$
- ▶ Very light a_1 ($m_{a_1} < 2m_b$) possible $\rightarrow a_1 \rightarrow \tau^+ \tau^-$ [Dermisek, Gunion, '06, '07]
- Usual search channels for Higgs at LHC may fail

Here [Belyaev, SH, Lehti, Moretti, Nikitenko, Shepherd-Themistocleous, in preparation]

- Scenarios with $m_{a_1} < 2m_b \rightarrow BR(a_1 \rightarrow \tau^+ \tau^-) \sim 1$
- $h_1 \rightarrow a_1 a_1 \rightarrow 4\tau$ mode at LHC for
 - Vector boson fusion: $pp \rightarrow h_1 j j$
 - Higgs-strahlung: $pp \rightarrow h_1 V$
- Analysis of signature $4\tau \rightarrow 2\mu + 2j$
- Work in progress ...

NMSSM parameter space with $m_{a_1} < 2m_b$ and large $BR(h_1 \rightarrow a_1a_1)$

- Wide scan with NMHDECAY
 $M_1/M_2/M_3 = 150/300/1000 \text{ GeV}, A_t = A_b = A_\tau = 2.5 \text{ TeV}, M_{fL} = M_{fR} = 1 \text{ TeV}$ $10^{-5} < \lambda, \kappa < 0.7, 1.5 < \tan \beta < 50$ $-1000 \text{ GeV} < A_\kappa < 100 \text{ GeV}, -5 \text{ TeV} < A_\lambda < 5 \text{ TeV}, 100 \text{ GeV} < \mu_{eff} < 1000 \text{ GeV}$
 - \rightarrow Points satisfying theoretical, LEP and B physics bounds:

Narrowed scan

 $-20~{
m GeV} < A_\kappa < 25~{
m GeV}, \ -2~{
m TeV} < A_\lambda < 4~{
m TeV}, \ 100~{
m GeV} < \mu_{
m eff} < 300~{
m GeV}$

red: $\Omega h^2 > 0.11$, black: $\Omega h^2 < 0.11$, $m_{a_1} > 10$ GeV, green: $\Omega h^2 < 0.11$, $m_{a_1} < 10$ GeV

• Effective coupling R_{ZZh} =

$$\left(\frac{g_{ZZh_1}^{NMSSM}}{g_{ZZH}^{SM}}\right)^2$$

 \rightarrow Points with $m_{a_1} < 10$ GeV satisfying all contraints:

black: $R_{ZZh} < 0.1$, $0.1 < R_{ZZh} < 0.5$, $R_{ZZh} > 0.5$

black: $R_{ZZh} < 0.1$, $0.1 < R_{ZZh} < 0.5$, $R_{ZZh} > 0.5$

black: $R_{ZZh} < 0.1$, $0.1 < R_{ZZh} < 0.5$, $R_{ZZh} > 0.5$

Outlook

- Work in progress ...
- Combine with efficiencies from experimental collaborators
- Identify NMSSM parameter regions which can be covered
- Final aim: "no-lose" or even "more-to-gain" theorem for NMSSM

Accelerator Physics

- Collaboration with heLiCal group at Cockcroft Institute
- Positron source of e^+e^- linear collider

- → Systematic study of multi-particle processes in target
- \rightarrow Optimisation of yield
- → Optimisation of undulator parameters
- → Aspects of positron polarisation