
Time series Stationarity Vector autoregressions Prior Posterior Application Conclusions

Enforcing Stationarity through the Prior in Vector
Autoregressions

Sarah Heaps

Durham University

Bayesian Inference in High Energy Physics, Durham University

May 25–27, 2022

Sarah Heaps Durham University
Enforcing stationarity through the prior in vector autoregressions



Time series Stationarity Vector autoregressions Prior Posterior Application Conclusions

Outline

1 Time series analysis

2 Stationarity

3 Vector autoregressions

4 Prior construction

5 Posterior computation

6 Application

7 Conclusions

Sarah Heaps Durham University
Enforcing stationarity through the prior in vector autoregressions



Time series Stationarity Vector autoregressions Prior Posterior Application Conclusions

Time series analysis

A time series is a set of observations collected sequentially in time.
A time series process is a collection of random variables yt
indexed in time.
A process is a Gaussian process if (and only if) any finite
subcollection (yt1 , . . . , ytn) has a multivariate normal distribution.
Of fundamental interest is the dependence between the sequence
of random variables.
If we can form a (reasonable) model for a time series, then we can
learn about its properties which can be useful in a variety of
settings.
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Why model a time series?

Description. Summarise what has occurred in the past in a simple
way.
Forecasting. Prediction of future values.
Measure the effect of interventions.
Control. Monitor a time series and take action to influence its
future behaviour.
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Stationary Gaussian processes

Let {yt} denote a Gaussian process whose components represent
m univariate time series.
The process is stationary if and only if (iff)

1 The mean is constant over time, i.e. for all t

E(yt) = µ.

2 The cross-covariance function depends only on the lag

Γi = Cov(yt, yt+i) = E{(yt − µ)(yt+i − µ)T}

for i = 0, 1, 2, . . . with Γ−i = ΓT
i .
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Why is stationarity important?

Stationarity is a very common assumption in time-series analysis.
Generally not plausible for the raw time series but often
appropriate after differencing, “detrending” or as a model for
particular components of a time-series.
Stationarity prevents the predictive variance increasing without
bound as the forecast horizon increases.
This is often a desirable property, e.g. when goal is long-term
forecasting or characterising long-run behaviour.
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The VARm(p) model

Any stationary Gaussian process can be approximated by a
finite-order, vector autoregressive moving average (VARMA)
model.
Our main focus is the subclass of vector autoregressive models.
Consider a zero-mean process of order p (VARm(p)):

yt = ϕ1yt−1 + . . .+ ϕpyt−p + ϵt, ϵt
iid∼ Nm(0m,Σ).

The parameters comprise the autoregressive coefficient matrices
ϕi ∈ Mm×m(R), i = 1, . . . , p

and the error variance matrix
Σ ∈ S+

m .

We denote the collection (ϕ1, . . . ,ϕp) by Φ ∈ Mm×m(R)p.
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The stationary region

The characteristic polynomial of a VARm(p) model is given by

ϕ(u) = Im − ϕ1u − . . .− ϕpup, u ∈ C.

The process is stationary iff all the roots of det{ϕ(u)} = 0 lie
outside the unit circle.
This subset of Mm×m(R)p is the stationary region, denoted Cp,m.
It has a very complex geometry.
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Stationary region of VAR2(1)

Consider the simplest case where m > 1, i.e.

yt = ϕ1yt−1 + ϵt, ϵt
iid∼ N2(02,Σ),

so that Φ = ϕ1.
The constraint Φ ∈ C1,2 is equivalent to saying the spectral
radius, ρ(ϕ1), must be less than one.
What does this look like?
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Stationary region of VAR2(1)
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General approach to building a prior over Cp,m

The goal is to develop a prior that:
Encodes genuine initial beliefs, e.g. exchangeability with respect to
the order of the elements in yt (c.f. Ansley and Kohn (1986)).
Facilitates routine computational inference using probabilistic
programming software.

The solution is to specify a reparameterisation of
(Σ,Φ) ∈ S+

m × Cp,m in which the new parameters are:
Less constrained;
Interpretable;
Amenable to Monte Carlo sampling. c.f. Roy et al. (2019).

A prior for Φ over Cp,m is induced through specification of a prior
for the new parameters.
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Reparameterisation 1: partial autocorrelation matrices
Ansley and Kohn (1986) extend univariate results, establishing a bijection
between

{Σ, (ϕ1, . . . ,ϕp)} ∈ S+
m × Cp,m and {Σ, (P1, . . . ,Pp)} ∈ S+

m × Vp
m.

