## QCD corrections to 5-point scattering with an external mass

### Heribertus Bayu Hartanto

based on work with: Simon Badger, Rene Poncelet, Andrei Popescu and Simone Zoia arXiv:2102.02516, arXiv:2205.01687, arXiv:2209.03280

HP2 2022, Newcastle September 20, 2022







5-point scattering with an external mass



European Research Council September 20, 2022 1 / 13

#### Introduction

Current and future LHC runs:

- increasing precision of experimental measurements
- > experimental uncertainties comparable, if not, smaller than theoretical uncertainties

Perturbative QFT framework  $\Rightarrow$  QCD corrections dominant

$$d\hat{\sigma} = \underbrace{d\hat{\sigma}^{(0)}}_{\text{LO}} + \underbrace{\alpha_s \ d\hat{\sigma}^{(1)}}_{\delta \text{NLO}} + \underbrace{\alpha_s^2 \ d\hat{\sigma}^{(2)}}_{\delta \text{NNLO}} + \ldots$$

Theoretical error due to scale dependence: LO > 50%, NLO  $\sim$  20 - 30%, NNLO  $\sim$  1 - 10%

Current precision frontier  $\Rightarrow$  NNLO QCD computation for 2  $\rightarrow$  3 processes

Dramatic progress for massless 2  $\rightarrow$  3 scattering:  $pp \rightarrow \gamma\gamma\gamma$ ,  $pp \rightarrow \gamma\gamma j$ ,  $pp \rightarrow jjj$  at NNLO QCD

- ✓ two-loop amplitudes (Feynman integrals, special function basis, finite-field technique, ... ) talks by Ryan Moodie, Giuseppe De Laurentis
- ✓ NNLO subtraction scheme talks by Kirill Melnikov, Rene Poncelet, Gloria Bertolotti

<u>This talk</u>:  $2 \rightarrow 3$  process with an external mass

- 5-Point 1-Mass Scattering Amplitudes
- **2**  $Wb\bar{b}$  production at the LHC

# 5-Point 1-Mass Scattering Amplitudes

 $pp \rightarrow Hii, Vii, V\gamma i, V\gamma\gamma, Vb\overline{b}, Hb\overline{b}, ...$ 

- $2 \rightarrow 3$  scattering with an off-shell leg
  - ▶ Increase in algebraic complexity and more intricate analytic structure compared to massless case
  - > All two-loop planar integrals and non-planar hexabox family are known

[Papadopoulos, Tommasini, Wever (2015)] [Papadopoulos, Wever (2019)] [Abreu, Ita, Moriello, Page, Tschernow, Zeng (2020)] [Canko, Papadopoulos, Syrrakos (2020)] [Syrrakos (2020)][Abreu, Ita, Page, Tschernow (2021)] [Kardos, Papadopoulos, Smirnov, Syrrakos, Wever (2022)]

- $\Rightarrow Planar \ special \ function \ basis_{[Badger,HBH,Zoia(2021)][Chicherin,Sotnikov,Zoia(2021)]}$
- $\Rightarrow$  Fast numerical evaluation (PentagonFunctions++) [Chicherin, Sotnikov, Zoia(2021)]
- > A number of two-loop QCD amplitudes known analytically at leading colour
  - $u\bar{d} \rightarrow Wb\bar{b}$  (on-shell W, massless b) [Badger,HBH,Zoia(2021)]
  - $gg/qar{q} 
    ightarrow Hbar{b}$  (massless b) [Badger,HBH,Krys,Zoia(2021)]
  - $q\bar{q}' 
    ightarrow W^+(
    ightarrow ar{\ell} 
    u)gg$  and  $q\bar{q}' 
    ightarrow W^+(
    ightarrow ar{\ell} 
    u)Q\bar{Q}$  [Abreu,Febres Cordero,Ita,Klinkert,Page(2021)]
  - $uar{d} o W^+( o ar{\ell} 
    u) \gamma g$  [Badger,HBH,Krys,Zoia(2022)] talk by Jakub Krys
  - $uar{d} o W^+( o ar{\ell} 
    u) bar{b}$  (massless b) [HBH,Poncelet,Popescu,Zoia(2022)]  $\leftarrow$  this talk

Scattering Amplitudes  $u\bar{d} \rightarrow W^+(\rightarrow \bar{\ell}\nu)b\bar{b}$ 

