Gravitational Wave Spectrum

Gravitational Wave Spectrum

- Gap between ground-based optical interferometers & LISA
 - Formation of supermassive black holes (SMBHs)?
 - Electroweak phase transition? Cosmic strings?
- Gap between LISA & pulsar timing arrays (PTAs)

LIGO-Virgo-KAGRA Black Hole & Neutron Star Masses LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neu Intermediate-Mass 200 SSes black holes? Solar 50 20. 10 5 *************************

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Future Step: Interferometer in Space

8

Me.

LISA (+ Taiji, TianQin)

How to Make a Supermassive BH?

SMBHs from mergers of intermediate-mass BHs (IMBHs)?

Intermediate Mass Black Holes Identified as Low-Luminosity Active Galactic Nuclei

LIGO-Virgo-KAGRA Black Hole & Neutron Stars

LIGO & Virgo Collaborations: arXiv:2009.01075, 2009.01190

Predicted Mass Gap

Standard stellar evolution → no black holes between ~70, 120 solar masses Previous mergers? Primordial black holes? BSM physics to fill in mass gap?

Can New Physics Fill the Mass Gap?

- Mass gap due to pair-production instability: $\gamma\gamma \rightarrow e^+e^-$
- Could be (partially) filled in by new physics, BUT ...

- Location of mass gap subject to nuclear physics uncertainty in the ${}^{12}C(\alpha, \gamma){}^{16}O$ rate, rotation, ... Woosley & Heger, arXiv:2103.07933
- Gap could have been populated by previous mergers

Gravitational Waves from IMBH Mergers AION

Probe formation of SMBHs Synergies with other GW experiments (LIGO, LISA), test GR

adurina, Buchmueller, JE, Lewicki, McCabe & Vaskonen: arXiv:2108.02468

How to Make a Supermassive BH? Mergers of intermediate-mass BHs (IMBHs)? Estimated merger rates:

Erickcek, Kamionkowski & Benson, astro- ph/0604281

AION Collaboration (Badurina, ..., JE et al): arXiv:1911.11755

AION GW SNR from IMBH Mergers

Map assembly of SMBHs

SNR > 5 out to z > 1 for masses ~ 10⁴ solar

SNR > 10 out to $z \sim 10$ for masses $\sim 10^3$ solar

AION Collaboration (Badurina, ..., JE et al): arXiv:1911.11755 GWs from IMBH Mergers: SNR = 8

Gravitational Memory

 GR predicts that the passage of matter or radiation from an asymmetrically-emitting source causes a permanent change in the local space-time metric - the Gravitational Memory effect

$$h_{\mu\nu}(\mathbf{x},t) = 4G \int d^3 \mathbf{x}' \left(\frac{S_{\mu\nu}(\mathbf{x}',t-|\mathbf{x}-\mathbf{x}'|)}{|\mathbf{x}-\mathbf{x}'|} \right)$$

Zel'dovich & Polnarev, 1974 Braginskii & Thorne, 1987

• Sourced, e.g., by SN neutrinos

$$h(t) = \frac{2G}{r} \int_{-\infty}^{t-r} dt' L_{\nu}(t') \alpha(t')$$

Epstein, 1978

- Where $L_{\nu}(t)$ is neutrino luminosity, $\alpha(t)$ its anisotropy
- Sketch of typical strain profile
- NB: also nonlinear memory from GWs

Anisotropic Supernova Explosions

- Three-dimensional simulations of supernovae typically exhibit anisotropies
- Anisotropy of neutrino emissions is supported by high velocities of supernova remnants

Supernova Neutrino Emission

- Neutrino luminosity: typical duration of accretion phase $\mathcal{O}(1)$ sec
- Anisotropy of neutrino emissions: fluctuating, % level, typical duration $\mathcal{O}(0.5)$ sec
- Gives order-of-magnitude estimate $\stackrel{\frown}{=}$ of frequency support $\mathcal{O}(1)$ Hz

