
A factorisation aware matrix-element emulator
[arXiv:2107.06625] with Daniel Maître

Henry Truong
11th March 2022

Institute for Particle Physics Phenomenology
Institute for Data Science
Durham University

Table of contents

1. Introduction

2. Brief overview of neural networks

3. IR divergences and Catani-Seymour dipole factorisation

4. Dipole neural network emulator

5. Results

6. Conclusion and outlook

1

Introduction

Motivation

• High multiplicity matrix elements are computationally
expensive to evaluate.

• High energy collider experiments are becoming
increasingly more precise, and with HL-LHC we need to
improve the speed of event generation.

• Successfully emulating matrix elements will provide a fast
and accurate alternative to more traditional matrix
element providers.

2

Motivation

• High multiplicity matrix elements are computationally
expensive to evaluate.

• High energy collider experiments are becoming
increasingly more precise, and with HL-LHC we need to
improve the speed of event generation.

• Successfully emulating matrix elements will provide a fast
and accurate alternative to more traditional matrix
element providers.

2

Motivation

• High multiplicity matrix elements are computationally
expensive to evaluate.

• High energy collider experiments are becoming
increasingly more precise, and with HL-LHC we need to
improve the speed of event generation.

• Successfully emulating matrix elements will provide a fast
and accurate alternative to more traditional matrix
element providers.

2

Electron-positron scattering

• We investigate using a neural network model to emulate
tree-level matrix elements for e+e− → qq̄+ ng, up to five
jets.

• Matrix elements are plagued with singularities arising
because of infrared divergences.

• Small changes in phase-space kinematics can induce
large changes to the matrix element.

3

Electron-positron scattering

• We investigate using a neural network model to emulate
tree-level matrix elements for e+e− → qq̄+ ng, up to five
jets.

• Matrix elements are plagued with singularities arising
because of infrared divergences.

• Small changes in phase-space kinematics can induce
large changes to the matrix element.

3

Electron-positron scattering

• We investigate using a neural network model to emulate
tree-level matrix elements for e+e− → qq̄+ ng, up to five
jets.

• Matrix elements are plagued with singularities arising
because of infrared divergences.

• Small changes in phase-space kinematics can induce
large changes to the matrix element.

3

Why use neural networks?

• Neural networks are good function approximators. In
principle, they can approximate any arbitrary function.

• Recent advancements in GPU technology and availability
means that the training and inference times of neural
networks are massively accelerated.

• Neural networks have been shown to scale well with large
datasets.

• Inference on a neural network is simple to implement
manually so possible to interface to existing event
generators.

4

Why use neural networks?

• Neural networks are good function approximators. In
principle, they can approximate any arbitrary function.

• Recent advancements in GPU technology and availability
means that the training and inference times of neural
networks are massively accelerated.

• Neural networks have been shown to scale well with large
datasets.

• Inference on a neural network is simple to implement
manually so possible to interface to existing event
generators.

4

Why use neural networks?

• Neural networks are good function approximators. In
principle, they can approximate any arbitrary function.

• Recent advancements in GPU technology and availability
means that the training and inference times of neural
networks are massively accelerated.

• Neural networks have been shown to scale well with large
datasets.

• Inference on a neural network is simple to implement
manually so possible to interface to existing event
generators.

4

Why use neural networks?

• Neural networks are good function approximators. In
principle, they can approximate any arbitrary function.

• Recent advancements in GPU technology and availability
means that the training and inference times of neural
networks are massively accelerated.

• Neural networks have been shown to scale well with large
datasets.

• Inference on a neural network is simple to implement
manually so possible to interface to existing event
generators.

4

Brief overview of neural networks

Building block of a neural network is the neuron

A neuron is modelled as

y = ϕ(wTx+ b) . (1)

ϕ is usually a non-linear mapping that allows the neuron to
represent non-linear functions.

w1
w2

w3

x1

x2

x3

Σ ϕ y

Inputs

Outputb

Figure 1: A schematic diagram of a neuron.

5

Connecting the neurons

By stacking neurons in layers, and then connecting these
layers together, we build up the representation of the target
function as

f(x; θ) ≈ ϕ(n)(. . . ϕ(2)(ϕ(1)(x)) . . .) , (2)

where θ are the weights and biases of the network. Together
we refer to them as the parameters of the network.