 $uar{d} o W^+ ( o ar{\ell} 
u) bar{b}$  at two loops [HBH,Poncelet,Popescu,Zoia(2022)]

 $\Rightarrow$  leading colour approximation and massless *b* quark

 $\Rightarrow$  closely follow on-shell  $u\bar{d} \rightarrow Wb\bar{b}$  calculation [Badger,HBH,Zoia(2021)]

 $\Rightarrow$  work with  $\sum \mathcal{M}^{(0)*}\mathcal{M}^{(2)}$  using CDR+Larin scheme

Incorporate  $W \rightarrow \ell \nu$  decay:



$$\begin{aligned} A_{6}^{(L)} &= A_{5}^{(L)\mu} \ D_{\mu} \ P(s_{56}), \qquad M_{6}^{(L)} &= \sum_{\text{spin}} A_{6}^{(0)\dagger} A_{6}^{(L)} &= M_{5}^{(L)\mu\nu} \ \mathcal{D}_{\mu\nu} \ |P(s_{56})|^{2} \\ M_{5}^{(L)\mu\nu} &= \sum_{i=1}^{16} a_{i}^{(L)} v_{i}^{\mu\nu}, \qquad a_{i}^{(L)} &= \sum_{j} \Delta_{ij}^{-1} \ \tilde{M}_{5,j}^{(L)}, \qquad \Delta_{ij} &= v_{i\mu\nu} v_{j}^{\mu\nu}, \qquad v_{i}^{\mu\nu} \in \{p_{1}^{\mu}, p_{2}^{\mu}, p_{3}^{\mu}, p_{W}^{\mu}\} \end{aligned}$$

 $\Rightarrow Derive analytic expressions using finite-field reconstruction methods talks by Ryan Moodie, Jakub Krys (QGRAF[Nogueira], FORM[Vermaseren], LiteRed[Lee], FiniteFlow[Peraro], Mathematica)$ 

 $\Rightarrow$  Evaluate master integrals (special functions) using PENTAGONFUNCTIONS++[Chicherin,Sotnikov,Zoia(2021)]

 $\Rightarrow$  Cross check against  $q\bar{q}' \rightarrow W^+(\rightarrow \bar{\ell} \nu)Q\bar{Q}$  amplitude [Abreu,Febres Cordero,Ita,Klinkert,Page(2021)]

# $Wb\bar{b}$ production at the LHC

W + b jets



- $\Rightarrow$  testing perturbative QCD
- $\Rightarrow$  modelling of flavoured jets
- $\Rightarrow$  theoretical approach: 4FS vs 5FS
- W + 1b jet: probe b quark PDFs
- W + 2b jets: backgrounds for
  - Higgs-strahlung  $pp \rightarrow WH(H \rightarrow b\bar{b})$
  - single top pp 
    ightarrow bt(t 
    ightarrow bW)

Measured at Tevatron[hep-ex/0410062][arXiv:1210.0627] and LHC[arXiv:1109.1470][arXiv:1302.2929][arXiv:1312.6608][arXiv:1608.07561] Theoretical predictions available at NLO:

W + 1b: [Campbell,Ellis,Maltoni,Willenbrock(2006)][Campbell,Ellis,Febres Cordero,Maltoni,Reina,Wackeroth,Willenbrock(2008)] [Caola,Campbell,Febres Cordero,Reina,Wackeroth(2011)]

$$\begin{split} & W + 2b: \ m_b = 0 \ [\text{Ellis,Veseli(1999)], onshell } W \ [\text{Febres Cordero,Reina,Wackeroth(2006,2009)], } W(\ell\nu) b \bar{b} \ [\text{Badger,Campbell,Ellis(2010)]} \\ & \text{NLO} + PS \ [\text{Oleari,Reina(2011)]} \ [\text{Frederix etal(2011)], } W(\ell\nu) b \bar{b} \ [\text{Luisoni,Oleari,Tramontano(2015)]} \\ & W(\ell\nu) b \bar{b} + \leq 3j \ [\text{Anger,Febres Corder,Ita,Sotnikov(2018]} \end{split}$$

Bayu Hartanto (Cambridge)