Ps+1 is the (s + 1)-th partial autocorrelation matrix – “a” conditional
cross-correlation matrix between yt+1 and yt−s given yt, . . . , yt−s+1
(written yt:t−s+1):

Ps+1 = S−1
s Cov(yt+1, yt−s|yt:t−s+1)(S

∗−1
s )T, s = 0, . . . , p − 1,

in which
Σs = SsST

s = Var(yt+1|yt:t−s+1), Σ∗
s = S∗

s S∗ T
s = Var(yt−s|y(t−s+1):t).

We take the symmetric matrix-square roots: Ss = Σ1/2
s , S∗

s = Σ∗ 1/2
s .

Vm denotes the subset of matrices in Mm×m(R) whose singular values
are all less than one.
The mapping and its inverse proceeds by recursion (Heaps, in press).

Sarah Heaps Durham University
Enforcing stationarity through the prior in vector autoregressions



Time series Stationarity Vector autoregressions Prior Posterior Application Conclusions

Reparameterisation 2: unconstrained square matrices

The space Vp
m is still fairly constrained and there are no standard

distributions on Vm.
Ansley and Kohn (1986) establish a bijection between P ∈ Vm and
A ∈ Mm×m(R).
Forwards: let B−1B−1 T = I − PPT then write A = BP.
Inverse: let BBT = I + AAT then write P = B−1A.
We take the symmetric matrix-square root factorisation.
Intuition: mapping from P to A simply transforms the singular values of
P from ri ∈ [0, 1) to r̃i ∈ R+:

r̃i = ri/
√

1 − r2
i ⇐⇒ ri = r̃i/

√
1 + r̃2

i i = 1, . . . ,m

while left and right singular vectors are preserved.
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Special structures

The partial autocorrelation matrices Ps are interpretable.
The mapping from Ps to As preserves various structured forms:

1 Diagonal;
2 Two-parameter exchangeable matrix, i.e. matrix of the form

a b b · · · b
b a b · · · b
...

...
... . . . ...

b b b · · · a


3 Special cases of (2): scaled all-ones matrix, scaled identity matrix,

the zero matrix.
Zero matrix result is significant – the order of the autoregression
is k < p iff Ak ̸= 0 but Ak+i = 0 for i = 1, . . . , p − k.
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Prior distribution

Conditional on a set of unknown hyperparameters, we construct a
prior of the form

π(Σ,A1, . . . ,Ap) = π(Σ)

p∏
s=1

π{vec(AT
s )}.

Then
Σ can be assigned an inverse Wishart distribution;
vec(AT

s ), s = 1, . . . , p, can be assigned a multivariate normal
distribution.

This prior has some nice properties.
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Exchangeable prior

Certain choices of the hyperparameters yield a prior which is invariant
under permutation of the m elements in the observation vectors, e.g.

Σ ∼ IW(vW), W is two-parameter exchangeable,

as,ii|µs1, ωs1
iid∼ N(µs1, ω

−1
s1 ), i = 1, . . . ,m,

as,ij|µs2, ωs2
iid∼ N(µs2, ω

−1
s2 ), i ̸= j = 1, . . . ,m,

µs1 ∼ N(es1, f 2
s1), ωs1 ∼ γ(gs1, hs1),

µs2 ∼ N(es2, f 2
s2), ωs2 ∼ γ(gs2, hs2).

This is useful because we often do not have prior information to
distinguish between the m components of yt.
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Posterior computation

Given observations, y1, . . . , yn, the likelihood is a complicated
function of {Σ, (A1, . . . ,Ap)}.
The posterior has no standard form and admits no simple
factorisation; it is ill-suited to MCMC methods that are based on
Gibbs sampling.
We use Hamiltonian Monte Carlo (HMC) which generates global
proposals that update all parameters simultaneously.
rstan is used to implement the HMC algorithm.
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Application

Complete data are a quarterly time series of 168 US
macroeconomic variables from 1959 to 2007, transformed to
stationarity (Koop, 2013).
Following earlier analyses:

Interest lies in forecasting three of the variables: real GDP, the
consumer price index and an interest rate (Federal funds);
Consider three models: VAR3(4), VAR10(4) and VAR20(4).

The last 40 observations are held back in model-fitting and used
to assess forecast performance.
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Comparison

We compare four priors:
1 A stationary, exchangeable prior;
2 A Minnesota prior;
3 A semi-conjugate prior;
4 A stationary, diffuse prior based on Roy et al. (2019).

stationarity not imposed

and the MLE constrained to the stationary region (Ansley and
Kohn, 1986).
Out-of-sample forecasting performance compared at various
horizons using

Continuous rank probability score for variable j = 1, 2, 3 (CRPSj);
Energy score for variables 1–3 (ES3);
Posterior for the mean-square-forecast-error for variable j (MSFEj).