Fitting a target function essentially boils down to optimising
the parameters θ.

6

Connecting the neurons

By stacking neurons in layers, and then connecting these
layers together, we build up the representation of the target
function as

f(x; θ) ≈ ϕ(n)(. . . ϕ(2)(ϕ(1)(x)) . . .) , (2)

where θ are the weights and biases of the network. Together
we refer to them as the parameters of the network.

Fitting a target function essentially boils down to optimising
the parameters θ.

6

Dense neural network

A neural network where every neuron is connected to every
other neuron in neighbouring layers is referred to as a
fully-connected or dense neural network.

This architecture is used often because they are easy to build.

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ¹

Figure 2: A dense neural network with three hidden layers.

7

Optimising θ

Before optimising θ we need an objective function to quantify
how well the network is performing.

For regression problems this is very commonly the mean
squared error

LMSE =
1
N

N∑
n=1

(y− f(x; θ))2 , (3)

where y is the true (target) value and f(x; θ) is the network
prediction.

8

Optimising θ

Before optimising θ we need an objective function to quantify
how well the network is performing.

For regression problems this is very commonly the mean
squared error

LMSE =
1
N

N∑
n=1

(y− f(x; θ))2 , (3)

where y is the true (target) value and f(x; θ) is the network
prediction.

8

Optimising θ

Now that we can evaluate L(θ) to quantify the network
performance, we want to minimise it.

We minimise the loss function by optimising the values of θ
according to an update rule

θ = θ − α∇θL(θ) , (4)

where α is the learning rate and ∇θ denotes the gradient with
respect to parameters θ.

This algorithm is gradient descent and is the algorithm of
choice∗ for optimising θ.

9

Optimising θ

Now that we can evaluate L(θ) to quantify the network
performance, we want to minimise it.

We minimise the loss function by optimising the values of θ
according to an update rule

θ = θ − α∇θL(θ) , (4)

where α is the learning rate and ∇θ denotes the gradient with
respect to parameters θ.

This algorithm is gradient descent and is the algorithm of
choice∗ for optimising θ.

9

Optimising θ

Now that we can evaluate L(θ) to quantify the network
performance, we want to minimise it.

We minimise the loss function by optimising the values of θ
according to an update rule

θ = θ − α∇θL(θ) , (4)

where α is the learning rate and ∇θ denotes the gradient with
respect to parameters θ.

This algorithm is gradient descent and is the algorithm of
choice∗ for optimising θ.

9

IR divergences and Catani-Seymour
dipole factorisation

Infrared divergences

Infrared divergences arise in matrix elements in certain
regions of phase-space.

For our process e+e− → qq̄+ ng they occur

• when gluons are collinear to the quark or anti-quark,
sqg → 0.

• when gluons are soft, Eg → 0

Singularities make it difficult to model the phase-space
effectively since a single neural network struggles to
simultaneously fit the well-behaved regions and the singular
regions.

10

Infrared divergences

Infrared divergences arise in matrix elements in certain
regions of phase-space.

For our process e+e− → qq̄+ ng they occur

• when gluons are collinear to the quark or anti-quark,
sqg → 0.

• when gluons are soft, Eg → 0

Singularities make it difficult to model the phase-space
effectively since a single neural network struggles to
simultaneously fit the well-behaved regions and the singular
regions.

10

Infrared divergences

Infrared divergences arise in matrix elements in certain
regions of phase-space.

For our process e+e− → qq̄+ ng they occur

• when gluons are collinear to the quark or anti-quark,
sqg → 0.

• when gluons are soft, Eg → 0

Singularities make it difficult to model the phase-space
effectively since a single neural network struggles to
simultaneously fit the well-behaved regions and the singular
regions.

10

Dipole factorisation formula

Dipole factorisation was used by Catani and Seymour 1

originally to construct subtraction terms in NLO QCD
calculations.

The authors introduced universal dipoles that smoothly
interpolates between the soft and collinear limits.

