THEORETICAL & COMPUTATIONAL COSMOLOGY

Cora Uhlemann YETI 2022: Phenomenology in the sky

COSMOLOGY PERSPECTIVE

Cosmic Eye

a state-of-the-art view of the universe

version 2.0

Danail Obreschkow

credit: Cosmic Eye Project YouTube Channel

COSMOLOGY PERSPECTIVE

credit: Cosmic Eye Project YouTube Channel

STANDARD COSMOLOGY: WHAT?

interactive poll: menti.com 1459 5969

Go to www.menti.com and use the code 4864 0476

What belongs to Standard Cosmology?

Mentimeter

Θ%	0%	0%	0%	0%	0%	0%	0%	0%
Dark Matter	Cosmological Constant	Dark Energy	Big Bang	Inflation	Expansion	Flat Universe	Gaussian initial conditions	General Relativity

STANDARD COSMOLOGY: WHAT?

simple initial conditions

General Relativity

STANDARD COSMOLOGY: WHAT?

drives expansion

seed structure

Gaussian & adiabatic

Cosmological Constant

initial conditions **ACDM** (simple ICs + GR)

cold collisionless dark matter

General Relativity

drives clustering

sets dynamics

STANDARD COSMOLOGY: WHY? ACDM (simple ICs + GR)

Good match with observational data

- 1. distant galaxies & supernovae accelerating expansion
- 2. Cosmic Microwave Background dark matter, seeds of structure
- 3. Large-scale distribution of galaxies growth of structure
- + abundances of light elements, ...

distances between extragalactic objects increase

Standard candles: Brightness → Distance

Supernovae: standard(isable) candles

Universe is expanding at an accelerating rate

apparent recession \rightarrow redshift

light stretched by expansion

hot Big Bang

tiny variations in amount of matter

seeds for cosmic structure today

determines universe ingredients & ICs

Linear physics, you can try the Planck CMB Simulator

COSMIC TUG OF WAR

 $\begin{array}{ll} \textbf{density contrast} & 1 + \delta(x,t) = \frac{\rho(x,t)}{\bar{\rho}(t)} \\ \ddot{\delta} + [\text{expansion}] \, \dot{\delta} + [\text{pressure} - \text{gravity}] \, \delta = 0 \end{array}$

Winner writes history

pressure (radiation) $\rightarrow \delta$ oscillates gravity (matter) $\rightarrow \delta$ grows expansion (dark energy) $\rightarrow \delta$ freezes

COSMOLOGICAL STANDARD MODEL

6 parameters for whole Universe

COSMOLOGICAL STANDARD MODEL

6 parameters for whole Universe

primordial density fluctuations amplitude A_s scale dependence n_s

matter density

baryons Ω_b

dark matter Ω_{cdm}

COSMOLOGICAL STANDARD MODEL

6 parameters for whole Universe

primordial density fluctuations amplitude As scale dependence n_s matter density baryons Ω_b dark matter Ω_{cdm} time scales age of universe t₀ 1st stars & galaxies z_{re}

tiny density differences ~0.00001x mean density

large density differences ~100x mean density

density differences grow by factor of 10 million!

National Center for Supercomputer Applications (A. Kravtsov & A. Klypin)

video by Oliver Friedrich

AFTERGLOW of early universe

rich structure

SKELETON of dark matter

COSMIC WEB of galaxies

Baryon Acoustic Oscillations survive all the way

Early Time CMB

Late Time Galaxy Distribution

on large scales: matter distribution statistically

homogenous

isotropic

excess correlation compared to random distribution

$$\xi(r) = \langle \delta(\boldsymbol{x} + \boldsymbol{r}) \delta(\boldsymbol{x}) \rangle$$

 \uparrow

density contrast average

excess correlation compared to random distribution

$$egin{aligned} \xi(r) &= \langle \delta(m{x}+m{r}) \delta(m{x})
angle \ & \uparrow & \uparrow \ & \text{density contrast} & \text{average} \end{aligned}$$

excess correlation compared to random distribution

$$\xi(r) = \langle \delta(\boldsymbol{x} + \boldsymbol{r}) \delta(\boldsymbol{x}) \rangle$$

 \uparrow

density contrast average

CORRELATION FUNCTION

predictions require density contrast $\overset{\bullet}{\xi(r)} = \langle \delta(\pmb{x} + \pmb{r}) \delta(\pmb{x}) \rangle$

dark matter as chocolate (effective fluid)

DARK MATTER FLUID DYNAMICS

 $\begin{array}{ll} \text{density} & \rho(\tau,x) = \bar{\rho}(\tau)(1+\delta(\tau,x)) \\ \text{velocity} & v(\tau,x) & \text{nonlinear initially small} \end{array}$

$$\begin{array}{ll} \text{density} & \frac{\partial}{\partial \tau} \delta = -\frac{\partial}{\partial x} [(1 + \delta) v] \\ \text{velocity} & \frac{\partial}{\partial \tau} v = - v \frac{\partial}{\partial x} v - \mathcal{H}(\tau) v - \frac{\partial}{\partial x} V \\ \\ \begin{array}{l} \text{gravity} \\ \text{force} \end{array} & \frac{\partial^2}{\partial x^2} V = \frac{3}{2} \Omega_m \mathcal{H}^2(\tau) \delta \end{array}$$

CORRELATION FUNCTION

linear prediction reasonable on large scales

A COHERENT PICTURE

Baryon Acoustic Oscillations survive all the way

Early Time CMB

Late Time Galaxy Distribution

peak series in frequency scale = 1 peak in spatial scales

STANDARD COSMOLOGY: SUMMARY

drives expansion

seed structure

Cosmological Constant

Gaussian & adiabatic initial conditions

ACDM (simple ICs + GR)

cold collisionless dark matter

General Relativity

drives clustering

sets dynamics

interactive word cloud menti.com 1459 5969

Go to www.menti.com and use the code 4864 0476

Which extensions are you aware of?

