Contemporaneous MCMC

Louis J. M. Aslett!, Murray Pollock? & Gareth O. Roberts?
I Durham University
2 Newcastle University
3 University of Warwick

20
26 May 2022 Y9 Durham

University

1/35

Background

Background

2/35

Background

Contemporaneous MCMC

Asynchronus parallel adaptive population-based MCMC

3/35

Background

Contemporaneous MCMC

Asynchronus parallel adaptive population-based MCMC

contemporaneous

kan tempa'reinies, kon tempa'reinias

adjective existing at or occurring in the same period of time:
Pythagoras was contemporaneous with Buddha.

3/35

Background

32GB DDR3

O g
| 12 ||| L2
O O
| L2 ||| L2
L3
Motherboard
Chipset

Hard
Drive

4/35

Background

What are GPUs?

e GPUs are extraordinarily parallel devices (e.g. 16,896 cores
on Tesla H100 (2022))

e Usually programmed in C/C++ using CUDA
¢ Interfaces available in Python, R, Julia, ...

¢ Main mode of operation is SIMD
¢ can now launch multiple independent kernels
e GPUs cannot directly access the system memory: you must

copy data on and results off
e CUDA has ‘unified memory’, but this just hides what is

happening anyway

5/35

Background

Highly simplified GPU architecture (~ 2014 to fit!!)

CEECRAEERD || EECEERRCEED || CEORERCERGRR || ERmECEERRCR
B e
B e R
B L
‘ |t || e |
i i I | 1] 1]
s | | S |
B
sl R
il
I | I | 1]
CEECRAEERD || EECEERRCEED || CEORERCERGRR || ERmECEERRCR 12GB Global mempry
B e B
B e R
B L |
i I [I [I [1]
CEECRAEERD || EECEERRCEED || CEORERCERGRR || ERmECEERRCR
B
B e R
B L |
i I [I [1]
e
B
B Tesia
iz iy
=== nVidia GTK210 GPU

6/35

Background

CUDA Concepts (Oversimplified, ¢f dynamic
parallelism)

¢ Kernel: a C function which is flagged to be run on a CUDA
capable device

e A kernel is executed on the core of a multiprocessor inside
a thread. A thread can be thought of as just an index j € N.
V Loosely: a index of cores in multiprocessors

e At any given time, a block of threads is executed on a
multiprocessor. A block can be thought of as just an index
1 € N. V Loosely: an index of multiprocessors in devices

¢ Together, (i, j) corresponds to exactly one kernel running
on a core of a single multiprocessor.

i.e. Very simplistically speaking, think of how to parallelize
your problem by how to split it into identical chunks indexed
by a pair (i,7) e Nx N

7/35

Background

CUDA Program

Block 1

Block 3

Block 2

Block 0

(o]
5 |--->| [---—>
2 |--->| w|--->
R e] e
2|8 El--->| E]--->
[R - -]
QO3 ———— ————
Bt
5=
v
w
@
<9
e
1
I
m —
Mu & ———-> ———>
2 of--->|a|---->
Sl F3 Y2
e 8l-——=>| g|-—--——>
g2 =|--->| =2|---->
S mlIlZ| gl
i B e
=
~
+
W
A
% 5 --A>
2 + y
= 0 @
*
--5>
»
Il
o

Multiprocessor 1 (4 core)
Corel Core2 Core3 Cored

8/35

Background

Performance Considerations

Simplistically, for the purposes of today these are the key
concerns when thinking of achieving high performance on a
GPU:

©® Memory accesses are slow compared to the cores. Usually
want many more total threads than cores to mask this.

® Conditional sections of an algorithm can quickly kill
performance.

® Random or disorganised memory accesses will make a GPU
under-perform a CPU!

9/35

Background

Simple Performance Consideration #1

e Number of blocks can exceed number of multiprocessors
e Number of threads can exceed number of cores per
multiprocessor

Worst case, at least both should equal the physical device sizes
or else cores sit idle.

But in reality, rule of thumb is ensure the thread figure exceeds
the number of cores per multiprocessor for performance reasons!.

lthis is a simplification ... 3 occasions this is not true. 10/35

Thread A |Thread B [Thread C

. = Global memory access |
=> Execution stall!

|
[
[
|
Global memory accesses are slow, /

so a core will stall when a request is *
made.

But, if # threads > # cores then
another thread will be interleaved *
and run until the memory request is
fulfilled and the first thread can run
again.

¥
A

i

11/35

Background

Simple Performance Consideration #2

1 2 3 4 5 6 7 8 <«— Cores
0 N S N SN SN BN O 1 £ (x [thrd 1d]>0) {

} else {

Threads execute in lock-step on the cores of a
multiprocessor, so beware of very divergent code ... best
to use block indices to separate highly divergent paths.