We use these dipoles to factorise out the IR singular structure
from matrix elements

|Mn+1|2 → |Mn|2 ⊗ Vij,k , (5)

where all divergences are isolated in the process independent
factor Vij,k.

1S. Catani and M.H. Seymour. “A General algorithm for calculating jet cross-sections in NLO QCD”. In: Nucl. Phys. B
485 (1997), pp. 291–419.

11

Dipole factorisation formula

Dipole factorisation was used by Catani and Seymour 1

originally to construct subtraction terms in NLO QCD
calculations.

The authors introduced universal dipoles that smoothly
interpolates between the soft and collinear limits.

We use these dipoles to factorise out the IR singular structure
from matrix elements

|Mn+1|2 → |Mn|2 ⊗ Vij,k , (5)

where all divergences are isolated in the process independent
factor Vij,k.

1S. Catani and M.H. Seymour. “A General algorithm for calculating jet cross-sections in NLO QCD”. In: Nucl. Phys. B
485 (1997), pp. 291–419.

11

Dipole factorisation formula

Dipole factorisation was used by Catani and Seymour 1

originally to construct subtraction terms in NLO QCD
calculations.

The authors introduced universal dipoles that smoothly
interpolates between the soft and collinear limits.

We use these dipoles to factorise out the IR singular structure
from matrix elements

|Mn+1|2 → |Mn|2 ⊗ Vij,k , (5)

where all divergences are isolated in the process independent
factor Vij,k.

1S. Catani and M.H. Seymour. “A General algorithm for calculating jet cross-sections in NLO QCD”. In: Nucl. Phys. B
485 (1997), pp. 291–419.

11

Dipole factorisation formula

2

e+

e−

q

g

q̄

Z/γ∗

2

−→

e+

e−

q

q̄

Z/γ∗

2

⊗ q

q

g

Figure 3: Schematic of dipole factorisation.

For singly unresolved limits, this factorisation isolates all the
divergent behaviour in Vij,k leaving the reduced matrix element
⟨|Mn|2⟩ free of divergences.

12

Dipole factorisation formula

2

e+

e−

q

g

q̄

Z/γ∗

2

−→

e+

e−

q

q̄

Z/γ∗

2

⊗ q

q

g

Figure 3: Schematic of dipole factorisation.

For singly unresolved limits, this factorisation isolates all the
divergent behaviour in Vij,k leaving the reduced matrix element
⟨|Mn|2⟩ free of divergences.

12

Spin-averaged Catani-Seymour dipoles

The dipoles are given as

⟨Vqigj,k⟩ = 8παsCF
[

2
1− zi(1− yij,k)

− (1+ zi)
]
, (6)

⟨Vgigj,k⟩ = 16παsCA
[

1
1− zi(1− yij,k)

+
1

1− zj(1− yij,k)
− 2+ zizj

]
,

(7)

where

zi =
pipk

(pi + pj)pk
and zj = 1− zi

yij,k =
pipj

pipj + pjpk + pkpi
.

13

Dipole neural network emulator

Ansatz

We use the dipole factorisation formula to build an ansatz of
the colour and helicity summed n+ 1-body matrix element

⟨|Mn+1|2⟩ =
∑
{ijk}

CijkDij,k , where Dij,k =
⟨Vij,k⟩
sij

. (8)

Cijk are the coefficients we fit using the neural network. They
can be interpreted as the reduced matrix element in n-body
phase-space.

The sum over {ijk} denotes the sum over relevant
permutations of external final state particles.

14

Ansatz

We use the dipole factorisation formula to build an ansatz of
the colour and helicity summed n+ 1-body matrix element

⟨|Mn+1|2⟩ =
∑
{ijk}

CijkDij,k , where Dij,k =
⟨Vij,k⟩
sij

. (8)

Cijk are the coefficients we fit using the neural network. They
can be interpreted as the reduced matrix element in n-body
phase-space.

The sum over {ijk} denotes the sum over relevant
permutations of external final state particles.

14

Ansatz

We use the dipole factorisation formula to build an ansatz of
the colour and helicity summed n+ 1-body matrix element

⟨|Mn+1|2⟩ =
∑
{ijk}

CijkDij,k , where Dij,k =
⟨Vij,k⟩
sij

. (8)

Cijk are the coefficients we fit using the neural network. They
can be interpreted as the reduced matrix element in n-body
phase-space.

