Multilevel Emulation of Complex Computer Models,
with application to EAGLE, a Galaxy Formation Simulation.

lan Vernon
Department of Mathematical Sciences, Durham University

Bayesian Inference for High-Energy Physics Workshop, IPPP, May 2022

y

0
y

lan Vernon (Durham University)

Joint work with: Richard G. Bower, Aaron Ludlow, Alejandro B Llambay, Dept. of Physics, EAGLE team.
With thanks to the VIRGO consortium



Overview

@ Overview of Uncertainty Analysis of Complex Models (a.k.a. UQ)

» Basic setup: expensive computer models
» Bayesian Emulation.

> Simple 1D example.

@ Strategies for very expensive models

» Multilevel Emulation

> Application to EAGLE: a hydrodynamic galaxy formation simulation.
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@ These techniques could be of substantial use to the High Energy Physics
community.
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Overview of Uncertainty Analysis of Complex Models

@ The Bayesian uncertainty analysis of complex physical systems, is now
sometimes referred to as “Uncertainty Quantification".

@ Focus on the following general scenario:

> We have a physical model f(z): a model based on theory, implemented on a computer,
that may take a long time to evaluate.

» The model takes a vector of input parameters = and returns a vector f(x) of outputs.

» We want to compare the vector of model outputs f, or a subset of them, with the vector
of observed data =z, observations of the real system y.

@ Raises (at least) two major questions.
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Overview of Uncertainty Analysis of Complex Models

@ First major question: Is the model currently consistent with the observed
measurements? To answer this we require:

- Bayes Linear Emulation of the model (to combat speed of f(z) problem: emulators
mimic the model but are several orders of magnitude faster)

- Implausibility Measures (using observed errors and model discrepancy)

- A global parameter search known as iterative history matching.

@ We will hence identify the set of all input parameters that produced model outputs
consistent with known measurements.

@ Not just searching for a single best match.

@ Can then generate Bayesian posteriors if desired.
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Overview of Uncertainty Analysis of Complex Models

@ Second major question: What is the most informative future experiment we can
perform to learn more about the system?

@ To answer this we need to:
- Specify the class of possible experiments considered.

- Use the results of the Global parameter search to obtain model predictions for all future
experiments that are consistent with current observations.

- Choose the most efficient experiment based on an Expected Space Reduction criteria
and complementary robustness considerations.

@ This will result in a design for a new experiment that is expected to be highly

informative about the input parameters = of the system (or indeed of any scientific
criteria that you care about). Or used to compare two models.
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Simple 1D Exponential Growth Example

@ Say we are interested in the concentration of a chemical which evolves in time. We
will model this concentration as f(x,t) where z is a rate parameter and ¢ is time.

@ We think f(z,t) satisfies the differential equation or model:

df (z,t)
dt

= zf(z,t) — flz,t) = foexp (xt)

@ We will temporarily assume the initial conditions are fo = f(z,t =0) = 1.

@ The system runs from ¢t = 0 to t = 5 and we will measure f(z,t) with error at
t = 3.5.

@ Model features an input parameter = which we want to learn about.

@ Note that normally we would not have the analytic solution for f(zx, ).
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@ One “model run" with the input parameter x = 0.4

@ If we did not know the analytic solution for f(x,t) this would be generated by
numerically solving the differential equation.
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@ Five model runs with the input parameter varying from z = 0.1to x = 0.5
@ We are going to measure f(z,t) att = 3.5

@ The measurement is not a point but comes with measurement error.
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@ Major question: which values of = ensure the output f(z, ¢ = 3.5) is consistent
with the observations?
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Concentration of f(x,t)

Time (t)

@ Major question: which values of = ensure the output f(z, ¢ = 3.5) is consistent
with the observations?

@ It would seem that = has to be at least between 0.3 and 0.4.
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@ To answer this, we can now discard other values of f(z,t) and think of
f(z,t = 3.5) as a function of z only.
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@ To answer this, we can now discard other values of f(z,t) and think of
f(z,t = 3.5) as a function of z only.