Mukhopadhyay, Cardona & Lunardini, arXiv:2105.05862

AION/AEDGE Sensitivities to AION Gravitational Memory of Supernova Neutrinos

Badurina, Buchmueller, JE, Lewicki, McCabe & Vaskonen: arXiv:2108.02468

And then? AEDGE:

Atomic Experiment for Dark Matter and Gravity

Exploration in Space

Beyond LISA

Yousef Abou El-Neai,¹ Cristiano Alpigiani,² Sana Amairi-Pyka,³ Henrique Araújo,⁴ Antun Balaž,⁵ Angelo Bassi,⁶ Lars Bathe-Peters,⁷ Baptiste Battelier,⁸ Aleksandar Belić,⁵ Elliot Bentine,⁹ José Bernabeu,¹⁰ Andrea Bertoldi,^{8,*} Robert Bingham,¹¹ Diego Blas,¹² Vasiliki Bolpasi,¹³ Kai Bongs,^{14,*} Sougato Bose,¹⁵ Philippe Bouyer,^{8,*} Themis Bowcock,¹⁶ William Bowden,¹⁷ Oliver Buchmueller,^{4,@} Clare Burrage,¹⁸ Xavier Calmet,¹⁹ Benjamin Canuel,^{8,*} Laurentiu-Ioan Caramete,^{20,*} Andrew Carroll,¹⁶ Giancarlo Cella,^{21,22} Vassilis Charmandaris,²³ Swapan Chattopadhyay,^{24,25} Xuzong Chen,²⁶ Maria Luisa Chiofalo,^{21,22} Jonathon Coleman,^{16,*} Joseph Cotter,⁴ Yanou Cui,²⁷ Andrei Derevianko,²⁸ Albert De Roeck, 29,30,* Goran Diordievic, 31 Peter Dornan, 4 Michael Doser, 30 Ioannis Drougkakis,¹³ Jacob Dunningham,¹⁹ Ioana Dutan,²⁰ Sajan Easo,¹¹ Gedminas Elertas,¹⁶ John Ellis,^{12,32,33,*} Mai El Sawy,³⁴ Farida Fassi,³⁵ Daniel Felea,²⁰ Chen-Hao Feng,⁸ White paper Robert Flack,¹⁵ Chris Foot,⁹ lvette Fuentes,¹⁸ Naceur Gaaloul,³⁶ Alexandre Gauguet,³⁷ Remi Geiger.³⁸ Valerie Gibson.³⁹ Gian Giudice.³³ Jon Goldwin.¹⁴ Oleg Grachov.⁴⁰ Peter W. Graham,^{41,*} Dario Grasso,^{21,22} Maurits van der Grinten,¹¹ Mustafa Gündogan,³ submitted to Martin G. Haehnelt,^{42,*} Tiffany Harte,³⁹ Aurélien Hees,^{38,*} Richard Hobson,¹⁷ Bodil Holst,⁴³ Jason Hogan,^{41,*} Mark Kasevich,⁴¹ Bradley J. Kavanagh,⁴⁴ Wolf von Klitzing,^{13,*} ESA Voyage Tim Kovachy,⁴⁵ Benjamin Krikler,⁴⁶ Markus Krutzik,^{3,*} Marek Lewicki,^{12,47,*} Yu-Hung Lien,¹⁵ Miaoyuan Liu,²⁶ Giuseppe Gaetano Luciano,⁴⁸ Alain Magnon,⁴⁹ Mohammed Mahmoud,⁵⁰ 2050 Call Sarah Malik,⁴ Christopher McCabe,^{12,*} Jeremiah Mitchell,²⁴ Julia Pahl,³ Debapriya Pal,¹³ Saurabh Pandey,¹³ Dimitris Papazoglou,⁵¹ Mauro Paternostro,⁵² Bjoern Penning,⁵³ Achim Peters,^{3,*} Marco Prevedelli,⁵⁴ Vishnupriya Puthiya-Veettil,⁵⁵ John Quenby,⁴ Ernst Rasel,^{36,*} Sean Ravenhall,⁹ Haifa Rejeb Sfar,²⁹ Jack Ringwood,¹⁶ Albert Roura,^{56,*} Dylan Sabulsky,^{8,*} Muhammed Sameed,⁵⁷ Ben Sauer,⁴ Stefan Alaric Schäffer,⁵⁸ Stephan Schiller, 59,* Vladimir Schkolnik,³ Dennis Schlippert,³⁶ Christian Schubert,^{3,*} Armin Shayeghi,⁶⁰ Ian Shipsey,⁹ Carla Signorini,^{21,22} Marcelle Soares-Santos,⁵³ Fiodor Sorrentino,^{61,*} Yajpal Singh,^{14,*} Timothy Sumner,⁴ Konstantinos Tassis,¹³ Silvia Tentindo,⁶² Guglielmo Maria Tino,^{63,64,*} Jonathan N. Tinsley,⁶³ James Unwin,⁶⁵ Tristan Valenzuela,¹¹ Georgios Vasilakis,¹³ Ville Vaskonen,^{12,32,*} Christian Vogt,⁶⁶ Abou El-Neaj, ..., JE et al: Alex Webber-Date,¹⁶ André Wenzlawski,⁶⁷ Patrick Windpassinger,⁶⁷ Marian Woltmann,⁶⁶ arXiv:1908.00802 Michael Holynski,¹⁴ Efe Yazgan,⁶⁸ Ming-Sheng Zhan,^{69,*} Xinhao Zou,⁸ Jure Zupan⁷⁰