The sum over {ijk} denotes the sum over relevant
permutations of external final state particles.

14

Intuition on ansatz

15

Intuition on ansatz

15

Intuition on ansatz

15

Intuition on ansatz

15

Inputs of the neural network

Direct inputs to network

• Phase-space points: p = [E,px,py,pz]

• Recoil factors: yij,k =
pipj

pipj + pjpk + pipk

These inputs are scaled to have a mean of zero and unit
variance.

Phase-space points sampled with RAMBO and clustered with
FastJet.
Global phase-space cuts are applied according to yij ≥ ycut,
where we explore three values of ycut = [0.01, 0.001, 0.0001].

16

Inputs of the neural network

Direct inputs to network

• Phase-space points: p = [E,px,py,pz]

• Recoil factors: yij,k =
pipj

pipj + pjpk + pipk

These inputs are scaled to have a mean of zero and unit
variance.

Phase-space points sampled with RAMBO and clustered with
FastJet.
Global phase-space cuts are applied according to yij ≥ ycut,
where we explore three values of ycut = [0.01, 0.001, 0.0001].

16

Inputs of the neural network

Direct inputs to network

• Phase-space points: p = [E,px,py,pz]

• Recoil factors: yij,k =
pipj

pipj + pjpk + pipk

These inputs are scaled to have a mean of zero and unit
variance.

Phase-space points sampled with RAMBO and clustered with
FastJet.
Global phase-space cuts are applied according to yij ≥ ycut,
where we explore three values of ycut = [0.01, 0.001, 0.0001].

16

Inputs of the neural network

Direct inputs to network

• Phase-space points: p = [E,px,py,pz]

• Recoil factors: yij,k =
pipj

pipj + pjpk + pipk

These inputs are scaled to have a mean of zero and unit
variance.

Phase-space points sampled with RAMBO and clustered with
FastJet.
Global phase-space cuts are applied according to yij ≥ ycut,
where we explore three values of ycut = [0.01, 0.001, 0.0001].

16

Inputs of the neural network

Indirect inputs to network

• Spin-averaged dipoles Dij,k =
⟨Vij,k⟩
sij

• Averaging over spins means that we have lost information
about the spin-correlation in g → gg splitting.

• Introduce a pair of terms Sij sin(2ϕij) + Cij cos(2ϕij) in the
ansatz for each pair of gluons in the final state.

• ϕij is the azimuthal angle of the decay particles in the
plane perpendicular to the parent particle momentum.

17

Inputs of the neural network

Indirect inputs to network

• Spin-averaged dipoles Dij,k =
⟨Vij,k⟩
sij

• Averaging over spins means that we have lost information
about the spin-correlation in g → gg splitting.

• Introduce a pair of terms Sij sin(2ϕij) + Cij cos(2ϕij) in the
ansatz for each pair of gluons in the final state.

• ϕij is the azimuthal angle of the decay particles in the
plane perpendicular to the parent particle momentum.

17

Inputs of the neural network

Indirect inputs to network

• Spin-averaged dipoles Dij,k =
⟨Vij,k⟩
sij

• Averaging over spins means that we have lost information
about the spin-correlation in g → gg splitting.

• Introduce a pair of terms Sij sin(2ϕij) + Cij cos(2ϕij) in the
ansatz for each pair of gluons in the final state.

• ϕij is the azimuthal angle of the decay particles in the
plane perpendicular to the parent particle momentum.

17

Outputs of neural network

The output of the neural network is the colour and helicity
summed matrix element

⟨|Mn+1|2⟩ =
∑
{ijk}

CijkDij,k .

During training, the predictions are compared against the
target value of the matrix element which we scale according to

y = arcsinh

(
⟨|Mn+1|2⟩

Spred

)
. (9)

Targets are also standardised to zero mean and unit variance.

18

Outputs of neural network

The output of the neural network is the colour and helicity
summed matrix element

⟨|Mn+1|2⟩ =
∑
{ijk}

CijkDij,k .

