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A robust tool: lattice QCD

®| Non-perturbative 15t principles approach to Quantum Chromo Dynamics

=/ Gluon fields as links: U, (x) = exp[igAx, AL (x)]

=l Quark fields y(x) with realistic masses

TSNS SSINSNSNSN

(O(t1)0(2)) = / DU O[U, t;] O[U, t,] eSaclV]

m| Euclidean time as key for Monte Carlo & finite temperature

=/ Analytic continuation of real-time into imaginary time: statistical interpretation
o) = [DUOe S (0 = jim LS 0] P[U] o e

=| Subtle but vital: finite extent in imaginary time = inverse temperature

®| Only after Ax -0 & N Ax — « physical results ensue (see FLAG report)
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Extracting insight from lattice QCD LS of Stavanger
u| Lattice QCD simulations are similar to a (very) imperfect detector
p(w) Log[D(7)]
) T~0
Jy ¢
D/D thresh. .
T>0
4 S >
.

Hadron spectral function Euclidean time correlation function

u| Extraction of spectra ill-posed unfolding problem: treated via Bayesian inference
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The inverse problem challenge
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An ill-posed inverse problem
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Two intrinsic hurdles
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u| Invert the spectral representation of the correlator D: D — Kp

cosh(w(t —B/2) , por

T=0 __ _—wT T>0 __
KwT — € Kw’T o

SF#1 —— : : :
12F SFH2 mmmmm
tree level =======r s [ [ p

plo) /(o T

/G,

= Exponential information loss due to
functional form of the kernel

_ = cos(xv)
sinh(wfB/2)
-2.8 5..~( Xeo @t T=0.24-1.9 T¢
...
— -3.0 %,
g %,
3 "oy
3 -32 '?..
) ‘@
J\“
-3.4
\\~:)‘
L)
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" Limited Euclidean range in T>0 QFT
leads to coarse Matsubara frequencies

= Cont. limit: resolve only large w,, behavior

B| Goal: extract spectral function accurately using all available knowledge
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The Bayesian strategy

u| Extraction of real-time quantities: inversion of ill-conditioned linear transformation

No roo |
1. N, parameters p, >> N, datapoints
D7D | Aw, dwd™Fp(w) wP 'S o >> 1, catap
1 —2mq 2. data D; has finite precision

®| Regularize this task using prior information — Bayes introduces prior P[p]|l]=exp[S]

M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

Plo|D, 1) o« P[Dlp, I|Plp|T] 25, SFLDA) -

op p=p"R

posterior likelihood prior

®| Prior probability often parametrized by default model m and weight a

0,Plolo, ml|_,, =0 lim Plola,m] =1 “itescntenc

®| Prior information in both choice of prior functional S and default model m

H| Bayesian continuum limit N; -« & AD—O: all version converge to same result

Choice of S influences how “efficiently” one converges to this limit
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Implementing the Bayesian strategy

u| Differences in prior information that is incorporated & how to find extremum.

. Gaussian prior probability, originally hides
Tikhonov Stim,a] =« / dw(p — m) presence of default model via m=0
A. N. Tikhonov Dokl. Akad. Nauk SSSR 39, 195 (1943)
Maxium Entropy Method (MEM) Bayesian Reconstruction Method (BR)

Shannon-Jaynes entropy regulator Gamma distribution regulator

ssimel=a [aulp-n-piee[2])  Son=a [au(1-2 +iog]2])

via 4 axioms from 2d image reconstruction : : - :
9 via 4 axioms specifically chosen for 1d reconstruction

spectral function should behave like

a probability density end result must not depend on units of spectral function
(coordinate invariance) (scale invariance)

in a two-dimensional setting p(x,y) the spectral function shall be smooth (twice differentiable)
function can be factorized (smoothness)

(L (e e G form of S allows analytic marginalization of alpha:

in practice: flat directions & search space is true Bayesian treatment for unknown hyperparameter

artificially restricted (Bryan’s approach)

M. Jarrell and J. E. Gubernatis, Phys. Rept. 269, 133 (1996)
M. Asakawa, T. Hatsuda, Y. Nakahara P.P.N. Phys. 46, 459 (2001)

in absence of flat directions improved convergence

Y.Burnier, A.R. PRL 111 (2013) 18, 182003
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Let the data Speak LI of Stavanger

o]

®| BR method regulator is the weakest (for p>m) on
the market, which still provides unique solution

[$)]
T

N
T

®| allows structures encoded in data to manifest
more accurately in reconstruction

-Integrand of S
w

N
T

H| weaker in suppressing ringing artefacts, which
is relevant when very few input data available