AEDGE: Abou El-Neaj, ..., JE et al: arXiv:1908.00802

Conceptual Design of Space Experiment

Table 1. List of basic parameters of strontium atom interferometer designs for AEDGE and a benchmark 1-km terrestrial experiment using similar technologies: length of the detector L; interrogation time of the atom interferometer T_{int} ; phase noise $\delta \phi_{noise}$; and the total number of pulses n_p^{\max} , where n is the large momentum transfer (LMT) enhancement and Q the resonant enhancement. The choices of these parameters predominately define the sensitivity of the projection scenarios[45].

Sensitivity	L	$T_{ m int}$	$\delta \phi_{ m noise}$	$n_p^{\max} = 2Q(2n-1) + 1$
Scenario	[m]	[sec]	$[1/\sqrt{\text{Hz}}]$	[number]
Earth-km	2000	5	$0.3 imes 10^{-5}$	40000
AEDGE	$4.4 imes 10^7$	300	10^{-5}	1000

spacecraft

AEDGE: Abou El-Neaj, ..., JE et al: arXiv:1908.00802

Gravitational Waves from IMBHs

Detect mergers of ~ 10^4 solar-mass BHs with SNR 1000 out to z ~ 10, Mergers of ~ 10^3 solar-mass BHs with SNR 100 out to z ~ 100

GWs from IMBH, BH-NS Mergers AION

AEDGE complementary to LIGO, LISA, Einstein Telescope (ET)

Badurina, Buchmueller, JE, Lewicki, McCabe & Vaskonen: arXiv:2108.02468

 With merger of heavier BHs?
 Lower frequencies

JE & Vaskonen: arXiv:2003.13480

Constraints on Graviton Mass

- LIGO/Virgo: <1.76 × 10⁻²³ eV
- AION 1-km: sensitive to 10⁻²⁴ eV with LIGO/Virgo-like 2 event
- Sensitive to 2 × 10⁻²⁵ eV with heavier BHs
- AEDGE: 8 × 10⁻²⁷ eV with BHs 5600 + 4400 solar masses

Lorentz Violation

- AION 1-km: sensitivity 10 × LIGO for $\alpha = \frac{1}{2}$
- AEDGE: sensitivity 1000 × LIGO for $\alpha = \frac{1}{2}$

