Fully Bayesian parameter inference for Markov
processes

Darren Wilkinson
@darrenjw
darrenjw.github.io
Durham University, U.K.

Bayesian inference in HEP
Durham
26th May 2022
github.com/darrenjw/talks

@darrenjw
darrenjw.github.io
github.com/darrenjw/talks

Overview

m Stochastic reaction networks, stochastic simulation and
partially observed Markov process (POMP) models

m Bayesian inference for latent process models using MCMC

m Likelihood-free MCMC for POMP models: separating
simulation from inference

m Programming languages and libraries for MCMC-based fully
Bayesian inference

Example — genetic auto-regulation

v I
Y p |
A '
P2 | A
v

RNAP B :

[TT T
P q 9 DNA

Simulated realisation of the auto-regulatory network

°
S
w
3
g o
g =
w
o
°
c 3
s |
3
o 8
o |
E
o 4
°
S |
3
8
NI
o i
°
s |
]
- 4
T T T T T T
0 1000 2000 3000 4000 5000
Time

Parameter inference

m The auto-regulatory network model contains 5 species and 8
reactions

m Each reaction has an associated rate constant — these 8 rate
constants may be subject to uncertainty

m The initial state of the model (5 species levels) may also be
uncertain/unknown

m There could also be uncertainty about the structure of the
reaction network itself — eg. presence/absence of particular
reactions — this can be embedded into the parameter
inference problem, but is often considered separately, and is
not the subject of this talk

m We will focus here on using time course data on some aspect
of one (or more) realisations of the underlying stochastic
process in order to make inferences for any unknown
parameters of the model

Partial, noisy data on the auto-reg model

True species counts at 50 time points and noisy data on two species

Molecule count

50
1

Time

Classes of Bayesian Monte Carlo algorithms

In this context there are 3 main classes of MC algorithms:
m ABC algorithms (likelihood—free)

m Completely general (in principle) “global” Approximate
Bayesian Computation algorithms, so just require a forward
simulator, and don't rely on (eg.) Markov property, but
typically very inefficient and approximate

m POMP algorithms (likelihood—free)

m Typically “local” (particle) MCMC-based algorithms for
Partially Observed Markov Processes, again only requiring a
forward simulator, but using the Markov property of the
process for improved computational efficiency and “exactness”

m Likelihood-based MCMC algorithms

m More efficient (exact) MCMC algorithms for POMP models,
working directly with the model representation, not using a
forward simulator, and requiring the evaluation of likelihoods
associated with the sample paths of the stochastic process

Partially observed Markov process (POMP) models

m Continuous-time Markov process: X = {X;|s > 0} (for now,
we suppress dependence on parameters, 6)

m Think about integer time observations (extension to arbitrary
times is trivial): for t € N, X; = {X [t —1 < s <t}

m Sample-path likelihoods such as 7(x;|z;—1) can often (but not
always) be computed (but are often computationally difficult),
but discrete time transitions such as 7(z¢|z:—1) are typically
intractable

m Partial observations:) = {y|t =1,2,...,T} where
yt’ththW(yt|$t)7 tzl:"')Ta

where we assume that 7(y|x;) can be evaluated directly
(simple measurement error model)

Bayesian inference for latent process models

Vector of model parameters, @, the object of inference

m Prior probability distribution on 6, denoted 7 ()

m Conditional on 6, we can simulate realisation of the stochastic
process X, with probability model 7(x|#), which may be
intractable

m Observational data), determined from x and 6 by a the
probability model 7(Y|x,) — for “exact” algorithms we
typically require that this model is tractable, but for ABC, we
only need to be able to simulate from it

m Joint model 7(0,x,Y) = m(0)w(x|0)w(V|x,0)
m Posterior distribution 7(6,x|Y) o w(0,x,))

m If using Monte Carlo methods, easy to marginalise out x from
samples from the posterior to get samples from the parameter
posterior m(0]))

Bayesian inference using MCMC

m Given an unnormalised (posterior) probability distribution, we
typically use MCMC methods to generate samples from it

m The methods used are typically (but not always) “exact” in
the sense that the equilibrium distribution of the Markov
chain is the exact posterior distribution:

m Metropolis—Hastings (MH) (and various component-wise
variants, including Gibbs sampling) — requires only an
unnormalised distribution

m Unadjusted Langevin algorithm — typically approximate, and

requires gradients

Metropolis adjusted Langevin algorithm (MALA) — exact

Hamiltonian Monte Carlo (HMC) — requires gradients

NUTS — improvement on HMC

Riemannian manifold HMC — requires Hessians

Piecewise deterministic Markov processes (PDMP) — requires

gradients, and more

m But what if you can’t even evaluate the posterior density?