@ Thatis take f(z) = f(z,t = 3.5)
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@ We can now plot the concentration f(x) as a function of the input parameter x.
@ Black horizontal line: the observed measurement of f

@ Dashed horizontal lines: the measurement errors
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@ We can now plot the concentration f(x) as a function of the input parameter x.
@ Black horizontal line: the observed measurement of f

@ Dashed horizontal lines: the measurement errors
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@ If we know the analytical expression for f(z) = exp (3.5z), then we can identify the
values of z of interest.

@ Ignoring the measurement error would lead to a single value for x but this is
incorrect: we have to include the errors.
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@ Uncertainty in the measurement of f(x,t = 3.5) leads to uncertainty in the inferred
values of z.

@ Hence we see a range (green/yellow) of possible values of x consistent with the
measurements, with all the implausible values of z in red.
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@ Uncertainty in the measurement of f(x,t = 3.5) leads to uncertainty in the inferred
values of z.

@ Hence we see a range (green/yellow) of possible values of x consistent with the
measurements, with all the implausible values of z in red.
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@ Another important form of uncertainty is that of model discrepancy related to how
accurate we believe the model to be.
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Concentration of f(x,t)
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@ Another important form of uncertainty is that of model discrepancy related to how
accurate we believe the model to be.

@ This uncertainty arises from many issues e.g. is the form of the model (the
differential equation) appropriate, is the model a simplified description of a more
complex system, is there uncertainty in the initial conditions etc?
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@ Model discrepancy is represented as uncertainty around the model output f(z)
itself: here the purple dashed lines.
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@ Model discrepancy is represented as uncertainty around the model output f(z)
itself: here the purple dashed lines.

@ This results in more uncertainty in z, and hence a larger range of x values.
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Emulating the Model: Simple 1D Example

For more realistic models we do not know the full analytic solution for f(z).

Instead for fixed values of x we would solve for f(z) numerically: this can be too
slow even for relatively fast models.

For e.g. galaxy formation models, it takes between 1 day to 1.5 months to solve for
f () for a single z. Our techniques are designed to cope with this.

If x was of moderate dimension e.g. there were 30 input parameters, then we
need a vast number of evaluations of the model to fill this 30 dimensional space:
e.g. corners only 23° = 1 billion evaluations.

A Bayes Linear (or related GP) emulator is a statistical construct that mimics the
model, but which is extremely fast to evaluate, often several orders of magnitude
faster than the model: use the emulator to learn about x.

In our galaxy formation model EAGLE the emulators are 10° — 10'? times faster
than the model, depending which version of EAGLE we compare to.
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@ Consider the graph of f(z): in general we do not have the analytic solution of
f(z), here given by the dashed line.

@ Instead we only have a finite number of runs of the model, in this case five.
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@ Consider the graph of f(z): in general we do not have the analytic solution of
f(z), here given by the dashed line.

@ Instead we only have a finite number of runs of the model, in this case five.
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@ The emulator can be used to represent our beliefs about the behaviour of the
model at untested values of x, and is fast to evaluate.
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Concentration of f(x,t)
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@ The emulator can be used to represent our beliefs about the behaviour of the
model at untested values of x, and is fast to evaluate.

@ It gives both the expected value of f(x) (the blue line) along with a credible interval
for f(z) (the red lines) representing the uncertainty about the model’s behaviour.
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@ Comparing the emulator to the observed measurement we again identify the set of
2 values currently consistent with this data (the observed errors here have been
reduced for clarity).

@ Note the uncertainty on « now includes uncertainty coming from the emulator.
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@ We perform a 2nd iteration or wave of runs to improve emulator accuracy.
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@ We perform a 2nd iteration or wave of runs to improve emulator accuracy.

@ The runs are located only at non-implausible (green/yellow) points.

@ Now the emulator is more accurate than the observation, and we can identify the
set of all x values of interest: the History Match is complete.
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@ We perform a 2nd iteration or wave of runs to improve emulator accuracy.