Probing Extensions of the Standard Model

GWs from a First-Order Phase Transition

- Transition by percolation of bubbles of new vacuum
- Bubbles grow and collide
- Possible sources of GWs:
 - Bubble collisions
 - Turbulence and sound waves in plasma
- Models studied:
 - Standard Model + H^6/Λ^2 interaction
 - Standard Model + $U(1)_{B-L} Z'$
- These also have prospective collider signatures

Gravitational Waves from U(1)_{B-L} Phase Transition

Sensitivities to $U(1)_{R-I} Z'$

-2-1 -3 0 2 1 3 LISA AION 100m 0.40 0.40 0.35 0.35 0.30 0.30 ₿B-L 8*B*-*L* 0.25 0.25 **GW** discovery 0.20 0.20 0.15 0.15 sensitivity 10⁵ 10⁶ 107 104 10⁵ 10⁶ 107 10^{4} 10^{8} far beyond mZ'/GeV mZ'/GeV AION 1km AEDGE colliders 0.40 0.40 0.35 0.35 0.30 - R 7-88 0.30 0.25 0.25 0.20 0.20 0.15 0.15 10^{4} 10⁵ 10^{6} 107 108 10^{4} 10⁵ 10^{6} 107 10^{8} mZ'/GeV mZ'/GeV

JE, Lewicki & Vaskonen, arXiv:2007.15586

Probing Cosmic Strings Hint from the NANOGrav pulsar timing array?

Pulsar Timing Arrays

NANOGrav has observed 47 pulsars over 12.5 yrs

NANOGrav Collaboration: arXiv:2009.04496

NANOGrav Collaboration: arXiv:2009.04496

Pulsar Timing Data from NANOGrav

"the amplitude ... may imply that the black hole mass function is underestimated, specifically when extrapolated from observations of the local supermassive black hole population"

Cosmic String Interpretation of NANOGrav

"Rainbow curve"
 is cosmic string prediction as a
 function of the cosmic string tension Gµ
 Vertical line is SMBH merger prediction
 Previous PTA upper limits for
 this value of γ

Fits to NANOGrav signal at 1σ (68%), 2σ (95%) levels Compared to previous upper limits (previous NANOGrav superseded)

IE & Lewicki: arXiv:2009.06555

Cosmic String Interpretation of NANOGrav

Cosmic string prediction can be tested in several upcoming experiments (not LIGO)

AEDGE: Bertoldi, ..., JE et al: arXiv:1908.00802

Gravitational Waves from Cosmic Strings AIO

Tension $G\mu < 10^{-11}$ from PTA limit

Badurina, Buchmueller, JE et al: arXiv:2108.02468

Gravitational Waves from Cosmic Strings AIO

Voyage 2050

Final recommendations from the Voyage 2050 Senior Committee

Large missions:

- Moons of the Giant Planets
- Exoplanets
- New Physical Probes of the Early Universe: Fundamental physics and astrophysics

Possible Medium missions:

• ... QM & GR (cold atoms?)

Technology development recommendations for Cold Atom Interferometry

- for gravitational wave detectors in new wavebands ..., detectors for dark matter candidates, sensitive clock tests of general relativity, tests of wave function collapse
- must reach high technical readiness level, be superior to classical technologies
- start with atomic clocks, on freeflyer or ISS?
- M-mission?

Cold Atoms in Space: Community Report & Road-Map

Cold Atoms in Space:

Community Workshop Summary and Proposed Road-Map

Iván Alonso.¹ Cristiano Alpigiani.² Brett Altschul.³ Henrique Araúio.⁴ Gianluigi Arduini.⁵ Jan Arlt.⁶ Leonardo Badurina.⁷ Antun Balaž.⁸ Satvika Bandarupally.^{9,10} Barry C Barish.¹¹ Michele Barone,¹² Michele Barsanti,¹³ Steven Bass,¹⁴ Angelo Bassi,^{15,16,*} Baptiste Battelier,¹⁷ Charles F. A. Baynham.⁴ Quentin Beaufils.¹⁸ Aleksandar Belić.⁸ Joel Bergé.¹⁹ Jose Bernabeu,^{20,21} Andrea Bertoldi,¹⁷ Robert Bingham,^{22,23} Sébastien Bize,¹⁸ Diego Blas,^{24,25} Kai Bongs,^{26,*} Philippe Bouyer,^{17,*} Carla Braitenberg,¹⁵ Christian Brand,²⁷ Claus Braxmaier,^{28,27} Alexandre Bresson,¹⁹ Oliver Buchmueller,^{4,29,*,@} Dmitry Budker,^{30,31} Luís Bugalho,³² Sergey Burdin,³³ Luigi Cacciapuoti,^{34,*} Simone Callegari,³⁵ Xavier Calmet,³⁶ Davide Calonico,³⁷ Benjamin Canuel,¹⁷ Laurentiu-Ioan Caramete,³⁸ Olivier Carraz,^{34,*} Donatella Cassettari,⁴⁰ Pratik Chakraborty,⁴¹ Swapan Chattopadhyay,^{42,43,31} Upasna Chauhan,⁴⁴ Xuzong Chen,⁴⁵ Yu-Ao Chen, 46,47,48 Maria Luisa Chiofalo, 13,49,* Jonathon Coleman, 33 Robin Corgier, 18 J. P. Cotter,⁴ A. Michael Cruise,^{26,*} Yanou Cui,⁵⁰ Gavin Davies,⁴ Albert De Roeck,^{51,5,*} Marcel Demarteau.⁵² Andrei Derevianko.⁵³ Marco Di Clemente.⁵⁴ Goran S. Diordievic.⁵⁵ Sandro Donadi,¹⁶ Olivier Doré.⁵⁶ Peter Dornan.⁴ Michael Doser.^{5,*} Giannis Drougakis.⁵⁷ Jacob Dunningham,³⁶ Saian Easo,²² Joshua Eby,⁵⁸ Gedminas Elertas,³³ John Ellis,^{7,5,*,@} David Evans,⁴ Pandora Examilioti,⁵⁷ Pavel Fadeev,³⁰ Mattia Fanì,⁵⁹ Farida Fassi,⁶⁰ Marco Fattori.⁹ Michael A, Fedderke.⁶¹ Daniel Felea.³⁸ Chen-Hao Feng.¹⁷ Jorge Ferreras.²² Robert Flack,⁶² Victor V. Flambaum,⁶³ René Forsberg,^{64,*} Mark Fromhold,⁶⁵ Naceur Gaaloul,^{41,*} Barry M. Garraway,³⁶ Maria Georgousi,⁵⁷ Andrew Geraci,⁶⁶ Kurt Gibble,⁶⁷ Valerie Gibson,⁶⁸ Patrick Gill.⁶⁹ Gian F. Giudice.⁵ Jon Goldwin.²⁶ Oliver Gould.⁶⁵ Oleg Grachov.⁷⁰ Peter W. Graham,⁴³ Dario Grasso,⁴⁹ Paul F. Griffin,²³ Christine Guerlin,⁷¹ Mustafa Gündoğan,⁷² Ratnesh K Gupta,⁷³ Martin Haehnelt,⁶⁸ Ekim T. Hanımeli,⁷⁴ Leonie Hawkins,³³ Aurélien Hees,¹⁸ Victoria A. Henderson,⁷² Waldemar Herr,⁴¹ Sven Herrmann,⁷⁴ Thomas Hird,²⁹ Richard Hobson.^{4,*} Vincent Hock.⁷⁴ Jason M. Hogan.⁴³ Bodil Holst.⁷⁵ Michael Holvnski.²⁶ Ulf Israelsson,⁵⁶ Peter Jeglič,⁷⁶ Philippe Jetzer,⁷⁷ Gediminas Juzeliūnas,⁷⁸ Rainer Kaltenbaek,⁷⁹ Jernei F. Kamenik.⁷⁹ Alex Kehagias.⁸⁰ Teodora Kirova.⁸¹ Marton Kiss-Toth.⁸² Sebastian Koke,^{35,*} Shimon Kolkowitz,⁸³ Georgy Kornakov,⁸⁴ Tim Kovachy,⁶⁶ Markus Krutzik,⁷² Mukesh Kumar,⁸⁵ Pradeep Kumar,⁸⁶ Claus Lämmerzahl,⁷⁴ Greg Landsberg,⁸⁷ Christophe Le Poncin-Lafitte.¹⁸ David R. Leibrandt.⁸⁸ Thomas Lévèque.^{89,*} Marek Lewicki.⁹⁰ Rui Li,⁴¹ Anna Lipniacka,⁷⁵ Christian Lisdat,^{35,*} Mia Liu,⁹¹ J. L. Lopez-Gonzalez,⁹² Sina Loriani.⁹³ Jorma Louko.⁶⁵ Giuseppe Gaetano Luciano.⁹⁴ Nathan Lundblad.⁹⁵ Steve Maddox,⁸² M. A. Mahmoud,⁹⁶ Azadeh Maleknejad,⁵ John March-Russell,²⁹ Didier Massonnet.⁸⁹ Christopher McCabe.⁷ Matthias Meister.²⁷ Tadei Mežnaršič.⁷⁶ Salvatore Micalizio,³⁷ Federica Migliaccio,^{97,*} Peter Millington,⁶⁵ Milan Milosevic,⁵⁵ Jeremiah Mitchell,⁶⁸ Gavin W. Morley,⁹⁸ Jürgen Müller,⁴¹ Eamonn Murphy,^{34,*} Özgür E. Müstecaplıoğlu,⁹⁹ Val O'Shea,¹⁰⁰ Daniel K. L. Oi,²³ Judith Olson,¹⁰¹ Debapriya Pal,¹⁰²