During training, the predictions are compared against the
target value of the matrix element which we scale according to

y = arcsinh

(
⟨|Mn+1|2⟩

Spred

)
. (9)

Targets are also standardised to zero mean and unit variance.

18

Outputs of neural network

The output of the neural network is the colour and helicity
summed matrix element

⟨|Mn+1|2⟩ =
∑
{ijk}

CijkDij,k .

During training, the predictions are compared against the
target value of the matrix element which we scale according to

y = arcsinh

(
⟨|Mn+1|2⟩

Spred

)
. (9)

Targets are also standardised to zero mean and unit variance.

18

Neural network architecture

The basis of our neural network model is a dense neural
network.

The number of nodes in the input and output layer vary
depending on the final state multiplicity.

Figure 4: Schematic diagram of our neural network architecture.

19

Neural network architecture

The basis of our neural network model is a dense neural
network.

The number of nodes in the input and output layer vary
depending on the final state multiplicity.

Figure 4: Schematic diagram of our neural network architecture.

19

Custom loss function

We use the mean squared error loss function along with a
regularisation term

L = LMSE + Lpen

L = 1
N

N∑
n=1

[
(yn − f(xn; θ))2 + J

∑
i

D−2
i∑
j D

−2
j

|CiDi|

]
.

We promote the network to learn about the universal
factorisation property in matrix elements, hence becoming
factorisation-aware.

20

Custom loss function

We use the mean squared error loss function along with a
regularisation term

L = LMSE + Lpen

L = 1
N

N∑
n=1

[
(yn − f(xn; θ))2 + J

∑
i

D−2
i∑
j D

−2
j

|CiDi|

]
.

We promote the network to learn about the universal
factorisation property in matrix elements, hence becoming
factorisation-aware.

20

Ensembling of models

Due to the stochastic nature of training neural networks,
having one neural network is far from ideal.

Training a group of them and aggregating the results leads to
much more robust predictions as we average out the
stochasticity of the parameter optimisation.

10 4 10 2 100

Absolute percentage difference

0%

2%

4%

6%

8%

10%

Pe
rc

en
ta

ge
 o

f p
oi

nt
s 1 model

5 models
20 models

Figure 5: Ensembling more models increases predictive performance.

21

Ensembling of models

Due to the stochastic nature of training neural networks,
having one neural network is far from ideal.

Training a group of them and aggregating the results leads to
much more robust predictions as we average out the
stochasticity of the parameter optimisation.

10 4 10 2 100

Absolute percentage difference

0%

2%

4%

6%

8%

10%

Pe
rc

en
ta

ge
 o

f p
oi

nt
s 1 model

5 models
20 models

Figure 5: Ensembling more models increases predictive performance.

21

Results

Results

We present results for our matrix element emulator:

1. Compare results obtained with our method to those in a
previous work by Aylett-Bullock and Badger 2.

2. Scaling performance by expanding the network size and
number of training samples.

3. Generalisation to unseen regions of phase-space by
predicting on random phase-space trajectories.

4. Compare MC statistical error to NN accuracy.
5. Performance on a GPU machine.

2Simon Badger and Joseph Aylett-Bullock. “Using neural networks for efficient evaluation of high multiplicity
scattering amplitudes”. In: JHEP 06 (2020), p. 114.

22

Results

We present results for our matrix element emulator:

1. Compare results obtained with our method to those in a
previous work by Aylett-Bullock and Badger 2.

2. Scaling performance by expanding the network size and
number of training samples.

3. Generalisation to unseen regions of phase-space by
predicting on random phase-space trajectories.

4. Compare MC statistical error to NN accuracy.
5. Performance on a GPU machine.

2Simon Badger and Joseph Aylett-Bullock. “Using neural networks for efficient evaluation of high multiplicity
scattering amplitudes”. In: JHEP 06 (2020), p. 114.

22

Results

We present results for our matrix element emulator:

1. Compare results obtained with our method to those in a
previous work by Aylett-Bullock and Badger 2.

2. Scaling performance by expanding the network size and
number of training samples.

3. Generalisation to unseen regions of phase-space by
predicting on random phase-space trajectories.

4. Compare MC statistical error to NN accuracy.
5. Performance on a GPU machine.

2Simon Badger and Joseph Aylett-Bullock. “Using neural networks for efficient evaluation of high multiplicity
scattering amplitudes”. In: JHEP 06 (2020), p. 114.