@ The runs are located only at non-implausible (green/yellow) points.

@ Now the emulator is more accurate than the observation, and we can identify the
set of all x values of interest: the History Match is complete.
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History Matching via Implausibility: a 1D Example

Emulator of Model Output f(x)

Input Parameter x
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Multilevel Emulation

@ Emulators mimic the model and are several orders of magnitude faster, but need a
certain number of model runs to train them.
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Multilevel Emulation

@ Emulators mimic the model and are several orders of magnitude faster, but need a
certain number of model runs to train them.

@ Very approximately, about 10 times the dimension of the input space.

@ But what do we do if the model is really slow?

@ Answer: Multilevel emulation.

@ We will demonstrate this on a model of galaxy formation called EAGLE.

@ Note: multilevel emulation is gaining popularity now, but ideas date back to work
by Goldstein in 1996.
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The EAGLE Model

@ EAGLE (Evolution and Assembly of GaLaxies and their Environments:
http://icc.dur.ac.uk/Eagle/) is a simulation aimed at understanding how galaxies
form and evolve.
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The EAGLE Model

@ EAGLE (Evolution and Assembly of GaLaxies and their Environments:
http://icc.dur.ac.uk/Eagle/) is a simulation aimed at understanding how galaxies
form and evolve.

@ |t models the formation of structures in a cosmological volume of size
(100 Megaparsecs)?, approximately (326 million light-years)?.

@ This volume contains approximately 10,000 galaxies of the size of the Milky Way
or larger, enabling a comparison with detailed galactic surveys.

@ The EAGLE simulation is one of the largest cosmological hydrodynamical
simulations ever, using nearly 7 billion particles to model the physics, and
spanning over 5 orders of magnitude in resolution.

@ It took more than one and a half months of computer time on 4064 cores of the
DiRAC-2 supercomputer at Durham University, UK (about 5 million hours of CPU
time), for a single evaluation.

@ However, it still has 8 primary uncertain input parameters denoted z, that relate to
the core collapse supernovae and supermassive black holes.

@ EAGLE output f(x) can be compared to a variety of observed galaxy data z:
Stellar Mass Function, Galaxy Sizes, Mass Metalicity relation . ..
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EAGLE Input Parameters

@ To perform one run, we need to specify numbers for each of the following 8 inputs:

Input Parameter min  max | Transform Process
SNII_MinEnergyFraction 0.1 1.0 - Supernova
SNII_MaxEnergyFraction 1.0 5.0 - "
SNII_rhogas_power 0.1 3.0 - "
SNII_rhogas_physdensnormfac 1 50 logio "
SNII_Width_logTvir_dex 0.1 3 logio "
BlackHoleViscousAlpha 10 10® logio Blackholes
BH_ConstantHeatTemp 108 10° logio "
BlackHoleFeedbackFactor 0.01 1 logio "
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EAGLE Input Parameters

@ To perform one run, we need to specify numbers for each of the following 8 inputs:

Input Parameter min  max | Transform Process
SNII_MinEnergyFraction 0.1 1.0 - Supernova
SNII_MaxEnergyFraction 1.0 5.0 - "
SNII_rhogas_power 0.1 3.0 - "
SNII_rhogas_physdensnormfac 1 50 logio "
SNII_Width_logTvir_dex 0.1 3 logio "
BlackHoleViscousAlpha 10 10® logio Blackholes
BH_ConstantHeatTemp 108 10° logio "
BlackHoleFeedbackFactor 0.01 1 logio "

@ What input values = € X should we choose to get ‘acceptable’ outputs?
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EAGLE Outputs

Gas Temperature

Visual spectrum Dark Matter density
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Multilevel Structure of EAGLE

@ The standard EAGLE run (at 100Mpc) is far too expensive to repeat more than a
couple of times, so direct emulation is impossible.
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@ EAGLE is stochastic: lower levels a) have much more noise and b) are structurally
i.e. physically different from the higher levels due to limits on sizes of galaxies that
can form (among other things).
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Multilevel Structure of EAGLE

@ The standard EAGLE run (at 100Mpc) is far too expensive to repeat more than a
couple of times, so direct emulation is impossible.

