

Determination of QGP Parameters from a Global Bayesian Analysis

Steffen A. Bass

(c) CERN .All rights reserved.

Knowledge Extraction from Relativistic Heavy-Ion Collisions

Probing QCD in Heavy-Ion Collisions

- confinement: quarks & gluons form bound states, experiments don't observe them directly
- observables are limited to final state hadrons we want to learn about the dynamics of the collision
- computational models are expensive: about 1 cpu-hour per simulated event

Computational Modeling of Relativistic Heavy-Ion Collisions

Bayesian Analysis

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. These physics parameters act as a representation of the information we wish to extract from RHIC & LHC.

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

Experimental Data

ALICE flow & spectra

Bayesian Analysis

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. These physics parameters act as a representation of the information we wish to extract from RHIC & LHC.

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

Experimental Data

ALICE flow & spectra

Bayesian Analysis

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. These physics parameters act as a representation of the information we wish to extract from RHIC & LHC.

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

Experimental Data

ALICE flow & spectra

- determine parameter values such that the model best describes experimental observables
- extract the probability distributions of all parameters

• Bayesian analysis allows us to simultaneously calibrate all model parameters via a model-to-data comparison

Setup of a Bayesian Statistical Analysis

Components of the Bayesian Analysis

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

- likelihood: probability of observing exp. data, given proposed parameters

• the calibration parameters are the model parameters that codify the physical properties of the system that we wish to characterize with the analysis

• the calibration parameters are the model parameters that codify the physical properties of the system that we wish to characterize with the analysis

Trento initial condition:

- p: attenuation parameter entropy deposition
- k: governs fluctuation in nuclear thickness
- w: Gaussian nucleon width

- the calibration parameters are the model parameters that codify the physical properties of the system that we wish to characterize with the analysis
- hydro to micro switching temperature T_{sw}

 the calibration parameters are the model parameters that codify the physical properties of the system that we wish to characterize with the analysis

• hydro to micro switching temperature T_{sw}

temperature dependent shear viscosity:

 $\eta/s(T) = (\eta/s)_{min} + (\eta/s)_{slope} \times (T-T_C) \times (T/T_C)^{\beta}$

Trento initial condition:

- p: attenuation parameter entropy deposition
- k: governs fluctuation in nuclear thickness
- w: Gaussian nucleon width

 the calibration parameters are the model parameters that codify the physical properties of the system that we wish to characterize with the analysis

• hydro to micro switching temperature T_{sw}

temperature dependent shear viscosity:

 $\eta/s(T) = (\eta/s)_{min} + (\eta/s)_{slope} \times (T-T_C) \times (T/T_C)^{\beta}$

0.16

Temperature [GeV]

0.12

0.20

0.00

Model Parameters - System Properties

- initial state
- temperature-dependent viscosities
- hydro to micro switching temperature

MCMC

(Markov-Chain Monte-Carlo) random walk through parameter space weighted by posterior probability

Bayes' Theorem

posterior \propto likelihood \times prior

- prior: initial knowledge of parameters
- likelihood: probability of observing exp. data, given proposed parameters

• Trento

• iEbE-VISHNU

Gaussian Process Emulator non-parametric interpolation fast surrogate to full Physics Model

Training Data

Data:

- ALICE v₂, v₃ & v₄ flow cumulants
- identified & charged particle yields
- identified particle mean p_{T}
- 2 beam energies: 2.76 & 5.02 TeV

the entire success of the analysis depends on the quality of the exp. data!

- temperature-dependent viscosities
- hydro to micro switching temperature

brute force analysis:

- 14 model parameters
- 9 centrality bins
- 20 bins per parameter
- need to evaluate model at 9 ×20¹⁴ points
- fluctuating initial conditions: $\mathcal{O}(10^4)$ events per point $\rightarrow 10^{18}$ events
- assume 1 cpu hour per event: 10¹⁸ cpu-hours!
- 2 billion years 100% use of TITAN @ ORNL (Cray XK7 w/ 560,640 cores)
- then start MCMC to find point that optimally describes data...

61 29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57 67		
			/	

brute force analysis:

- 14 model parameters
- 9 centrality bins
- 20 bins per parameter
- need to evaluate model at 9 ×20¹⁴ points
- fluctuating initial conditions: $\mathcal{O}(10^4)$ events per point $\rightarrow 10^{18}$ events
- assume 1 cpu hour per event: 10¹⁸ cpu-hours!
- 2 billion years 100% use of TITAN @ ORNL (Cray XK7 w/ 560,640 cores)
- then start MCMC to find point that optimally describes data...