Small values indicate better forecasts.
Also computed: Pr(Stat.), which is Pr(Φ ∈ C4,m|y1, . . . , yn).
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One-step ahead scores for model-prior combinations
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Eight-step ahead scores for model-prior combinations
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Conclusions

Prior (and hence posterior) inference for the parameters of a
VARm(p) process is constrained to the stationary region.
The new parameters represent orientation-preserving
transformations of partial autocorrelation matrices that retain the
structure of numerous meaningful parametric forms.
They are interpretable, unconstrained and facilitate specification
of an exchangeable prior. Moreover, MCMC is routine.
Current and future extensions:

Determination of model order using a cumulative shrinkage process
for an overfitted model (Legramanti et al., 2020);
Computational inference under a uniform prior for the Ps using
spherical augmentation (Lan and Shahbaba, 2016) and Lagrangian
Monte Carlo (Lan et al., 2015).
Application to determine change points in multichannel
electroencephalographic (EEG) data for epilsepsy patients.
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Skeleton Stan code

functions {
/* Function to compute the matrix square root */
matrix sqrtm(matrix A) {

int m = rows(A);
vector[m] root_root_evals = sqrt(sqrt(eigenvalues_sym(A)));
matrix[m, m] evecs = eigenvectors_sym(A);
matrix[m, m] eprod = diag_post_multiply(evecs, root_root_evals);
return tcrossprod(eprod);

}
/* Function to transform A to P (inverse of part 2 of reparameterisation) */
matrix AtoP(matrix A) {

int m = rows(A);
matrix[m, m] B = tcrossprod(A);
for(i in 1:m) B[i, i] += 1.0;
return mdivide_left_spd(sqrtm(B), A);

}
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Skeleton Stan code cont’d

functions {
/* Function to perform the reverse mapping from Appendix A.2.

Returned: a (2 x p) array of (m x m) matrices; the (1, s)-th component
of the array is phi_s and the (2, s)-th component of the array
is Gamma_{s-1}*/

matrix[,] rev_mapping(matrix[] P, matrix Sigma) {
// ... details ...

}
}
data {

// ... as you would expect ...
}
parameters {

matrix[m, m] A[p];
cov_matrix[m] Sigma;
vector[p] Amu[2];
vector<lower=0>[p] Aomega[2];

}
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Skeleton Stan code cont’d

transformed parameters {
matrix[m, m] phi[p];
matrix[p*m, p*m] Gamma; // (Stationary) variance of (y_1, ..., y_p)
{

/* ... construct phi and Gamma from the A_s and Sigma using
the AtoP and rev_mapping functions ... */

}
}
model {

// ... likelihood in terms of phi_s, Sigma and Gamma ...
// ... prior for A_s, Sigma, Amu, Aomega ...

}
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Definining the partial autocorrelation matrices

For each s = 1, . . . , p define forward and reverse sub-processes:

yt+1 =
s∑

i=1
ϕsiyt−i+1 + ϵs,t+1, ϵs,t+1 ∼ Nm(0,Σs)

and

yt−s =
s∑

i=1
ϕ∗

siyt−s+i + ϵ∗s,t−s, ϵ∗s,t−s ∼ Nm(0,Σ∗
s ).

The ϕsi (ϕ∗
si) are coefficients in the conditional expectations of yt

given its s predecessors (successors).
Σs = Var(yt+1|yt:t−s+1) and Σ∗

s = Var(yt−s|y(t−s+1):t) are the
corresponding conditional variances.
Let Σ0 = Σ∗

0 = Γ0 where Γi = Cov(yt, yt+i) = E(ytyT
t+i).
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Definining the partial autocorrelation matrices cont’d

Let Σs = SsST
s and Σ∗

s = S∗
s S∗T

s for s = 0, . . . , p.
We take the symmetric matrix-square-root factorisation so
Ss = ST

s = Σ
1/2
s and S∗

s = S∗T
s = Σ

∗ 1/2
s .

Let zs,t+1 = S−1
s ϵs,t+1 and z∗s,t−s = S∗−1

s ϵ∗s,t−s be standardised
versions of the forward and reverse error series, then

Ps+1 = Cov(zs,t+1, z∗s,t−s)

= S−1
s Cov(yt+1, yt−s|yt, . . . , yt−s+1)(S∗−1

s )T

= S−1
s ϕs+1,s+1S∗

s

for s = 0, . . . , p − 1.
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Forward mapping

The mapping from {Σ, (ϕ1, . . . ,ϕp)} ∈ S+
m × Cp,m to {Σ, (P1, . . . ,Pp)} ∈ S+

m ×Vp
m,

described in Ansley and Newbold (1979), proceeds in two main stages.