@ However, thankfully EAGLE has been designed to run at 4 different levels of
accuracy, with each level approximately 8 times faster than the previous one.

@ These levels correspond to smaller volumes of the Universe:

Level | Volume'/® | Approximate Evaluation Time
1 12.5 Mpc 1/512
2 25 Mpc 1/64
3 50 Mpc 1/8
4 100 Mpc 1

@ EAGLE is stochastic: lower levels a) have much more noise and b) are structurally
i.e. physically different from the higher levels due to limits on sizes of galaxies that
can form (among other things).

@ We therefore wish to build multilevel emulators that can incorporate expert
judgements regarding the relationships between the levels.
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The SMF: 60 runs at level 1 for 12.5Mpc
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@ Level 1: 60 runs of the 12.5 Mpc simulator (2 days on 32 processors per run).
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The SMF: 20 runs at level 2 for 25Mpc
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@ Level 2: 20 runs of the 25 Mpc simulator (8 days on 64 processors per run)
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@ Level 1: 60 runs of the 12.5 Mpc simulator.
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The SMF: 60 smoothed runs at level 1 for 12.5Mpc
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@ Level 1: 60 runs of the 12.5 Mpc simulator, smoothed.



The SMF: 20 runs at level 2 for 25Mpc

10g10(¢)
-3
7
V)
s

log;o(M-)

@ Level 2: 20 runs of the 25 Mpc simulator.
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Linking EAGLE to the Real Universe

@ A common major problem is caused by not acknowledging the difference between
model f(z) and the system or reality y, and failing to embed them and the
observations z into an overarching statistical model.
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where we define ¢¥) to be the Structural Model Discrepancy, which represents the
difference between f*) () and the Universe y at some ‘best input’ z*.
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Linking EAGLE to the Real Universe

@ A common major problem is caused by not acknowledging the difference between
model f(z) and the system or reality y, and failing to embed them and the
observations z into an overarching statistical model.

@ Our goal will be to link the real Universe y with EAGLE at the 4th level f*) (x)
y=f0a) +

where we define ¢¥) to be the Structural Model Discrepancy, which represents the
difference between f*) () and the Universe y at some ‘best input’ z*.

@ (Actually, we may play the game of exploring linking at different levels using
y=fE (") + P, withk = 1,...,4).

@ We relate the true system y to the observed data z via observation errors e:

z=y+e

@ If we assert probabilistic relations between the random vectors f ¢ e and z*
e.g. independence, we can proceed.

@ Often, scientists may be able to specify say E[¢(*)], E[] (often zero), and Var[¢™*)],
Var[e], which, in the multiple output case, may have complex structure.
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for £ (z) we proceed as follows.
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@ For each of the outputs of interest fi(” (z), we pick active variables z 4, then
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@ The ), ﬂf;) gi;(xa,) is a 2nd order polynomial in the active inputs, with BS)
unknown constants: very important to include such global structure here.
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o To emulate at the lowest level, i.e. for £ (z) we proceed as follows.

@ For each of the outputs of interest fi(” (z), we pick active variables z 4, then
emulate univariately (at first) using:

79 (@) Zﬂ” 9ij(xa,) +uP (za,) + 0P ()

@ The ), ﬂf;) gi;(xa,) is a 2nd order polynomial in the active inputs, with BS)
unknown constants: very important to include such global structure here.

° ugl)(x 4,) is a weakly stationary (GP) process representing local variation, with
covariance:
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for £ (z) we proceed as follows.

@ For each of the outputs of interest fi(” (z), we pick active variables z 4, then
emulate univariately (at first) using:

79 (@) Zﬂ” 9ij(xa,) +uP (za,) + 0P ()

@ The ), ﬂf;) gi;(xa,) is a 2nd order polynomial in the active inputs, with BS)
unknown constants: very important to include such global structure here.