12/35

Background

Simple Performance Consideration #3

e Multiprocessors pull memory in large blocks, not element
by element

® due to the lock-step all cores will be ready for memory
access at the same time.

¢ When a floating point number is requested from memory,
that number and the following 3 are loaded (128-bit
memory bus)

e whether you asked for them or not!

13/35

Background

Simple Performance Consideration #3

e Multiprocessors pull memory in large blocks, not element
by element

® due to the lock-step all cores will be ready for memory
access at the same time.

¢ When a floating point number is requested from memory,
that number and the following 3 are loaded (128-bit
memory bus)

e whether you asked for them or not!

¢ If consecutive threads require consecutive regions of
memory, ; as many memory transactions required:
coalesced memory access.

e Algorithms with random or disorganised memory access
hurt performance.
13/35

Population Methods

Population Methods

14/35

Population Methods

Population-based MCMC : setting

e Target measure x on space) with density = (z).

¢ Construct:
Product space Q"= x---x0
Density of form 7 (z) := ﬁ mi(x;)
i=1
x = (x1,...,2y) €Q", 2, € Q

where each 7;(-) is a probability density on €.

e Usually, m; = = for at least one i.

15/35

Population Methods

Population-based MCMC : moves

¢ Individual site update

K(z,y) =[] Ki(i, v:)
i—1

e.g. K;(z;,-) may be 7;(-)-stationary

16/35

Population Methods

Population-based MCMC : moves

¢ Individual site update

K(z,y) =[] Ki(i, v:)
i—1

e.g. K;(z;,-) may be 7;(-)-stationary

e Swap, = (..., &i,.. ., Tj,...), Y= (o, Tjy ooy Ty o)

16/35

Population Methods

Population-based MCMC : moves

¢ Individual site update

K(z,y) = [[Ki(wi, y:)
i—1

e.g. K;(z;,-) may be 7;(-)-stationary

e Swap, = (..., &i,.. ., Tj,...), Y= (o, Tjy ooy Ty o)

e Snooker, m; = 7 Vi (Gilks et al. 1994)
K(z,y) = 7m(yilyi € 0) [6(y; = x5)
j#i
for ¢ the line connecting x; to some randomly chosen
anchor z;,j # i

16/35

Population Methods

Population-based MCMC : moves

¢ Individual site update

K(z,y) = [[Ki(wi, y:)
i—1

e.g. K;(z;,-) may be 7;(-)-stationary

e Swap, = (..., &i,.. ., Tj,...), Y= (o, Tjy ooy Ty o)
: mi(w)mj (i) }
a(x,y) =min < 1,
) { i))

e Snooker, m; = 7 Vi (Gilks et al. 1994)
K(z,y) = 7m(yilyi € 0) [6(y; = x5)
j#i
for ¢ the line connecting x; to some randomly chosen
anchor z;,j # i

o Simnlraneniic — 111date 211 comnonente in narallel 16/35

Population Methods

Population-based MCMC : 7;(-)

e Tempered sequence

17/35

Population Methods

Population-based MCMC : 7;(-)

e Tempered sequence
mia) o (n(@)), 7 € (0,1

Wn(w) = W(QS‘)

¢ For Bayes, 7(6) « L(6; y1.,)p(0), data tempering
i (0) oc L(6; y1.4) p(6)

17/35

Population Methods

Population-based MCMC : 7;(-)

e Tempered sequence
mia) o (n(@)), 7 € (0,1

() = 7(x)

¢ For Bayes, 7(6) « L(6; y1.,)p(0), data tempering
i (0) oc L(6; y1.4) p(6)

e Partitioned, Q = F;U---U E, 1, E;N Ej =9

mi(2) = 7(@) L5, (2), Talz) = ()

17/35

Population Methods

Population-based MCMC : 7;(-)

e Tempered sequence
mia) o (n(@)), 7 € (0,1

() = 7(x)

¢ For Bayes, 7(6) « L(6; y1.,)p(0), data tempering
i (0) oc L(6; y1.4) p(6)

e Partitioned, Q = F;U---U E, 1, E;N Ej =9

mi(2) = 7(@) L5, (2), Talz) = ()

e All equal (e.g Snooker)
mi(x) = m(x) Vi

17/35

Population Methods

Population-based MCMC : high-level algorithm

@ Initialise chain (z1,...,z,) € Q"
® Foric{l,...,N}

@ [terate according to transition kernel K (z,y), meaning m;
stationary V.

@ Perform interacting move (eg exchange) on some subset of
components, Z, K (zz,yz)

18/35

Population Methods

Population-based MCMC : parallelism

Lee et al. (2010) highlight existing population-based methods
can be run on GPUs. They note:

¢ Individual site updates are trivially parallelisable

¢ Interaction moves (eg swap) are sequential in nature
¢ parallelise only on disjoint subsets of variables

¢ disjoint subsets must time-vary

¢ Not always helpful to increase n — may hinder
convergence of chain

19/35

Contemporaneous MCMC

Contemporaneous MCMC

20/35

Contemporaneous MCMC

Adapting in parallel?