1010: Gaussian Process Emulators

65

61

Gaussian process:

- stochastic function:
- maps inputs to normally distributed outputs
- specified by mean and covariance functions

GP as a model emulator:

- non-parametric interpolation of physics model
- predicts probability distributions for model output at any given input value
 - narrow near training points, wide in gaps
- needs to be conditioned on training data (Latin hypercube points)
- fast *surrogate* to actual model

61

65

Computer Experiment Design

Latin hypercube:

- algorithm for generating semi-randomized, spacefilling points (here: maximin Latin hypercube)
- avoids large gaps and tight clusters
- all parameters varied simultaneously
- needs only *m≥10n* points, with
 n: number of model parameters

Example:

• Latin-hypercube projection for η /s parameters

Computer Experiment Design

Latin hypercube:

- algorithm for generating semi-randomized, spacefilling points (here: maximin Latin hypercube)
- avoids large gaps and tight clusters
- all parameters varied simultaneously
- needs only *m≥10n* points, with
 n: number of model parameters

this design:

- n=15 model parameters
- 9 centrality bins, 2 energies
- Latin hypercube with m=500 points
- O(10⁴) events per point, for a total of approx.
 35,000,000 events
- use Gaussian Process Emulators to interpolate between points

Example:

• Latin-hypercube projection for η /s parameters

Computer Experiment Execution

-62.0

Computer Experiment Execution

Edison @ NERSC:

- Cray XC30: 5586 nodes w/ 24 cores each
- 2 hyperthreads per core
- 2.57 Petaflops/s

Duke QCD workflow:

- 1000 nodes per job: running on 48K cores simultaneously
- entire model design with 30M events can be computed in 1 day

Computer Experiment Execution

Edison @ NERSC:

- Cray XC30: 5586 nodes w/ 24 cores each
- 2 hyperthreads per core
- 2.57 Petaflops/s

Duke QCD workflow:

- 1000 nodes per job: running on 48K cores simultaneously
- entire model design with 30M events can be computed in 1 day

NOW COMPUTING

A small sample of massively parallel scientific computing jobs running right now at NERSC.

PROJECT	MACHINE	NODES	NERSC HOURS Used
NERSC Staff Accounts PI: Sudip S. Dosanjh, Lawrence Berkeley National Lab - NERSC	Cori KNL	1,008	115,874.8
NERSC Staff Accounts PI: Sudip S. Dosanjh, Lawrence Berkeley National Lab - NERSC	Cori KNL	1,008	77,866.5
Extraction of QCD transport coefficients from ultra- relativistic heavy-ion collisions through a Bayesian model to data analysis PI: Steffen A. Bass, Duke University	Edison	1,000	443,890.9
Extraction of QCD transport coefficients from ultra- relativistic heavy-ion collisions through a Bayesian model to data analysis PI: Steffen A. Bass, Duke University	Edison	1,000	399,224.3
Extraction of QCD transport coefficients from ultra- relativistic heavy-ion collisions through a Bayesian model to data analysis PI: Steffen A. Bass, Duke University	Edison	750	229,928.2
NERSC Staff Accounts PI: Sudip S. Dosanjh, Lawrence Berkeley National Lab - NERSC	Cori KNL	512	282,594.2

Vector of input parameters: $\mathbf{x} = [p, k, w, (\eta/s)_{\min}, (\eta/s)_{slope}, (\zeta/s)_{norm}, T_{sw}, ...]$

• assume true parameters \mathbf{x}_{\star} exist \Rightarrow find probability distribution for \mathbf{x}_{\star}

 \Rightarrow probability of \mathbf{x}_{\star} given observations (X,Y, \mathbf{y}_{exp})

Markov-Chain Monte-Carlo:

- random walk through parameter space weighted by posterior
- large number of samples \Rightarrow chain equilibrates to posterior distribution
- flat prior within design range, zero outside
- posterior ~ likelihood within design range, zero outside

Calibration

- X: training data design points
- Y: model output on X

Likelihood and Uncertainty Quantification:

Likelihood $\propto \exp[-1/2 (\mathbf{y}-\mathbf{y}_{exp})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{y}-\mathbf{y}_{exp})]$

- covariance matrix $\Sigma = \Sigma_{experiment} + \Sigma_{model}$
- $\Sigma_{experiment}$ = stat(diagonal) + sys(non-diagonal)
- Σ_{model} conservatively estimated as 5%

Prior vs. Posterior

Prior:

- each line represents model evaluation at on point in latin hypercube
- covers full range of observable space

Prior vs. Posterior

Prior:

- each line represents model evaluation at on point in latin hypercube
- covers full range of observable space

Posterior:

- each line represents model evaluation at points drawn from posterior probability distribution of parameters
- excellent agreement with data!

Prior vs. Posterior

Prior:

- each line represents model evaluation at on point in latin hypercube
- covers full range of observable space

Posterior:

- each line represents model evaluation at points drawn from posterior probability distribution of parameters
- excellent agreement with data!