° ugl)(x 4,) is a weakly stationary (GP) process representing local variation, with
covariance:
Covluf (wa,),uf” (@,)] = (o) expl—|wa, —aa, "' /0{7"]

e

@ The nugget vf)(:c) models the effects of inactive variables as random noise.
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for £ (z) we proceed as follows.

@ For each of the outputs of interest fi(” (z), we pick active variables z 4, then
emulate univariately (at first) using:

79 (@) Zﬂ” 9ij(xa,) +uP (za,) + 0P ()

@ The ), ﬂf;) gi;(xa,) is a 2nd order polynomial in the active inputs, with BS)
unknown constants: very important to include such global structure here.

° ugl)(x 4,) is a weakly stationary (GP) process representing local variation, with
covariance:

Covlul (za,),ul"(h,)] = (0V) expl—|za, —aly, [ /67"

@ The nugget vf)(:c) models the effects of inactive variables as random noise.

@ The Emulators give the expectation E[ff”(m)} and variance Var[fi(l)(w)] at point =
for each output of interest and are fast to evaluate.
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Emulation Theory: Bayes Linear Methods

@ We perform an initial wave 1 set of n runs at input locations ", 2™ ... &™)
giving a column vector of model output values

D = (fua™), fi(®),..., ful@™))"
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Emulation Theory: Bayes Linear Methods

@ We perform an initial wave 1 set of n runs at input locations ", 2™ ... &™)
giving a column vector of model output values

D = (f(@D), fi(@®),..., fl@™)"

@ Perhaps we are only prepared to specify expectations, variances and covariances
for our many uncertainties.

@ To update our emulators there is an alternative version of Bayesian statistics that
is easier to specify and far easier to calculate with.

@ Instead of Bayes Theorem we use the Bayes linear update:

Ep,(fi(z)) = E(fi(z))+ Cov(fi(z), Di)Var(D;)~ ' (D; — E(D;))
Varp, (fi(z)) Var(fi(z)) — Cov(fi(x), Di)Var(D;) "' Cov(D, fi(x))

where Ep, (fi(z)) and Varp, (f;(x)) are the Bayes Linear adjusted expectation
and variance for f;(z) at new input point =, and are all that are needed for the
subsequent implausibility measures and history match.
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.

@ We have for a univariate emulator at level 1, dropping the 7 index for simplicity so
that £\ (z) — f0 (2):
V@) =38 gs(@a) + u(za) + 0 ()

J
@ and similarly for level 2:

FP@) =387 gi(@a) + u® (wa) + 0 (2)

J
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.

@ We have for a univariate emulator at level 1, dropping the 7 index for simplicity so
that (" (z) = O (a):

1) = 380 gy(aa) + u (@a) + 0 @)

J

@ and similarly for level 2:

FP@) =387 gi(@a) + u® (wa) + 0 (2)

J
e Welink %) to 5" via:
5 =B+
with a;, b;, ﬁj(.” uncorrelated, and give a simple Bayes Linear specification:
Ela;] =1, Covla;,ar] = O'Zj(sjk

E[b]] = 07 COV[bj, bk] = O'gj 5jk
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.

@ We have for a univariate emulator at level 1, dropping the 7 index for simplicity so
that (" (z) = O (a):

1) = 380 gy(aa) + u (@a) + 0 @)

J

@ and similarly for level 2:

FP@) =387 gi(@a) + u® (wa) + 0 (2)

J
e Welink %) to 5" via:
50 = i +b,
with a;, b;, ﬁj(.” uncorrelated, and give a simple Bayes Linear specification:
Ela;] =1, Covla;,ax] = 0,6k
E[b]] = 07 COV[bj, bk] = O'gj 5jk

@ So the a; describe a multiplicative uncertainty, and the b; an uncertain offset.
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Multilevel Emulation