Mentimeter

non-cold, self-interacting, wavelike, ...

non-Gaussian, ...

general dark energy

XCDM (simple ICs + GR)

EXPANSION DILUTES ENERGY

distances grow, energy density = energy/volume

Radiation $\rho_\gamma \sim a^{-4}$ volume & wavelength grows

Matter

$$\rho_m \sim a^{-3}$$

volume grows

Cosmological Constant $\rho_{\Lambda} \sim {\rm const.}$

DARK ENERGY DOMINATES AT LAST

 $\label{eq:linear} \bigwedge \qquad \begin{array}{ll} \mbox{Cosmological Constant} \\ \rho_{\Lambda} \sim {\rm const.} & w_0 = -1 \\ \\ \mbox{Dark Energy } \rho_{\rm DE} \sim a^{1+w(a)} \\ \\ \mbox{equation of state (many models)} \\ \\ \mbox{WoWa} \qquad \begin{array}{ll} \mbox{parametrise } w(a) = w_0 + w_a(1-a) \end{array}$

DARK ENERGY SLOWS GROWTH

 $\begin{array}{ll} \text{density contrast} & 1 + \delta(x,t) = \frac{\rho(x,t)}{\bar{\rho}(t)} \\ \ddot{\delta} + [\text{expansion}] \, \dot{\delta} + [\text{pressure} - \text{gravity}] \, \delta = 0 \end{array}$

Winner writes history

gravity (matter) $\rightarrow \delta$ grows $\delta(a) \sim D(a)\delta(a=1)$ expansion (dark energy) $\rightarrow \delta$ freezes

LINEAR GROWTH OF STRUCTURE

records physics on large scales measurable galaxy clustering & weak lensing

Modified Gravity

(simple ICs + GR)

non-cold, self-interacting, wavelike

DARK MATTER EVIDENCE

Galaxy flat rotation curves

Cluster gas vs mass

DARK MATTER MASS

one of the least constrained physical parameters

DARK MATTER: WARM?

higher streaming velocities wash out substructure

cold dark matter warm dark matter (~keV)

simulation: Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

DARK MATTER: WAVELIKE?

ψDM: mimics CDM on large scales interference effects on small scales

simulation: Schive ++ Nature Physics Letters `15 review : Lam Hui `21

DARK MATTER: WAVELIKE?

ψDM: lower limit on mass by Lyman-alpha forest

strength of clustering

DARK MATTER INTERACTIONS? Bullet Cluster: X-Ray (gas)

DARK MATTER INTERACTIONS? Bullet Cluster: weak lensing (mass)

DARK MATTER INTERACTIONS? Bullet Cluster: X-Ray (gas) & weak lensing (mass)

ACDM (simple ICs + GR)

non-Gaussian

PRIMORDIAL NON-GAUSSIANITY

density & temperature \leftarrow gravitational potential ϕ **standard:** Gaussian $\phi_G \approx$ single field inflation fully determined by fluctuation spectrum

credit: Ligouri++10 review

PRIMORDIAL NON-GAUSSIANITY

large-scale structure challenge

disentangle primordial from late-time non-Gaussianity from nonlinear clustering

MODIFIED GRAVITY?

additional field (scalar, ...)phenomenologicalfifth forces with screeningparametrisationsaffect structure growthaffect clustering & lensing

unique massless, metric theory of gravity

break assumptionsmassive gravitypreferred frame/positiongraviton mass mg>0post-Newtonian parametersslows gravitational waves

MODIFIED GRAVITY?

additional field (scalar, ...)phenomenologicalfifth forces with screeningparametrisationsaffect structure growthaffect clustering & lensing

MODIFIED GRAVITY PARAMETRISATION

clustering strength $\nabla^2 \Phi = 4\pi G (1+\mu) \delta \rho_m$

degenerate with dark energy w(z)

credit: <u>Simpson++ `12</u>

assuming flat ACDM expansion

 $\Psi + \Phi = (1 + \Sigma)(\Psi + \Phi)_{\rm GR}$

lensing strength

MODIFIED GRAVITY: SCALAR FIELDS

fifth force affects linear structure growth depends on time and scale

credit: review Ishak `19

MODIFIED GRAVITY: SCALAR FIELDS

fifth force affects nonlinear structure

depends on time and scale

Alex Gough, 2nd year PhD @ Newcastle

paper arXiv: 2109.02636 proceeding arXiv: 2112.04428

massive neutrinos, ...

ACDM+X (simple ICs + GR)

NEUTRINOS ARE MASSIVE!

neutrino oscillations $\rightarrow \Delta m_{1/2}$ clustering $\rightarrow \Sigma m$?

 $\Sigma m_{\nu} \ge (0.06 - 0.1) \mathrm{eV}$

Large-scale structure: Euclid projection

 $\Sigma m_{
u} < 0.03 \mathrm{eV}$ guaranteed detection

large-scale structure probes growth, clustering, lensing

Modified Gravity extra scalar fields & parametrisations

massive neutrinos

XXDM+X (simple ICs + GR)

warm, wavelike ψ

dark energy

 $W(Z):W_0,W_a$

non-Gaussian f_{NL} from early universe

dark e	nergy	early universe	early niverse neutrinos	
w ₀ :0.015	w _a :0.15	f _{NL:} 5	$\Sigma m_v: 0.03 eV$	γ:0.01
x10	x50	x50	x30	x30

galaxy surveys promise big improvements over CMB