22

Results

We present results for our matrix element emulator:

1. Compare results obtained with our method to those in a
previous work by Aylett-Bullock and Badger 2.

2. Scaling performance by expanding the network size and
number of training samples.

3. Generalisation to unseen regions of phase-space by
predicting on random phase-space trajectories.

4. Compare MC statistical error to NN accuracy.

5. Performance on a GPU machine.

2Simon Badger and Joseph Aylett-Bullock. “Using neural networks for efficient evaluation of high multiplicity
scattering amplitudes”. In: JHEP 06 (2020), p. 114.

22

Results

We present results for our matrix element emulator:

1. Compare results obtained with our method to those in a
previous work by Aylett-Bullock and Badger 2.

2. Scaling performance by expanding the network size and
number of training samples.

3. Generalisation to unseen regions of phase-space by
predicting on random phase-space trajectories.

4. Compare MC statistical error to NN accuracy.
5. Performance on a GPU machine.

2Simon Badger and Joseph Aylett-Bullock. “Using neural networks for efficient evaluation of high multiplicity
scattering amplitudes”. In: JHEP 06 (2020), p. 114.

22

Comparison with n3jet2

3 2 1 0 1 2 3
log(| |2NN / | |2NJet)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

×105

e+e qqg
ycut = 0.01

3 2 1 0 1 2 3
log(| |2NN / | |2NJet)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fr
eq

ue
nc

y

×105

e+e qqgg
ycut = 0.01

3 2 1 0 1 2 3
log(| |2NN / | |2NJet)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
eq

ue
nc

y

×105

e+e qqggg
ycut = 0.01

3 2 1 0 1 2 3
log(| |2NN / | |2NJet)

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

×105

e+e qqggg
ycut = 0.02

0.995 1.000 1.005
| |2NN/| |2NJet

0.95 1.00 1.05
| |2NN/| |2NJet

0.9 1.0 1.1
| |2NN/| |2NJet

0.9 1.0 1.1
| |2NN/| |2NJet

Dipole NN 'single' Dipole NN 'ensemble' [2002.07516] single [2002.07516] ensemble

2Simon Badger and Joseph Aylett-Bullock. “Using neural networks for efficient evaluation of high multiplicity
scattering amplitudes”. In: JHEP 06 (2020), p. 114.

23

Error distributions for full size model

10 6 10 5 10 4 10 3 10 2 10 1 100

Absolute percentage difference

0%

2%

4%

6%

8%

10%

12%

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

e+e qqg

ycut = 0.01
ycut = 0.001
ycut = 0.0001

10 6 10 5 10 4 10 3 10 2 10 1 100

Absolute percentage difference

0%

2%

4%

6%

8%

10%

12%

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

e+e qqgg

ycut = 0.01
ycut = 0.001
ycut = 0.0001

10 6 10 5 10 4 10 3 10 2 10 1 100

Absolute percentage difference

0%

2%

4%

6%

8%

10%

12%

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

e+e qqggg

ycut = 0.01
ycut = 0.001
ycut = 0.0001

24

Random phase-space trajectory for 5 jets

10 14

10 13

10 12

10 11

10 10
|

|2
e+e qqggg
ycut = 0.01

NJet
Dipole NN

0.8

1.0

1.2

1.4

|
|2 N

N
/|

|2 N
Je

t

e+e qqggg
ycut = 0.01

10 14

10 13

10 12

10 11

10 10

|
|2

e+e qqggg
ycut = 0.001

NJet
Dipole NN

0.8

1.0

1.2

1.4

|
|2 N

N
/|

|2 N
Je

t

e+e qqggg
ycut = 0.001

10 14

10 13

10 12

10 11

10 10

|
|2

e+e qqggg
ycut = 0.0001

NJet
Dipole NN

0.8

1.0

1.2

1.4

|
|2 N

N
/|

|2 N
Je

t

e+e qqggg
ycut = 0.0001

0.01 0.02 0.03 0.04
min(sij) / scom

min(sij) < ycut Single+single Double

25

Comparison of errors

0.0 0.2 0.4 0.6 0.8 1.0
Number of phase-space points ×107

10 5

10 4

10 3

10 2

10 1

100

101

102
E

rr
or

 in
 to

ta
l c

ro
ss

-s
ec

tio
n

(%
) e+e qqggg

ycut = 0.01
ycut = 0.001
ycut = 0.0001

26

Performance on GPU

0 20 40 60 80 100 120 140 160
Time / s

3j

4j

5j
M

ul
tip

lic
ity

Input calculations
Inference time (individual)
Inference time (ensemble)