@ Therefore the expectation and covariance of 3 becomes

E[] = E[B")]
Cov[B®, 3] = Cov[B", BV + o2, 8, (Var[8{"] + E[BV]) + 07, 651
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Multilevel Emulation

@ Therefore the expectation and covariance of 3 becomes

EBY] = E[]
Cov[B®, 8] = Cov[, V] + 02,8k (Var[B"] + BIBV1?) + o7, 6k

@ We also link u® (z.4) to u(z4) via
u(2>(mA) — u(l)(:cA) + u(2/1)(:£,4)

where u™ (1) and «*/V)(z4) are uncorrelated and v*/? (1) has zero mean
and covariance structure

Covlu® M (x.4), u®V(@4)] = 02w pyr5) (wa — 2a)

where 02,1, = v02 1), and v and 6, are to be specified.
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Multilevel Emulation

@ Finally, we decompose the nugget vl(l)(:c) into two uncorrelated pieces:
@) =" (@) + vy (@)

where uf,l) (=) represents the inactive variables and vg}) () the stochasticity due to

finite galaxy counts. We have that

Covp™ (@), vM (@)] = o) b = (71) +0%0) ) Do
I S
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Multilevel Emulation

@ Finally, we decompose the nugget vl(l)(:c) into two uncorrelated pieces:
@) =" (@) + vy (@)

where uﬁl) (=) represents the inactive variables and vg}) () the stochasticity due to

finite galaxy counts. We have that

Covp™ (@), vM (@)] = o) b = (71) +0%0) ) Do
I S

@ Similarly we have for the level 2 nugget:
v (2) = v (2) + 05 (@)
and make the judgement that o*,, ~ o ,, but that
vr Y1

2 Vi
2) — 1
o = T

where V; are the volumes of the EAGLE simulation at level i.
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Multilevel Emulation

@ We now have all the pieces needed to construct the prior for the level 2 emulator.
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@ We now have all the pieces needed to construct the prior for the level 2 emulator.

@ We can now update this emulator by the set of 20 level 2 runs.
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Multilevel Emulation

@ We now have all the pieces needed to construct the prior for the level 2 emulator.
@ We can now update this emulator by the set of 20 level 2 runs.
@ We can construct priors for and update the level 3 and 4 emulators similarly.

@ The multilevel emulation structure now allows the incorporation of detailed
judgements as to structural differences between the levels.

@ Levels 2 and 3 have known and important differences which we have tried to
capture.

@ We can propose informative designs for the level 3 and 4 runs based on detailed
priors.

@ But now back to History Matching to the observed data.
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Observation Errors: Stellar Mass Function

Seven different observed Stellar Mass Functions
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@ Often simulations are compared to the most recent SMF. But this is ‘theory laden’
data, which often under reports systematic errors.

@ To counter this we gathered the 7 major data sets and amalgamated them.
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Model Discrepancy

@ Multiple components of the structural model discrepancy ¢ identified and
assessed

@ For the Stellar Mass Function:

» Zero point discrepancy: correlation horizontal error over all outputs.
» Normalisation mass discrepancy: overall correlated vertical error.

@ For the Galaxy Sizes:

» Light/mass size definition discrepancy
» Projection reconstruction discrepancy
» Different colour band sizes discrepancy

@ In addition, the cosmologists have performed one good run, called the reference
run, at all 4 levels on a previous EAGLE version.

@ So a small external discrepancy term is added to Var[¢(*] to ensure the reference

run is always within 3 sigma of the observed data: ensures we will search for
inputs comparable to or better than before.
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @; that are good to emulate.
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @; that are good to emulate.

@ We can now calculate the Implausibility ;) (=) at any input parameter point « for
each of the ¢ € @); good outputs. This is given by:

1y (@) = [Ep, (i (2)) — =’
P (Varp, (/7 (@) + Varle] + Varle,))
® Ep, (fi(4)(x)) and Varp, (ff“(x)) are the emulator expectation and variance at the
4th level (or at whatever level we wish to work with).