5-point scattering with an external mass

Wbb̄ at NLO QCD

# $Wbar{b}+$ jets production at NLO QCD

#### [Anger,Febres Cordero,Ita,Sotnikov(2017)]





 $\Rightarrow$  *n* = 0: large NLO corrections, large NLO scale dependence

 $\Rightarrow$  opening of qg channel at NLO

#### Our work: compute NNLO QCD corrections to $Wb\bar{b}$ production

## NNLO QCD corrections to $W( ightarrow \ell u) b ar{b}$ production

[HBH, Poncelet, Popescu, Zoia; arXiv:2205.01687, arXiv:2209.03280]



• Amplitudes:

▶ Tree-level  $pp 
ightarrow W(
ightarrow \ell 
u) b ar{b} jj$ : AvH<sub>[Bury,van Hameren(2015)]</sub>

▶ 1-loop  $pp \rightarrow W(\rightarrow \ell \nu) b\bar{b}j$ : OPENLOOPS[Bucionni,Lang,Lindert,Maierhoefer,Pozzorini,Zhang,Zoller(2018,2019)]

- ▶ 2-loop  $u\bar{d} \rightarrow W(\rightarrow \ell \nu)b\bar{b}$ : [HBH,Poncelet,Popescu,Zoia(2022)]
- NNLO subtraction scheme: Sector Improved Residue Subtraction Scheme (STRIPPER) [Czakon(2010)][Czakon,Heymes(2014)]
- $\bullet\,$  First NNLO QCD calculation for 2  $\rightarrow$  3 process involving external mass

#### Setup (follows CMS measurement[arXiv:1608.07561])

 $\Rightarrow$  5FS, LHC 8 TeV, PDFs: NNPDF31, cuts:  $\textit{p}_{T,\ell} >$  30 GeV,  $|\eta_\ell| <$  2.1,  $\textit{p}_{T,j} >$  25 GeV,  $|\eta_j| <$  2.4

 $\Rightarrow$  jet algorithm: flavour- $k_T$ [Banfi,Salam,Zanderighi(2006)] and flavour anti- $k_T$ [Czakon,Mitov,Poncelet(2022)] with R = 0.5

 $\Rightarrow$  central scale:  $\mu_R = \mu_F = \mu_0$ , where  $H_T = E_T(\ell \nu) + p_T(b_1) + p_T(b_2)$ .

 $\Rightarrow$  final states: inclusive (at least 2 b jets) and exclusive (exactly two b jets and no other jets).

⇒ scale uncertainties: inclusive → 7-pt variation  $1/2 \le \mu_R/\mu_F \le 2$ exclusive → 7-pt variation and uncorrelated prescription[Stewart,Tackmann(2012)]

Uncorrelated scale variation  $\sigma_{Wb\bar{b},\text{exc}} = \sigma_{Wb\bar{b},\text{inc}} - \sigma_{Wbbj,\text{inc}} \Delta \sigma_{Wb\bar{b},\text{exc}} = \sqrt{\left(\Delta \sigma_{Wb\bar{b},\text{inc}}\right)^2 + \left(\Delta \sigma_{Wbbj,\text{inc}}\right)^2}$ 

Leading colour approximation is only applied to scale independent double virtual finite remainder

$$\mathcal{V}^{(2)}(\mu_R^2) = \mathcal{V}^{(2)}_{\rm LC}(s_{12}) + \sum_{i=1}^4 c_i \ln^i \left( \frac{\mu_R^2}{s_{12}} \right)$$

Study tunable *softness* parameter in the flavour anti- $k_T$  algorithm (a = 0.2, 0.1, 0.05):

$$d_{ij}^{(F)} \equiv d_{ij} \times \begin{cases} S_{ij} , & fl(i) = -fl(j) \neq 0, \\ 1 , & \text{otherwise.} \end{cases} \qquad \qquad S_{ij} = 1 - \Theta(1-x) \cdot \cos\left(\frac{\pi}{2}x\right), x \equiv \frac{1}{a} \frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T,\max}^2}$$

## Numerical results: cross sections

$$K_{\rm NLO} = \frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}} \qquad K_{\rm NNLO} = \frac{\sigma_{\rm NNLO}}{\sigma_{\rm NLO}}$$