1 From {Σ, (ϕ1, . . . ,ϕp)}, compute the autocovariances Γi = Cov(yt, yt+i) for
i = 0, . . . , p.

2 From (ϕ1, . . . ,ϕp) and (Γ0, . . . ,Γp) compute the partial autocorrelation
matrices (P1, . . . ,Pp) as follows.

a Initialise: construct Σ0 = Σ∗
0 = Γ0 and then calculate their

matrix-square-root factorisations, Σ0 = Σ∗
0 = S0ST

0 = S∗
0S∗ T

0 .
b Recursion: for each s = 0, . . . , p − 1

i Compute ϕs+1,s+1 and ϕ∗
s+1,s+1 using

ϕs+1,s+1 =
(
ΓT

s+1 − ϕs1Γ
T
s − . . .− ϕssΓ

T
1

)
Σ∗−1

s

ϕ∗
s+1,s+1 = (Γs+1 − ϕ∗

s1Γs − . . .− ϕ∗
ssΓ1)Σ

−1
s .
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Forward mapping cont’d

ii If s > 0, for i = 1, . . . , s, compute ϕs+1,i and ϕ∗
s+1,i using

ϕs+1,i = ϕsi − ϕs+1,s+1ϕ
∗
s,s−i+1

ϕ∗
s+1,i = ϕ∗

si − ϕ∗
s+1,s+1ϕs,s−i+1

iii Compute the (s + 1)-th partial autocorrelation Ps+1 using

Ps+1 = S−1
s ϕs+1,s+1S∗

s ,

or Ps+1 =
(

S∗−1
s ϕ∗

s+1,s+1Ss
)T

.

iv If s < p − 1, compute Σs+1 and Σ∗
s+1 using

Σs+1 = Γ0 − ϕs+1,1Γ1 − . . .− ϕs+1,s+1Γs+1

Σ∗
s+1 = Γ0 − ϕ∗

s+1,1Γ
T
1 − . . .− ϕ∗

s+1,s+1Γ
T
s+1

and then calculate their matrix-square-root factorisations,
Σs+1 = Ss+1ST

s+1 and Σ∗
s+1 = S∗

s+1S∗ T
s+1.
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Reverse mapping

The inverse mapping from {Σ, (P1, . . . ,Pp)} ∈ S+
m × Vp

m to
{Σ, (ϕ1, . . . ,ϕp)} ∈ S+

m × Cp,m, proceeds in two main stages, the second of which is
based on Lemma 2.1 of Ansley and Kohn (1986).

1 From {Σ, (P1, . . . ,Pp)} compute the stationary variance matrix Γ0.
a Initialise: let Σp = Σ with corresponding matrix-square-root

factorisation, Σp = SpST
p .

b Recursion: for each s = p − 1, . . . , 0 construct the symmetric (or
lower triangular) matrix Ss such that

Σs+1 = Ss(Im − Ps+1PT
s+1)S

T
s

then compute Σs = SsST
s .

c Output: take Γ0 = Σ0.
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Reverse mapping cont’d

2 From (P1, . . . ,Pp) and Γ0 compute the matrices of autoregressive coefficients
(ϕ1, . . . ,ϕp) as follows.

a Initialise: let Σ0 = Σ∗
0 = Γ0 with corresponding matrix-square-root

factorisation, Σ0 = Σ∗
0 = S0ST

0 = S∗
0S∗ T

0 .
b Recursion: for each s = 0, . . . , p − 1

i Compute ϕs+1,s+1 and ϕ∗
s+1,s+1 using

ϕs+1,s+1 = SsPs+1S∗−1
s

ϕ∗
s+1,s+1 = S∗

s PT
s+1S−1

s

ii If s > 0, for i = 1, . . . , s, compute ϕs+1,i and ϕ∗
s+1,i using

ϕs+1,i = ϕsi − ϕs+1,s+1ϕ
∗
s,s−i+1,

ϕ∗
s+1,i = ϕ∗

si − ϕ∗
s+1,s+1ϕs,s−i+1.
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Reverse mapping cont’d

iii Compute Σs+1 and Σ∗
s+1 using

Σs+1 = Σs − ϕs+1,s+1Σ
∗
s ϕ

T
s+1,s+1

Σ∗
s+1 = Σ∗

s − ϕ∗
s+1,s+1Σsϕ

∗ T
s+1,s+1

and then calculate their matrix-square-root factorisations,
Σs+1 = Ss+1ST

s+1 and Σ∗
s+1 = S∗

s+1S∗ T
s+1.

iv Compute Γs+1 using

ΓT
s+1 = ϕs+1,s+1Σ

∗
s + ϕs1Γ

T
s + . . .+ ϕssΓ

T
1

c Output: take ϕi = ϕpi for i = 1, . . . , p. By construction, Σ = Σp.
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