@ 2 are the observed data and Var[e\*)] and Var|e;] are the (univariate) Model
Discrepancy and Observational Error variances.

@ Large values of I(;)(x) imply that we are highly unlikely to obtain acceptable
matches between model output and observed data at input .

@ Small values of /(;(x) do not imply that = is good!
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Implausibility Measures (Univariate)

@ We can combine the univariate implausibilities across the outputs in Q; by
maximizing over outputs:

In(z) = max Iy (x) (1)
@ We can then impose a cutoff
In(x) < emr ()
in order to discard regions of input parameter space z that we now deem to be

implausible.

@ The choice of cutoff ¢y is often motivated by Pukelsheim’s 3-sigma rule, which
does not require precise distributions.

@ We may simultaneously employ other choices of combined implausibility measure:
e.g. multivariate implausibility, second maximum etc.
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Implausibility Measures (Univariate)

@ We can combine the univariate implausibilities across the outputs in Q; by
maximizing over outputs:

In(z) = max Iy (x) (1)
@ We can then impose a cutoff
In(x) < emr ()
in order to discard regions of input parameter space z that we now deem to be

implausible.

@ The choice of cutoff ¢y is often motivated by Pukelsheim’s 3-sigma rule, which
does not require precise distributions.

@ We may simultaneously employ other choices of combined implausibility measure:
e.g. multivariate implausibility, second maximum etc.

@ Note that we still emulate the raw physical model output fi(4)(a:) and NOT the

value of the combined measure.
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Common problems & mistakes: One shot analysis

@ Often the set of acceptable inputs X only occupies a tiny fraction of the original
input space.

@ Therefore we do not want to use a single one shot space filling design, as this
would waste a lot of runs in implausible parts of the space.

@ Instead we perform a series of iterations or waves, designing in ever smaller
non-implausible regions of the input space (i.e. batch sequentially). Fairly obvious.

@ However, we would also not want to use the same statistical form for the emulator
across all waves, as the model will most likely behave very differently over the
original input space X; compared to X which may be a billion times smaller. Less
obvious.

@ Therefore we must fit emulators of possibly different structure and complexity at
each iteration: to forget this is a mistake (it also has important implications for the
full design calculation).

@ This is even more important for the multilevel emulation case: we cannot hope to
create accurate level 4 emulators over the whole input space.
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Iterative History Matching for Reducing Input Space

We use an iterative strategy to reduce the input parameter space. Denoting the current
non-implausible volume by X;, at each stage or wave we:

@ Design and perform a set of runs over the non-implausible input region x;;
@ Identify the set @, of informative outputs that we can emulate easily

@ Construct new emulators for f;(x), where i € Q;1 defined only over X;
© Evaluate the new implausibility functions 7,(x),i € Q;+1 only over X;

@ Define a new (reduced) non-implausible region X1, by Ir (z) < car, which
should satisfy X C X1 C &X;

@ Unless (a) the emulator variances are now small in comparison to the other
sources of uncertainty (model discrepancy and observation errors) or (b)
computational resources are exhausted or (c) all the input space is deemed
implausible, return to step 1

@ If 6(a) true, generate a large number of acceptable runs from the final
non-implausible volume X
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History Matching via Implausibility: a 1D Example

Emulator of Model Output f(x)
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History Matching via Implausibility: a 1D Example
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History Matching via Implausibility: a 1D Example
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History Matching via Implausibility: a 1D Example
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History Matching via Implausibility: a 1D Example

Emulator of Model Output f(x)

Input Parameter x

Input Parameter x
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Minimised Implausibility Plots

@ Using the speed of the emulators, we can now blitz the input space by evaluating
the implausibility
In(x) = max I(;)(x)
k J

i€Q

across a huge latin hypercube, where

|Ep, (fi(z)) — z*

1y () = (Varp, (fi(x)) + Varle;] + Var[e;])
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Minimised Implausibility Plots

