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Event generators are fundamental tools for all 
tasks involved in HEP experiments

Two recent Reviews provide a very clear picture

- arxiv:2203.11110 is a very clear review of state of the art tools, their impressive results, 

their main issues and current “traditional” ideas to solve them

- arxiv:2203.07460 provides a complementary viewpoint from a ML perspective
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Specific needs from event generators

- Physical simulations: we need the simulated events to follow as close as possible the 

modelling hypothesis ( e.g. QFT predictions at a particle collider from Standard Model 

Lagrangian )

- Speed: We need simulations to be reasonably fast

- Size: Ideally they should be storable and shareable



Focusing on collider experiments

Event generators need to consider many different physical phenomena, with different scales 
and different tools:

- Partons originating from colliding hadrons  sampled through PDFs
- Hard scattering amplitudes calculation and phase space integration
- ISR/FSR
- Hadronization
- Final state interactions
- Underlying event effects
- Detector effects

Making use of factorization theorems, different dedicated softwares have achieved incredible 
sophistication but still face difficulties



An example of factorization theorems (a 
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Main issues:

High-dimensional parameter space that models empirically different non-perturbative effects 

plus assume exact factorization theorems:

- Expensive tunes

- Expensive and difficult treatment of uncertainties

- Additional systematics due to modelling

- Computational bottlenecks

- Numerical instabilities

- Cross-cutting from factorization theorems’ breakdowns

- Self-consistency of parameter tunes



Surrogate models

Empirical models are necessary for non-perturbative MC simulations (mainly, hadronization) 

but introduce systematic uncertainties and unphysical behavior

However, they also make uncertainty-evaluation and tunes more efficient.
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An example of Surrogate models
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Surrogate models

This is usually where Machine Learning can be really helpful as it can learn very precise 

surrogate models for different modules.

See for example (there are many, many others):

- MLHAD / HADML for Pythia8 / Herwig surrogate models

- CaloGAN, CaloFlow for Geant4 calorimeter surrogate models

- OTUS, DijetGAN for End-to-end surrogate models



Surrogate models for inference

Surrogate models can make for a much easier parameter inference and unfolding. 

See for example:

-  MLPF for particle reconstruction from calorimeter and trackers

- OmniFold and cINN for unfolding

- MadMiner and the Matrix Element Method for parameter inference



Bayesian techniques

They already permeate event generators and their surrogate models extensions: NNPDFs, 

Bayesian Neural Networks, cINN surrogate models

Bayesian inference allows for a better evaluation of uncertainties and for improved unfolding 

(as long as one can make probabilistic statements)

Intuitively, Bayesian always sounds good… Now it is becoming more possible. Differentiable 

programming is a key development. So are different approaches to inference like Black Box 

Variational Inference and simulation-based inference where the intractabilities are somewhat 

sidestepped.



Bayesian unfolding with cINN 
(M. Bellagente et al, arxiv:2006.06685)



Bayesian techniques for modelling

There is a vast array of literature about Bayesian model building we can take advantage of. 

Already a lot of examples in HEP ( e.g. GANs, VAEs, Shower Deconstruction, LDA, Topic models 

in general …)

Always need to keep in mind the same requirements as for event generators:

- Physically meaningful: harder to achieve than with event generators. Requires physical 

bias to be baked into the model.

- Speed + size: training should not be too hard nor require so much data as to render 

simulations preferable



Where could we go further?

Could we lessen the modularity assumption? Start from traditional MC approaches and treat  
cross-cuttings from a Bayesian perspective. 

Treat our simulator as a non-parametric bayesian model? As a prior over an empirical model?

Start thinking more about marginal posteriors as swyft does for astro-cosmo. Likelihood-free inference.

What about Multilevel model emulators?

Could we implement model comparison / model combination Bayesian techniques to asses and combine 
different tunes and even different generators together and resolve inconsistencies?

Always one should decide how much to trust current simulation techniques and how to infuse them 
with more Bayesian methods



Thank you!