Likelihood-free PMMH pMCMC

m Particle Markov chain Monte Carlo (pMCMC) methods are a
powerful tool for parameter inference in POMP models

m In the variant known as particle marginal Metropolis Hastings
(PMMH), a (random walk) MH MCMC algorithm is used to
explore parameter space, but at each iteration, a (bootstrap)
particle filter (SMC algorithm) is run to calculate terms
required in the acceptance probability

m The "magic’ of pMCMC is that despite the fact that the
particle filters are “approximate”, pMCMC algorithms
nevertheless have the “exact” posterior distribution of interest
(either w(0|Y) or m(0,x|))) as their target

m If a sophisticated particle filter is used, pMCMC can be a
reasonably efficient likelihood-based MCMC method —
however, when a simple "bootstrap” particle filter is used, the
entire process is “likelihood-free”, but still “exact”

Particle MCMC (pMCMC)

m pMCMC is the only obvious practical option for constructing a
global likelihood-free MCMC algorithm for POMP models
which is exact (Andrieu et al, 2010)

m Start by considering a basic marginal MH MCMC scheme with
target m(0|)) and proposal f(6*|60) — the acceptance
probability is min{1, A} where

(6 5618 =)
A=20) CF618) < = 0)

m We can't evaluate the final terms, but if we had a way to
construct a Monte Carlo estimate of the likelihood, 7()|0),
we could just plug this in and hope for the best:

(0 J6) Al
A=%0) “ e w10

http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x

“Exact approximate” MCMC (the pseudo-marginal
approach)

m Remarkably, provided only that E[#(Y|6)] = w()|), the
stationary distribution of the Markov chain will be exactly
correct (Beaumont, 2003, Andrieu & Roberts, 2009)

m Putting W = 7(Y|6)/7()|f) and augmenting the state space
of the chain to include W, we find that the target of the chain
must be

x m(0)7(Y]0)m(w|f) o< 7(0|Y)wm(w|6)

and so then the above “unbiasedness” property implies that
E(W|0) = 1, which guarantees that the marginal for 0 is
exactly w(0|))

http://www.genetics.org/cgi/content/abstract/164/3/1139
http://dx.doi.org/10.1214/07-AOS574

Particle marginal Metropolis-Hastings (PMMH)

m Likelihood estimates constructed via importance sampling
typically have this “unbiasedness” property, as do estimates
constructed using a particle filter

m If a particle filter is used to construct the Monte Carlo
estimate of likelihood to plug in to the acceptance probability,
we get (a simple version of) the particle Marginal Metropolis
Hastings (PMMH) pMCMC algorithm

m The full PMMH algorithm also uses the particle filter to
construct a proposal for x, and has target m(0,x|)) — not
just w(0]Y)

m The (bootstrap) particle filter relies only on the ability to
forward simulate from the process, and hence the entire
procedure is “likelihood-free”

See Golightly and W (2011) for further details

PMMH inference results

KTrans kTrans KTrans
8 @
R 5 § 8
3 4 9 < &
3 S
ER < 3 g
° 3
ER ° m 8
T T T T 3] i i S T T T T]
0 1000 2000 3000 4000 5000 o 20 4 e 80 100 0 20 . 4 50
Iteration Lag Value
kDiss kDiss kDiss
o | 2]
g ° s A £ o
: < g 2
s < 3 g
o]
< o L o
T T T T T T s T T T T T < T T 1
0 1000 2000 3000 4000 5000 o 2 4 6 8 100 10 15 20
Heration Lag Value
kRDeg kRDeg kRDeg
bR S o
g 4 w g
£ 39 < 3 & 3
1 ° m °
e T T T T T S T T ST—T—T—T T
0 1000 2000 3000 4000 5000 0 20 40 60 80 100 00 02 04 06 08 10 12 14
Iteration Lag Value
KkPDeg kPDeg KkPDeg
K B 8
g 3
g S y g
E <3 g8
2
g ° b
< ° T T T ° T T T T T 1
0 1000 2000 3000 4000 5000 o 20 4 e 80 100 0005 0010 0,015 0.020 0.025 0.030
Iteration Lag Value

Fully Bayesian parameter inference for Markov processes

PMMH inference results

log(KTrans) log(kTrans) log(KTrans)
< © 3
P L ° z
g -] 2z H
:7 o i =
T T T T ° T T i i ° T T T T 1
0 1000 2000 3000 4000 5000 o 20 4 e 80 100 20 25 30 35 40
Iteration Lag Value
log(kDiss) log(kDiss) log(kDiss)
© -
g =] s z S
EE < 39 g 2
s] o 1 o
e T T T T T S 7 i 7 i T S T T T T 7
0 1000 2000 3000 4000 5000 o 2 4 6 8 100 02 00 02 04 06 08
Heration Lag Value
log(kRDeg) log(kRDeg) log(kRDeg)
. ©
S]] °
2 2] 5 2o
g 7] <3 & °
21 o i, o
il T T T T T S T T T ST T
0 1000 2000 3000 4000 5000 0 20 40 60 80 100 -30 -25 -20 -15 -10 -05 0.0
Iteration Lag Value
log(kPDeg) log(kPDeg) log(kPDeg)
2 @
g 3 s g °
R « z
s < s 8 3
? S T T T T ST T T T T T
0 1000 2000 3000 4000 5000 o 20 4 e 80 100 60 55 50 45 40 -35
Iteration Lag Value

Fully Bayesian parameter inference for Markov processes

PMMH inference results

AR-Pmmh100k-240-t-log

log(kTrans)

02 04 06 08

-02
L

log(kDiss)

log(kRDeg)

-60
L

log(kPDeg)

inference for Markov processes

“Sticking” and tuning of PMMH

m As well as tuning the 6 proposal variance, it is necessary to
tune the number of particles, NV in the particle filter — need
enough to prevent the chain from sticking, but computational
cost roughly linear in NV

m Number of particles necessary depends on 8, but don’t know 6
a priori

m Initialising the sampler is non-trivial, since much of parameter
space is likely to lead to likelihood estimates which are
dominated by noise — how to move around when you don't
know which way is “up”?!

m Without careful tuning and initialisation, burn-in, convergence
and mixing can all be very problematic, making algorithms
painfully slow...