#### Inclusive $W^+(\rightarrow \ell^+ \nu) b\bar{b}$ cross sections

| Jet algorithm                             | $\sigma_{\sf LO}$ [fb]           | $\sigma_{\sf NLO}$ [fb]        | K <sub>NLO</sub> | $\sigma_{ m NNLO}$ [fb]     | K <sub>NNLO</sub> |
|-------------------------------------------|----------------------------------|--------------------------------|------------------|-----------------------------|-------------------|
| flavour- $k_T$                            | $213.24(8)^{+21.4\%}_{-16.1\%}$  | $362.0(6)^{+13.7\%}_{-11.4\%}$ | 1.70             | $445(5)^{+6.7\%}_{-7.0\%}$  | 1.23              |
| flavour anti- $k_T \ (a=0.05)$            | $262.52(10)^{+21.4\%}_{-16.1\%}$ | $500.9(8)^{+16.1\%}_{-12.8\%}$ | 1.91             | $690(7)^{+10.9\%}_{-9.7\%}$ | 1.38              |
| flavour anti- $k_{\mathcal{T}}$ $(a=0.1)$ | $262.47(10)^{+21.4\%}_{-16.1\%}$ | $497.8(8)^{+16.0\%}_{-12.7\%}$ | 1.90             | $677(7)^{+10.4\%}_{-9.4\%}$ | 1.36              |
| flavour anti- $k_{\mathcal{T}}~(a=0.2)$   | $261.71(10)^{+21.4\%}_{-16.1\%}$ | $486.3(8)^{+15.5\%}_{-12.5\%}$ | 1.86             | $647(7)^{+9.5\%}_{-8.9\%}$  | 1.33              |

## Exclusive $W^{\pm}(\rightarrow \ell^{\pm}\nu)b\bar{b}$ cross sections

| Jet algorithm                      | $\sigma_{ m LO}~[{ m fb}]$       | $\sigma_{\sf NLO}$ [fb]                         | $K_{\rm NLO}$ | $\sigma_{ m NNLO}$ [fb]                                  | K <sub>NNLO</sub> |
|------------------------------------|----------------------------------|-------------------------------------------------|---------------|----------------------------------------------------------|-------------------|
| flavour- $k_T$                     | $345.97(9)^{+21.4\%}_{-16.2\%}$  | $408.4(5)^{+4.2\%~(41\%)}_{-6.2\%~(28\%)}$      | 1.18          | $434(8)^{+1.7\%~(16\%)}_{-2.5\%~(16\%)}$                 | 1.06              |
| flavour anti- $k_T$ ( $a = 0.05$ ) | $425.71(12)^{+21.5\%}_{-16.2\%}$ | $540.3(7)^{+6.2\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$ | 1.27          | $636(11)^{+5.4\%}_{-5.0\%}~^{(23\%)}_{(20\%)}$           | 1.18              |
| flavour anti- $k_T~(a=0.1)$        | $425.63(12)^{+21.5\%}_{-16.2\%}$ | $538.7(7)^{+6.1\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$ | 1.27          | $630(10)^{+5.0\%}_{-4.8\%}$ (22%)                        | 1.17              |
| flavour anti- $k_T \ (a=0.2)$      | $424.37(12)^{+21.5\%}_{-16.2\%}$ | $530.6(7)^{+5.8\%}_{-7.2\%}~^{(42\%)}_{(29\%)}$ | 1.25          | $606(10)^{+4.2\%}_{-4.2\%} \stackrel{(21\%)}{_{(19\%)}}$ | 1.14              |

## Numerical results: differential distributions





September 20, 2022 10 / 13

## NNLO vs NLO-merged calculation

$$K_{\rm NNLO} = \frac{\sigma_{\rm NNLO}}{\sigma_{\rm NLO}} \qquad K_{\rm NLO+} =$$