- data, given proposed parameters

- **diagonals**: probability distribution of each parameter, integrating out all others
- off-diagonals: pairwise distributions showing dependence between parameters

- **diagonals**: probability distribution of each parameter, integrating out all others
- off-diagonals: pairwise distributions showing dependence between parameters

 $13.9^{+1.2}_{-1.1}$

	Wounded nucleon
0.5	1.0

- **diagonals**: probability distribution of each parameter, integrating out all others
- off-diagonals: pairwise distributions showing dependence between parameters

- **diagonals**: probability distribution of each parameter, integrating out all others
- off-diagonals: pairwise distributions showing dependence between parameters

temperature-dependent viscosities:

 $13.9^{+1.2}_{-1.1}$

Or

Precision Science "Smoke & Mirrors"?

- generate a separate Latin hypercube validation design with 50 points
- evaluate the full physics model at each validation point
- compare physics model output to that of the previously conditioned GP emulators:

Validation

note that since GPEs are stochastic functions, only ~68% of predictions need to fall within 1 standard deviation

Verification: Explicit Model Calculation

 explicit physics model calculations (no emulator) with parameter values set to the maximum of the posterior probability distributions yield excellent agreement with data!

Non-Calibrated Observables

The robustness and quality of the Physics Model can be tested by making predictions on observables not used during calibration using highest likelihood parameter values.

SC(m,n) are sensitive to:

- initial conditions
- evolution model
- QGP transport coefficients
- excellent agreement of model prediction to data!

Need to verify that analysis can recover "true" values for the parameters: run physics model with chosen set of parameters, generate "fake data" from model output and then conduct analysis on that fake data to test if the input parameters can be recovered!

- both, smooth functions as well as peaked functions, can be reproduced well within the 90% CR
- note: due to reduction of information when going from model output to observables & model/GP uncertainties one should not expect a one-to-one reconstruction
- not peak position, height & width independently

Closure Test

Next steps: •scaling to 3D Hydro: multi-fidelity GPs

Y. Ji, S. Mak, D. Soeder, J.-F. Paquet & S.A. Bass: arXiv:2108.00306

Need for Multi-Fidelity Emulation

Problem:

- current setup uses state-of-the-art (i.e. high-fidelity) physics model
- computationally expensive, despite restriction to physics at mid-rapidity to save cost
- Inclusion of forward/backward physics requires 3D viscous RFD, raises cpu cost by a factor 100

Need for Multi-Fidelity Emulation

Problem:

- current setup uses state-of-the-art (i.e. high-fidelity) physics model
- computationally expensive, despite restriction to physics at mid-rapidity to save cost
- Inclusion of forward/backward physics requires 3D viscous RFD, raises cpu cost by a factor 100

Idea:

 leverage lower-fidelity simulations (lower accur fidelity emulator:

low-fidelity

medium-fidelity

high-fidelity

These types of approaches are referred to as multi-fidelity emulation or data fusion

• leverage lower-fidelity simulations (lower accuracy, but quicker to simulate) as data to train the high-

- 10° cpu hours/run
- 10² cpu hours/run
- 10³ cpu hours/run

Construction of Physics Models with Varying Fidelity

Construct models of varying fidelity by combining modules of varying fidelity for initial conditions, hydro evolution and hadronic final state interactions:

Fidelity

Post-hydrodynamics

- (C_1) None
- (C₂) Thermal hadrons (Cooper-Frye)
- (C_3) Hadrons with decays
- (C₄) Hadrons with interactions and decays

low fidelity: $A_1 - B_1 - C_1$ medium fidelity: A₁ - B₃ - C₃ high fidelity: A₂ - B₄ - C₄

Kennedy-O'Hagan Model (KO)

Limitation: the KO model assumes a clear hierarchy in the fidelity of the physics models. What if that hierarchy cannot be unambiguously established?

Graphical Multi-Fidelity Gaussian Process Model (GMGP)

Idea: represent the underlying multi-fidelity simulation structure via a **directed acyclic graph** (DAG)

- given the DAG, one can set up a Graphical Multi-Fidelity Process Model (GMGP) via two autoregressive priors, one for the source nodes and one for the non-source nodes
 - as with the KO model, it can be shown that the highest-fidelity $\eta_T(\cdot)$ is a GP with closed form posterior mean and variance
 - the GMPG can handle fidelity hierarchies far more complex than the KO model

Yi Ji, Simon Mak, Derek Soeder, J-F Paquet, Steffen A. Bass: arXiv:2108.00306 [stat.ME]

- complication: the GMGP requires the inversion of a large N×N covariance matrix (N = total sample size over graph): very computationally expensive!
- solution: a recursive formulation of the GMGP model (r-GMGP)
 - the posterior predictive distribution for η_t can be calculated recursively over subgraphs, from leaf nodes to the root
 - computational savings: from $O(N^3)$ to $O(IVI max(N_t)^3)$