We want to propagate in parallel, but also adapt. Natural idea:
qi(z,-) ~ N(xi, X5)

where ¥_; is the covariance of {z; : j € {1,...,n},j # i} and

(w) =[] m(x:)
i=1

21/35

Contemporaneous MCMC

Adapting in parallel?

We want to propagate in parallel, but also adapt. Natural idea:
qi(z,-) ~ N(xi, X5)

where ¥_; is the covariance of {z; : j € {1,...,n},j # i} and

() = [w(a:)
=1
Problems:

¢ inefficient to recompute n covariance matrices on every
iteration

¢ in practise would downdate global covariance matrix, but
still expensive to do for all components.

21/35

Contemporaneous MCMC

Adapting in parallel?

We want to propagate in parallel, but also adapt. Natural idea:
qi(z,-) ~ N(xi, X5)

where ¥_; is the covariance of {z; : j € {1,...,n},j # i} and

() = [w(a:)
=1
Problems:

¢ inefficient to recompute n covariance matrices on every
iteration

¢ in practise would downdate global covariance matrix, but
still expensive to do for all components.

e is it clear this actually a valid MCMC algorithm?
— transition kernel conditional on state:

Kz(l’zayz | f*i) 21/35

Contemporaneous MCMC

A more practical suggestion ...

As a quick fix, let

22/35

Contemporaneous MCMC

A more practical suggestion ...

As a quick fix, let

e = {xy,... xn}
@ = {roi,. a0t
#(r) = w(@V)n(@®) =][n(z:)

i=1

Define reversible kernel K (z(?), y(?)) as parallel set of 2 MH
updates with proposals

. n
QIi(x§2)’.)~N(xl(2)7zl)7 i E {2,...,n}
where Y, is the covariance of z(1).

Similarly define K (z(1),y™M).

22/35

Contemporaneous MCMC

Synchronus parallel MCMC

Alternate updates:

(y™M |2?) and w(y™ |y)

23/35

Contemporaneous MCMC

Synchronus parallel MCMC

Alternate updates:

(y™M |2?) and w(y™ |y)

* Size the population n such that 3 sites are efficiently
updated in parallel on the GPU at a time.

e Store 21, #(?) as separate matrices in GPU memory —>
in-place GPU computation of covariance.

¢ Alternate GPU kernel launches updating each population
between updated covariance estimates.

23/35

Contemporaneous MCMC

Can we use more than 1 GPU efficiently?

Common to have more than 1 GPU.
(p2.16xlarge has 16 nVidia K80s)

e Hold separate populations on separate GPUs?
e Effectively pointless: only one GPU computing at a time to
satisfy Gibbs updates.

24/35

Contemporaneous MCMC

Can we use more than 1 GPU efficiently?

Common to have more than 1 GPU.
(p2.16xlarge has 16 nVidia K80s)

e Hold separate populations on separate GPUs?
e Effectively pointless: only one GPU computing at a time to
satisfy Gibbs updates.

e Split each population across GPUs?

® Must synchronise GPUs to complete iterations together
¢ Latency in computing covariance jointly across GPUs

24/35

Contemporaneous MCMC

Sticking plaster fix (III)

Note also the reversible kernels

r(@M)r(a®) Ky 2@,y) = 7 (@D)r(y®) Ky, 2?)
(M) 7 (@) Ky (2D, y M) = 7 (y M) (2P) Ky (y D, M)

satisfy detailed balance

(N7 () K1 (2@, yP) Ky (2D, y M)
ST (o, () (D) sy, o)
MM
~ wle () K (3P, 2D e (D) K (y V), 20
- MM

= 7(yNr(yP) Ky (yM, 2M) K (y2), 2P)

25/35

Contemporaneous MCMC

Contemporaneous updates (I)

Consider a joint density f(z(}), z()) which is such that the
marginals are:

26/35

Contemporaneous MCMC

Contemporaneous updates (I)

Consider a joint density f(z(}), z()) which is such that the
marginals are:

If we could assure:
/ / / £, 27 (V) r(y@ 20 de da@dy® = 7(y?)

then we would be (almost) valid in updating populations
simultaneously.

26/35

Contemporaneous MCMC

Contemporaneous updates (I)

Consider a joint density f(z(}), z()) which is such that the
marginals are:

If we could assure:
/ / / £, 27 (V) r(y@ 20 de da@dy® = 7(y?)

then we would be (almost) valid in updating populations
simultaneously.