H| pertinent example: finite temperature spectral

o
'

function related to heavy quark bound states 0

Wi (e [Lat] 10’ 10’ :
< I
0.5,..." 1o’ =
UTT = 10" ;2
.i'o N,=32 E 10 <8
...°o T g -2 o
8g2°e 8 10 & T
0.1} l. ®ee < 2
" e, 7 10° s
" o & HTL 2%
“‘. .0. S -4 g p“ - “ 3
832, "%, =10 : MEM-N_=32 . > 2
Y. Burnier, A.R.: .‘ii-.. 107 ] BR-N_=128 = %
107 Phys.Rev. D87 (2013) 114019 98§ 5 BR - N.<32 £
05 1.0 7= TlLat] 10 s f = - : -

. . - 0 5 10 27 3 33

" BR reproduces Lorentzian accurately, MEM always Gaussian-like
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Application to strong interactions

BAYESIAN APPROACHES TO THE INVERSE PROBLEM CHALLENGE IN LATTICE QCD ( ;
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Towards a modern Bayesian approach

™
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H| Elevate to a full Bayesian analysis: sample the posterior via Monte Carlo

"/ Much better control over both statistical and systematic uncertainties

=/ Self consistent treatment of hyperparameters a possible
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Machine Learning and Bayes

Direct Neural Network NN as basis functions

E ; plw]

use as parametrization in supervised or
unsupervised setting:

Simpler than in image reconstruction,
decoder step known: D=Kp

supervised Kernel-Ridge or Support loss includes data + regularization
Vector Mallchlnes regression: differ in S. Shi 2201.02564

loss functional and included regulator J. Karpie et.al. JHEP 04 (2019) 057

FASTSUM Lattice 2021 2112.02116 : .

L. Kades et. al. PRD 102 (2020) 9, 096001 Q: how to encode the regularization
R. Fournier et.al. PRL 124, 056401 (2020) in choice of NN geometry?

) (). (0 )

¥ i k(x) K+ Cq4

Model observed and predicted data to

arise from same Gaussian distribution  J. Horak et.al. PRD 105, 036014 (2022)
specific choice of correlation matrix, hyperparamters from data
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Exploiting Differentiable Programming

=/ A data driven strategy: identify optimal regulator from mock data training

work in progress with D. Alvestad

First step: apply to Tikhonov, similar to
Gaussian process inference, then BR etc.

Plp, I] ~ e~ (b~ =(e=m)

-10
-20

=30

08 I\ —»n

06 | |

1" N GOSN
L b e =7 = -
0 K ks e N N Y L L .

0 | 2 | B i é l“ Il‘\//\l L/N" l\‘u'// l'i
Ny = 300, wmin = —1, Wmax = 6, N; =12, AD/D =102 J
30 Breit Wigner peaks uniform in w=[1,3] ol ""W"\W// e
with width =0.1 5 : r :

H| Does not attempt to solve the inverse problem but reveal structure in regulator.
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Summary

BAYESIAN APPROACHES TO THE INVERSE PROBLEM CHALLENGE IN LATTICE QCD ‘ ;

®| Pressing questions in particle & nuclear physics require nonperturbative QCD input

m| Lattice QCD offers a fist-principles approach to QCD beyond weak coupling

®| Pertinent information encoded in spectral functions — ill-posed inverse problem

H| Active community: application of Bayesian strategies (MEM, BR, Tikhonov) to
extract spectral information for T=0 hadron structure or T>0 in-medium physics.

H| Bayesian approaches (MEM, BR, Tikhonov) offer access to spectral functions but
are limited in specificity of prior knowledge

®| Community actively explores both machine learning and differential programming
as means to develop more accurate reconstruction strategies

Thank you for your attention
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https://www.ux.uis.no/confxiv/

BAYESIAN APPROACHES TO THE INVERSE PROBLEM CHALLENGE IN LATTICE QCD

Towards the BR prior probability LS of Stovant

of Stavanger

H| Four axioms for P[p|l]=exp[S] chosen explicitly for the 1-dim problem at hand
Y.Burnier, A.R. PRL 111 (2013) 18, 182003

" Smooimess [V

Subset independence

Penalize jumps in values between neighboring bins
5o | dws|p(w), m(w), w] r(1+€)  r(1+€)

Prior knowledge about different r(1-€) r(1-€)
frequency regimes should add in S

5[] — s[r(1 4+ )] — s[r(1— &)] oc &2
S ¢ & / de s[p(w)/m(w)] 25" = C

p itself is not a probability distribution

& ensure that units of p do not matter Bayesian meaning of m

S[r=1]=0, S[r=1]=0,5"[r=1]<0

Plo|m,a] =T[a+ 1, a/m] Sle. m, o] :a/dw(l — £ +/”(%))

m

" Important difference to Shannon-Jaynes: Sgr diverges around p=0 — no flat directions
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Beyond exponential fitting
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B | |[ntricate structure prevents naive use of T=0 strategies (e.g. GEVP)
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