Dimitris G. Papazoglou.¹⁰³ Elizabeth Pasatembou.⁴ Mauro Paternostro.¹⁰⁴ Krzysztof Pawlowski ¹⁰⁵ Emanuele Pelucchi ¹⁰⁶ Franck Pereira dos Santos ¹⁸ Achim Peters ⁷² Igor Pikovski,^{107,108} Apostolos Pilaftsis,¹⁰⁹ Alexandra Pinto,¹¹⁰ Marco Prevedelli,¹¹¹ Vishnupriya Puthiya-Veettil,⁵⁷ John Quenby,⁴ Johann Rafelski,¹¹² Ernst M. Rasel,^{41,*} Cornelis Ravensbergen,¹⁰¹ Mirko Reguzzoni,^{97,51} Andrea Richaud,¹¹³ Isabelle Riou,⁸² Markus Rothacher,¹¹⁴ Albert Roura,²⁷ Andreas Ruschhaupt,¹⁰⁶ Dylan O. Sabulsky,¹⁷ Marianna Safronova,¹¹⁵ Ippocratis D. Saltas,¹¹⁶ Leonardo Salvi,^{9,10,117} Muhammed Sameed,¹⁰⁹ Pandey Saurabh.⁵⁸ Stefan Schäffer.¹¹⁸ Stephan Schiller.^{119,*} Manuel Schilling.⁴¹ Vladimir Schkolnik,⁷² Dennis Schlippert,⁴¹ Piet O. Schmidt,^{35,41} Harald Schnatz,³⁵ Jean Schneider.¹²⁰ Ulrich Schneider.⁶⁸ Florian Schreck.¹¹⁸ Christian Schubert.^{41,*} Armin Shaveghi,¹²¹ Nathaniel Sherrill,³⁶ Ian Shipsev,²⁹ Carla Signorini,^{13,49,*} Raieev Singh,¹²² Yeshpal Singh.²⁶ Constantinos Skordis.¹²³ Augusto Smerzi.^{124,10} Carlos F. Sopuerta.^{125,126} Fiodor Sorrentino,¹²⁷ Paraskevas Sphicas,^{128,5} Yevgeny V. Stadnik,¹²⁹ Petruta Stefanescu,³⁸ Marco G, Tarallo,³⁷ Silvia Tentindo,¹³⁰ Guglielmo M, Tino,^{9,10,117,124,*} Jonathan N, Tinsley,^{9,10} Vincenza Tornatore.⁹⁷ Philipp Treutlein.¹³¹ Andrea Trombettoni¹⁵ Yu-Dai Tsai.¹³² Philip Tuckey,¹⁸ Melissa A Uchida,⁶⁸ Tristan Valenzuela,²² Mathias Van Den Bossche,¹³³ Ville Vaskonen.¹³⁴ Gunian Verma.^{9,10,16} Flavio Vetrano.¹³⁵ Christian Vogt.⁷⁴ Wolf von Klitzing.^{57,*} Pierre Waller.³⁴ Reinhold Walser.¹³⁶ Eric Wille.^{34,*} Jason Williams.⁵⁶ Patrick Windpassinger,¹³⁷ Ulric Wittrock,¹³⁸ Peter Wolf,^{18,*} Marian Woltmann,⁷⁴ Lisa Wörner^{27,*} André Xuereb.¹³⁹ Mohamed Yahia.¹⁴⁰ Efe Yazgan.¹⁴¹ Nan Yu.⁵⁶ Nassim Zahzam.¹⁹ Emmanuel Zambrini Cruzeiro.³² Mingsheng Zhan.¹⁴² Xinhao Zou.¹⁷ Jure Zupan,¹⁴³ Erik Zupanič⁷⁶