—> asynchronous adaptation.
26/35

Contemporaneous MCMC

Contemporaneous updates (II)

[][1D)a(y® |20) dyDda dz®

a(uD 22 M), y@
/ (",) m(x) . a 2) 7(1)
—///f (2|T) M dy™M dz®dz

(@)
-/ / fo

=(y?)

- ﬂ(x<) 4@ 4@z

Thus, we can perform simultaneous updates in the special case
where the marginals are 7 (-).

27/35

Contemporaneous MCMC

Contemporaneous updates (III)

In fact, (not shown) satisfied even for more groups if joint is
simply product of marginals.

So:

e Infinite adaptation
® no need for diminishing adaptation
* no need for containment condition
¢ Asynchronus
e Parallel
e General framework
¢ any transition kernel that can learn to adapt from other
population
e MALA, HMG, ...

28/35

Contemporaneous MCMC

Implications for GPU implementation

e Targeting m; = 7 Vi means we have most efficient possible
SIMD execution.
® same code paths, same memory access patterns
® easy to arrange coalescent memory reads

29/35

Contemporaneous MCMC

Implications for GPU implementation

e Targeting m; = 7 Vi means we have most efficient possible
SIMD execution.
* same code paths, same memory access patterns
® easy to arrange coalescent memory reads
e Covariance calculation is kept local to population on a
given GPU.
® zero communication
® no synchronisation before computation can start

29/35

Contemporaneous MCMC

Implications for GPU implementation

e Targeting m; = 7 Vi means we have most efficient possible
SIMD execution.
e same code paths, same memory access patterns
® easy to arrange coalescent memory reads
e Covariance calculation is kept local to population on a
given GPU.
® zero communication
® no synchronisation before computation can start
¢ Additional r; improves covariance estimation
¢ can saturate GPU with work without harming statistical
efficiency

29/35

Contemporaneous MCMC

Implications for GPU implementation

e Targeting m; = 7 Vi means we have most efficient possible
SIMD execution.
e same code paths, same memory access patterns
® easy to arrange coalescent memory reads
e Covariance calculation is kept local to population on a
given GPU.
® zero communication
® no synchronisation before computation can start
¢ Additional r; improves covariance estimation
¢ can saturate GPU with work without harming statistical
efficiency
¢ Asynchronus updating eliminates latency
¢ after covariance update immediately copy-and-continue
® peer-to-peer memory copies in recent CUDA versions
* =~ 2.5 microsecond latency, > 6 GB/s throughput
¢ free preload in L2 cache on target GPU
¢ event dispatch for update notification

29/35

Intel* Core™i7

30/35

Contemporaneous MCMC

4th Gen
Intel* Core™i7

30/35

Contemporaneous MCMC

4th Gen
Intel* Core™i7

30/35

Contemporaneous MCMC

4th Gen
Intel* Core™i7

30/35

Contemporaneous MCMC

4th Gen
Intel* Core™i7

30/35

Contemporaneous MCMC

4th Gen
Intel* Core™i7

30/35

4th Gen
Intel* Core™i7

30/35

4th Gen
Intel* Core™i7

30/35

4th Gen
Intel* Core™i7

30/35

1‘(2) Egcur) Egnxt)

Yy = Cov[z?)]

4th Gen
Intel* Core™i7

30/35

1‘(2) Egcur) Egnxt)

Yy = Cov[z?)]

4th Gen
Intel* Core™i7

30/35

1‘(2) Egcur): Egnxt)

Yy = Cov[z?)]

4th Gen
Intel* Core™i7

30/35

Contemporaneous MCMC

Easy to code

float mylogdensity(float *theta, float *x) {
// compute log density value using parameters theta[i] and
// auxilliary info/static parameters x[1]
return(res);

}

__device__ float mylogdensity(float *theta, float *x) {
// compute log density value using parameters THETA[i] and
// auxilliary info/static parameters X[1]
return(res);

31/35

Results

Results

32/35

Results

Speed of adaptation

For a Gaussian target, cost of having proposal covariance V/
different to true covariance ¥ is quantifiable as:

o (SN 12
oY N/d L
where); are eigenvalues of V1/2x.-1/2,

Using this measure, compare wall-clock speed to adaptation to
a recent traditional adaptive scheme run on CPU.

Target = a 100-dimensional normal with R = 9.04 for initial
covariance (diagonal 0.12/100).

33/35

Population Methods

20

Contemporaneous MCMC

60

Results

34/35

Results

References

Lee, A., Yau, C., Giles, M. B., Doucet, A., & Holmes, C. C.
(2010). On the utility of graphics cards to perform
massively parallel simulation of advanced monte carlo
methods. Journal of Computational and Graphical Statistics,
19/4: 769-89. DOI: 10.1198/jcgs.2010.10039

35/35

https://doi.org/10.1198/jcgs.2010.10039

	Background
	Population Methods
	Contemporaneous MCMC
	Results