@ Using the speed of the emulators, we can now blitz the input space by evaluating
the implausibility
In(z) = ma I (x)

across a huge latin hypercube, where

2)(z) = |Ep, (fi(z)) — z|?
® (Varp, (fi(z)) + Var[e;] + Var[e,])

@ To visualise this, we can project down into 2 dimensions, by minimising the
implausibility.
Ip(z) = min Iny (z', 2"

where z’ is a 2 vector of the plotting variables, and x’" a 5 vector spanning the
remaining inputs not in the plot.
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Minimised Implausibility Plots
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Zero Emulator Variance Implausibility Plots

@ Low implausibility at = can be due to the emulators predicting a good match at z,
or just due to high emulator uncertainty there.
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Zero Emulator Variance Implausibility Plots

@ Low implausibility at = can be due to the emulators predicting a good match at z,
or just due to high emulator uncertainty there.

@ We can examine which of these options is the case by plotting the zero emulator
variance implausibility:
In(z) = max I ()

where now
|Ep, (fi(z)) — =
(Varp, (fi(z)) + Var[e;] + Varle;])

1(21')(35) =

@ We minimise the implausibility to obtain

Ip(z') = min Iy (2, ")

as before.
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Zero Emulator Variance Implausibility Plots

@ Low implausibility at = can be due to the emulators predicting a good match at z,
or just due to high emulator uncertainty there.

@ We can examine which of these options is the case by plotting the zero emulator
variance implausibility:
[]u (:I,‘) = max [(2-) (.T)
1€EQ;

where now
2 (@) = [Eoi@) = 2l
@ (Var[e:] + Var[e;])

@ We minimise the implausibility to obtain

Ip(l’/) = m/l/n I]u(:r/, :L’H)

as before.
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Minimised Implausibility Plots
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Zero Emulator Variance Implausibility Plots
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Zero Emulator Variance Implausibility Plots
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Results: Level 2, Minimised Implausibility
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Results: Level 2, Zero Emulator Variance Implausibility
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Results: Level 2, Minimised Implausibility, with Ref Run
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Results: Level 2, Zero Emulator Variance Implausibility, with Ref Run
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Results: Level 1, Minimised Implausibility, with Ref Run
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Results: Level 2, Minimised Implausibility, with Ref Run

am

niversity)

00 05 10

-10

00 05 10

-10

00 05 10

-10

LF bin = 10.9, cols. rep. implaus. cuts at 0, 0.25,05,0.75, 1,15, 2,3, 4, 5, Inf

-10

00 05 10

NIl MinEnergyFracto|

INIL_MaxEnergyFractid

#|| sni_ihogas_power ||+

thogas_physdensnor

NIL Width_logTvir_def

* [bH_constantHieatTemt

T
00 05 10

00 05 10

-10

00 05 10

-10

00 05 10

-10

00 05 10

-10



Results: Level 3, Minimised Implausibility, with Ref Run

00 05 10

-10

00 05 10

-10

00 05 10

-10

LF bin = 10.9, cols. rep. implaus. cuts at 0, 0.25,05,0.75, 1,15, 2,3, 4, 5, Inf

-0 00 05 10
L

-0 00 05 10
L

NIl MinEnergyFracto|

INIL_MaxEnergyFraci

SNII_rhogas_power

-0 0005 1

thogas_physdensnor

NIL Widh_logTuir_dell

lackHoleviscousAlpns

T
00 05 10

00 05 10

-10

00 05 10

-10

00 05 10

-10

00 05 10

-10



SMF: Wave 4 runs
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Conclusion

@ We have constructed a multilevel emulator for the EAGLE simulation.
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Conclusion

@ We have constructed a multilevel emulator for the EAGLE simulation.

@ We have emulated at levels 1, 2 and 3 and history matched to rule out bad parts of
the input space.

@ Assessed multiple contributions to model discrepancy and observation errors.
@ Have found the region containing acceptable fits to the SMF.

@ Multilevel emulation allows us to tame such expensive models.

lan Vernon (Durham University)
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