[@] Contact Person

* Section Editor and/or Workshop Organiser

¹Higher Polytechnic School, University of the Balearic Islands, Valldemossa Road, Palma de Mallorca, 07122, Spain

- ² University of Washington, Physics-Astronomy Building, 15th Ave NE Seattle, WA 98195-1560, USA
- ³University of South Carolina, Main Street, Columbia, South Carolina, SC 29208, USA
- ⁴Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- ⁵CERN, CH-1211 Geneva 23, Switzerland
- ⁶Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
- ⁷King's College London, Strand, London, WC2R 2LS, UK
- ⁸ University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
- ⁹Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
- ¹⁰European Laboratory for Non-Linear Spectroscopy (LENS), Università degli Studi di Firenze, Via Giovanni Sansone, 1, 50019 Sesto Fiorentino, Firenze, Italy
- ¹¹LIGO, California Institute of Technology, 1201 E California, Pasadena, CA 91125, USA
- ¹²Institute of Nuclear and Particle Physics, NCSR Demokritos, Agia Paraskevi 15310, Greece
- ¹³University of Pisa, Largo Lazzarino, Pisa, 56122, Italy
- ¹⁴Kitzbühel Centre for Physics, Kitzbühel, Austria
- ¹⁵University of Trieste, Strada Costiera 11, 34151 Trieste, Italy
- ¹⁶Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste, Italy
- ¹⁷LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, F-33400, Talence, France

Alonso, ..., Badurina, ..., JE, ..., McCabe et al, arXiv:2201.07789

Proposed ESA Road-Map for Cold Atoms in

STE-QUEST Phase 1 Proposal

STE-QUEST

Space Time Explorer and QUantum Equivalence principle Space Test Core

A M-class mission proposal in response to the 2022 call in ESA's science program

Lead proposer: Peter Wolf SYRTE, Observatoire de Paris-PSL, CNRS, Sorbonne Université, LNE 61 Av. de l'Observatoire, 75014 Paris, France e-mail: peter.wolf@obspm.fr

February 15, 2022

Core Team:

- Angelo Bassi, Department of Physics, University of Trieste, and INFN Trieste Section, Italy
- Kai Bongs, Midlands Ultracold Atom Research Centre, School of Physics and Astronomy University of Birmingham, United Kingdom
- Philippe Bouyer, LP2N, Université Bordeaux, IOGS, CNRS, Talence, France
- Claus Braxmaier, Institute of Microelectronics, Ulm University and Institute of Quantum Technologies, German Aerospace Center (DLR), Germany
- Oliver Buchmueller, High Energy Physics Group, Blackett Laboratory, Imperial College London, London, United Kingdom
- Maria Luisa (Marilu) Chiofalo, Physics Department "Enrico Fermi" University of Pisa, and INFN-Pisa Italy
- John Ellis, Physics Department, King's College London, United Kingdom
- Naceur Gaaloul, Institute of Quantum Optics, Leibniz University of Hanover, Germany
- Aurélien Hees, SYRTE, Observatoire de Paris-PSL, CNRS, Sorbonne Université, LNE, Paris, France
- Philippe Jetzer, Department of Physics, University of Zurich, Switzerland
- Steve Lecomte, Centre Suisse d'Electronique et de Microtechnique (CSEM), Neuchâtel, Switzerland
- Gilles Métris, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur, France
- Ernst M. Rasel, Institute of Quantum Optics, Leibniz University of Hanover, Germany
- Thilo Schuldt, German Aerospace Center (DLR), Institute of Quantum Technologies, Ulm Germany
- Carlos F. Sopuerta, Institute of Space Sciences (ICE, CSIC), Institute of Space Studies of Catalonia (IEEC), Spain
- Guglielmo M. Tino, Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN, CNR Italy
- Wolf von Klitzing, Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, *Greece*
- Lisa Wörner, German Aerospace Center (DLR), Institute of Quantum Technologies, Ulm Germany
- Nan Yu, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Martin Zelan, Measurement Science and Technology, RISE Research Institutes of Sweden, Borås, Sweden

Other contributors: Leonardo Badurina, Baptiste Battelier, Matteo Carlesso, Robin Corgier, Sandro Donadi, Gina Kleinsteinberg, Sina Loriani, Dennis Schlippert, Christian Schubert, Christian Struckmann, Jens Grosse, and the numerous colleagues who contributed to the past STE-QUEST proposals.

STE-QUEST Science: Testing the Equivalence Principle

Class	Elements	η	Year [ref]	Comments
	Be - Ti	2×10^{-13}	2008	Torsion balance
Classical	Pt - Ti	1×10^{-14}	2017	MICROSCOPE first results
	Pt - Ti	(10^{-15})	2022 +	MICROSCOPE full data
	¹³³ Cs - CC	7×10^{-9}	2001	Atom Interferometry
Hybrid	⁸⁷ Rb - CC	$7 imes 10^{-9}$	2010	and macroscopic corner cube (CC)
	³⁹ K - ⁸⁷ Rb	$3 imes 10^{-7}$	2020	different elements
Quantum	⁸⁷ Sr - ⁸⁸ Sr	2×10^{-7}	2014	same element, fermion vs. boson
	⁸⁵ Rb - ⁸⁷ Rb	3×10^{-8}	2015	same element, different isotopes
	⁸⁵ Rb - ⁸⁷ Rb	$3.8 imes 10^{-12}$	2020	10 m tower
	⁴¹ K - ⁸⁷ Rb	(10^{-17})	2037	STE-QUEST
Antimatter	\overline{H} - H	(10^{-2})	2023 +	under construction at CERN

Wave-Function Collapse?

- Transition from quantum to classical behaviour?
- Black holes: information loss across horizon causes pure states → mixed states
- Non-factorising scattering matrix $\rho_{out} = \$ \rho_{in} : \$ \neq SS^{\dagger}$
- Non-Hamiltonian evolution: $\partial_t \rho = i[\rho, H] + \mathscr{H} \rho$ due to information loss via microscopic black holes?
- e.g., 2-state system with equal energies:

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & e^{-\lambda t} \\ e^{-\lambda t} & 1 \end{pmatrix}$$

• General parametrisation: $e^{-\frac{d}{r_c}}, e^{-\lambda t}$

JE, Hagelin, Nanopoulos, Olive & Srednicki, 1984

Ghirardi, Rimini & Weber, 1986

STE-QUEST Science: Probe of Quantum Mechanics

STE-QUEST Science Programme

Probe the boundaries of our fundamental theories & interfaces between them