Time taken to infer on 10 million phase-space points. Times
measured on an Nvidia V100 32GB GPU and Intel Xeon Silver 4216 CPU
@ 2.10GHz.

27

Conclusion and outlook

Conclusions

• We showed that it is possible to build a neural network
emulator to accurately model matrix elements by
incorporating our physics knowledge on infrared
divergences.

• We demonstrate that with careful treatment of
divergences, our emulator shows drastically improved
per-point performance compared to previous work.

• By building in basis functions into the emulator, we are
able to safely extrapolate to unseen regions of
phase-space.

28

Conclusions

• We showed that it is possible to build a neural network
emulator to accurately model matrix elements by
incorporating our physics knowledge on infrared
divergences.

• We demonstrate that with careful treatment of
divergences, our emulator shows drastically improved
per-point performance compared to previous work.

• By building in basis functions into the emulator, we are
able to safely extrapolate to unseen regions of
phase-space.

28

Conclusions

• We showed that it is possible to build a neural network
emulator to accurately model matrix elements by
incorporating our physics knowledge on infrared
divergences.

• We demonstrate that with careful treatment of
divergences, our emulator shows drastically improved
per-point performance compared to previous work.

• By building in basis functions into the emulator, we are
able to safely extrapolate to unseen regions of
phase-space.

28

Outlook

• Extension to one-loop matrix elements by changing the
ingredients in ansatz.

• pp collisions
• Neural network error is lower than the statistical Monte
Carlo error so can use the NN to augment datasets.

29

Thanks for listening.

29

Building the emulator

Our emulator is constructed with a densely-connected neural
network built using the Keras API with the TensorFlow
back-end with GPU support.

The pipeline looks like the following

• Generate datasets to train and test our neural network
• Create neural network architecture based on dipole
factorisation

• Analyse performance by testing against two independent
testing datasets.

Phase-space sampling

• Phase-space points are initially sampled uniformly using
the RAMBO algorithm with a √scom = 1000 GeV.

• Global phase-space cuts are applied according to ycut ≤ yij
where yij are the Mandelstam invariants normalised by
scom.

• Phase-space points are then clustered using FastJet
with the e+e− kt algorithm.

• Jets are clustered exclusively with
dcut = max(2× ycut, 0.01× scom).

• We explore three different values of the global
phase-space cut parameters ycut = [0.01, 0.001, 0.0001] to
demonstrate the ability the factorisation-aware neural
network to effectively interpolate in more and more
singular regions of phase-space.

Specific details on network architecture

• Eight hidden layers consisting of
[64, 128, 256, 512, 768, 386, 128, 64] nodes

• tanh activation function on hidden layers
• Glorot uniform initialisation
• Adam optimiser with initial learning rate 0.001
• Training mini-batch size 4096
• EarlyStopping with patience of 40 epochs
• ReduceLROnPlateau with patience of 20 epochs with
reduction factor 0.7

• These choices of hyperparameters were chosen
empirically because they worked well from our testing. If
we had infinite time then we would use better techniques
to optimise them.

Random phase-space trajectories

• Pick two points in 4n-dimensional hypercube
• Connect them
• Map these points using the RAMBO mapping
• There is no guarantee that the trajectory is well-behaved.
Different nature to the test set which is generated in the
same way as the training set.

• We show that even when the neural networks predicts on
points that have never been seen before, it manages to
extrapolate.

	Introduction
	Brief overview of neural networks
	IR divergences and Catani-Seymour dipole factorisation
	Dipole neural network emulator
	Results
	Conclusion and outlook
	Appendix