Proof of Concept Application to Heavy-Ion Collisions

Computer experiment design:

- 9 parameters
- Sliced Latin Hypercube Design (SLHD) with
 - 200 points each for the lower-fidelity models
 - 25 points for the high-fidelity model
- Predictive performance tested with a 75 point Latin Hypercube Design

Predictive Performance:

RMSE: Root-mean-squared-error p-RMSE: probabilistic RMSE (accounts for bias and variance)

Model	RMSE	p-RMSE
High-fidelity GP	5.49	5.83
KO-path	3.46	3.80
KO-misspecified	3.95	4.45
d-GMGP	2.17	2.44

- GMGP model provides the best performance
- proper treatment of model hierarchy as "prior" plays important role in performance

Summary & Outlook

Knowledge Extraction via Model-to-Data Calibration:

- Bayesian inference is crucial for calibration of sophisticated multi-parameter models to large data sets
- Gaussian Process Emulators make these calibrations feasible cost savings of 10 orders of magnitude in cpu expenditure
- further refinement with more complex physics models requires application of advanced GP techniques to overcome cpu cost limitations: multi-fidelity emulation & data fusion
- Graphical Multi-Fidelity Gaussian Process Model as a new approach to deal with physics models of varying fidelity that don't exhibit a clear hierarchy

Collaborators:

Duke QCD Group:

- Jonah Bernhard (now Lowe's)
- J. Scott Moreland (now Google)
- **Derek Soeder**
- Jean-Francois Paquet

Duke Dept. of Statistical Sciences:

- Robert E. Wolpert
- Simon Mak
- Yi Ji

Resources

Trento:

- J. Scott Moreland, Jonah E. Bernhard & Steffen A. Bass: <u>Phys. Rev. C 92, 011901(R)</u>
- <u>https://github.com/Duke-QCD/trento</u>

iEbE-VISHNU:

- Chun Shen, Zhi Qiu, Huichao Song, Jonah Bernhard, Steffen A. Bass & Ulrich Heinz: <u>Computer Physics Communications in print, arXiv:1409.8164</u>
- <u>http://u.osu.edu/vishnu/</u>

UrQMD:

- Marcus Bleicher et al. <u>J.Phys. G25 (1999) 1859-1896</u>, <u>arXiv:hep-ph/9909407</u>
- <u>http://urqmd.org</u>

MADAI Collaboration:

- Visualization and Bayesian Analysis packages
- <u>https://madai-public.cs.unc.edu</u>

Duke Bayesian Analysis Package:

<u>https://github.com/jbernhard/mtd</u>

• Steffen A. Bass et al. Prog. Part. Nucl. Phys. 41 (1998) 225-370 , arXiv:nucl-th/9803035

The End

Initial Condition Model: Trento

- effective, parametric, description of entropy production prior to thermalization
- based on **reduced thickness*** **T**_R as ansatz for *dS/dy*:

 $dS/dy|_{\tau=\tau_0} \propto T_R(p;T_A,T_B) \equiv \left(\frac{T_A^P}{T_A}\right)$

$$\frac{T_A^p + T_B^p}{2}$$

1/p

$$\int dx \, dy \int dz \, \rho_A \int dz \, \rho_B$$

$$x_{n}(x-x_{i},y-y_{i},z-z_{i})$$

$$= \frac{k^k}{\Gamma(k)} \gamma^{k-1} e^{-k\gamma}$$
$$= \frac{1}{2\pi w^2} \exp\left(-\frac{x^2 + y^2}{2w^2}\right)$$

model parameters:

- attenuation parameter: p
- fluctuation parameter: k
- width of nucleon: w
- overall normalization: C_{norm}

model output:

• event by event spatial entropy density distribution at mid-rapidity at thermalization time τ_0

Multivariate Output

Scaling of analysis with # of observables:

- independent emulators for each output?
- neglects correlations among outputs
- what if # of outputs scales to 100?
- training of individual GPE's may become unfeasible and unnecessary in case of strong correlations

sible

Multivariate Output

Scaling of analysis with # of observables:

- independent emulators for each output?
- neglects correlations among outputs
- what if # of outputs scales to 100?
- training of individual GPE's may become unfeasible and unnecessary in case of strong correlations

Multivariate Output

Scaling of analysis with # of observables:

- independent emulators for each output?
- neglects correlations among outputs
- what if # of outputs scales to 100?
- training of individual GPE's may become unfeasible and unnecessary in case of strong correlations

this analysis:

- model outputs are yields, $\langle p_T \rangle, \, v_2, \, v_3$ and v_4
- 68 original output dimensions
- 8 principal components used