General SIR particle filter

m At time ¢, we have (after resampling) an equally weighted
sample from m(x¢|y1.¢)

m At time t + 1, we want a weighted sample from
m(Z¢41|y1:4+1), though in fact useful to construct a sample
from m(2¢41, ¢|y1:4+1), and then marginalise down as required

m Target o< m(yi1|®ep1)m(2er1|2e)w(2e|y1.4) and proposal is

f(zis1|ze, yisr)m(2e|yr.e), for some f(+), leading to
unnormalised weight

wpey = T (Yo 1|z 1) T (@e11]70)
=
f(@epa|me, yi1)

m LF choice is f(x¢q1|xe, yi+1) = m(x41|xt), otherwise need to
evaluate the discrete time transition density

Weights and RN derivatives

m For Markov processes with intractable kernels, make the
target 7(x¢4+1, Z¢|y1:4+1) and then marginalise down to
(24 41|y1:441) if required

m The proposal path will be of the form
f(xe1|me, Y1) m(2e|y1.e), leading to weight

7T(Xt+1’95t)
Xit+1 \fﬂt’ yt+1)

W41 = 7T(yt+1|30t+1)f(

m The expected weight is 7(y;+1|y1:¢), as needed for
pseudo-marginal MCMC

m Formally,
dP
Wiyl = W(yt+1lxt+1)@(xt+1|$t%

the RN derivative of the true (unconditioned) diffusion wrt
the proposal process

Likelihood free inference

m For conducting Bayesian inference for complex simulation
models, “likelihood—free” methods are very attractive

m There are many likelihood—free algorithms, some of which are
“exact” — pMCMC algorithms being a notable example

m Likelihood-free algorithms can sometimes be very inefficient

m pMCMC is not the only option worth considering —
ABC-SMC methods, and SMC? are also worth trying; also
iterated filtering for a ML solution

m The reliance of likelihood free algorithms on forward
simulation fundamentally limits their effectiveness and utility
for many challenging problems — inference is fundamentally
about conditional simulation — other ways of modularising
models and inferential algorithms are also worth considering

Languages and libraries for MCMC

m Various approaches to creating MCMC algorithms for
particular problems:

m Use a stand-alone probabilistic programming language (PPL)

m Use a PPL embedded in a general purpose programming
language (eg. Python or R)

m Write a custom sampler in an appropriate programming
language (using scientific libraries, tensor computation
frameworks, auto-diff frameworks, etc.)

m Stand-alone PPLs:

m JAGS is old, but quite general and widely used. It can be very
inefficient for large, complex models. There are interfaces,
rjags and PyJAGS, for using it from R and Python.

m Stan is now probably the most popular PPL. It is typically
much more efficient than JAGS for complex models, but uses
gradients, so can't (directly) handle discrete parameters. There
are interfaces such as rstan and PyStan for using it from R
and Python.

Python ecosystem for Bayesian inference and MCMC

m PyMC3 is probably the most popular PPL embedded in
Python. It uses Theano for a backend. PyMC4 was going to
use TensorFlow, but this was abandoned. PyMC3 is currenly
moving to a JAX backend (currently experimental, via
NumPyro), but will eventually support multiple backends, via
Aesara (a fork of Theano)

m Pyro uses PyTorch as a back-end, but the popular NumPyro
fork uses JAX

m JAX is a pure functional eDSL for tensor/array computation
and automatic differentiation. It can JIT-compile to run very
fast on (multiple) CPU and GPU. It turns out to be extremely
well-suited to sampling applications such as MCMC. If you are
doing any kind of ML in Python, it's worth spending some
time learning about JAX. BlackJAX is a library of samplers for
log-posteriors described using JAX.

Functional languages for scalable Bayesian computation

m JAX is a pure functional DSL embedded in Python

m Functional languages are easier to analyse, optimise, compile,
parallelise, distribute, automatically differentiate, etc., than
imperative languages

m MCMC for logistic regression using multiple languages and
libraries: github.com/darrenjw/logreg

m DEX is a new experimental functional language for array
processing and automatic differentiation (written in Haskell)

m Scala is a general-purpose functional programming language,
well-suited to building scalable (MCMC) samplers

m Apache Spark is a Scala framework for distributing big data
ML workloads over a (large) cluster (in the cloud)

github.com/darrenjw/talks

github.com/darrenjw/logreg
github.com/darrenjw/talks