#### Inclusive $W^+(\rightarrow \ell^+ \nu) b \bar{b}$ cross sections

| Jet algorithm                      | $\sigma_{\sf NLO}$ [fb]        | $\sigma_{\sf NNLO}$ [fb]    | <i>K</i> <sub>NNLO</sub> | $\sigma_{NLO+}$ [fb]             | $\kappa_{\rm NLO+}$ |
|------------------------------------|--------------------------------|-----------------------------|--------------------------|----------------------------------|---------------------|
| flavour- <i>k<sub>T</sub></i>      | $362.0(6)^{+13.7\%}_{-11.4\%}$ | $445(5)^{+6.7\%}_{-7.0\%}$  | 1.23                     | 426(5) <sup>+7.6%</sup><br>-8.9% | 1.18                |
| flavour anti- $k_T$ ( $a = 0.05$ ) | $500.9(8)^{+16.1\%}_{-12.8\%}$ | $690(7)^{+10.9\%}_{-9.7\%}$ | 1.38                     | $635(6)^{+11.2\%}_{-11.1\%}$     | 1.27                |
| flavour anti- $k_{T}~(a=0.1)$      | $497.8(8)^{+16.0\%}_{-12.7\%}$ | $677(7)^{+10.4\%}_{-9.4\%}$ | 1.36                     | $626(6)^{+10.8\%}_{-10.9\%}$     | 1.26                |
| flavour anti- $k_T$ ( $a = 0.2$ )  | $486.3(8)^{+15.5\%}_{-12.5\%}$ | $647(7)^{+9.5\%}_{-8.9\%}$  | 1.33                     | $602(6)^{+10.2\%}_{-10.5\%}$     | 1.24                |

Combine *Wbb* and *Wbbj* NLO cross sections using *exclusive sums* method [The SM and NLO Multileg and SM MC Working Groups: Summary Report(2012)] [Anger,Febres Cordero,Ita,Sotnikov(2017)]

 $\sigma_{\mathrm{NLO}+,\mathit{Wb}\bar{b},\mathrm{inc}} = \sigma_{\mathrm{NLO},\mathit{Wb}\bar{b},\mathrm{exc}} + \sigma_{\mathrm{NLO},\mathit{Wb}\bar{b}j,\mathrm{inc}}$ 



Bayu Hartanto (Cambridge)

5-point scattering with an external mass

September 20, 2022 11 / 13

 $\sigma_{\rm NLO+}$ 

 $\sigma_{\rm NLO}$ 

## Comparison to CMS data [arXiv:1608.07561]

- CMS measurement is done for exclusive final state configuration
- ► The use of flavour anti-k<sub>T</sub> algorithm in theoretical calculation allows for close comparison with CMS data (standard anti-k<sub>T</sub>)
- Correction factors included: hadronisation (multiplicative) =  $0.81 \pm 0.07$ DPI (additive) =  $0.06 \pm 0.06$  pb
  - Thick bands: 7-pt scale variation (without DPI error) thin bands: uncorrelated prescription (without DPI error), dotted bands: uncorrelated prescription (with DPI error)



[HBH, Poncelet, Popescu, Zoia; arXiv:2209.03280]

Conclusions

## Conclusions

## Conclusions

- ✓ Progress on master integral and scattering amplitude computations for 2-loop 5-point scattering process with an external mass
- ✓ NNLO QCD predictions for  $W(\rightarrow \ell \nu)b\bar{b}$  production at the LHC ⇒ improved perturbative convergence, better agreement with data
- × Non-planar contributions to the two-loop amplitude
- abla W + 1b jet, Z +  $bar{b}$  ,W/Z + 2 jets, W $\gamma j$  at NNLO QCD
- X Processes with more scale(s)

## Conclusions

- ✓ Progress on master integral and scattering amplitude computations for 2-loop 5-point scattering process with an external mass
- ✓ NNLO QCD predictions for  $W(\rightarrow \ell \nu)b\bar{b}$  production at the LHC ⇒ improved perturbative convergence, better agreement with data
- × Non-planar contributions to the two-loop amplitude
- abla W + 1b jet, Z +  $bar{b}$  ,W/Z + 2 jets, W $\gamma j$  at NNLO QCD
- X Processes with more scale(s)

# THANK YOU!!!

## Back-up Slides

## Flavoured jet algorithm study

Massless *b* beyond NLO: IR unsafe with standard jet algorithm due to soft wide angle  $q\bar{q}$  pair

Flavour  $k_{T}$ [Banfi,Salam,Zanderighi(2006)] jet algorithm widely used in theoretical calculations

Experimental measurements use anti- $k_T$  jet algorithm  $\Rightarrow$  unfold data to match theory definition by comparing NLO+PS employing both jet definitions [Gauld,Gehrmann-De Ridder,Glover,Huss,Majer(2020)]

Flavour anti- $k_T$ [Czakon,Mitov,Poncelet(2022)]

 $\Rightarrow$  minimize the effect of unfolding

 $\Rightarrow$  introduce damping function to the standard anti- $k_T$ 

$$S_{ij} = 1 - \Theta(1-x) \cdot \cos\left(\frac{\pi}{2}x\right) \qquad x \equiv \frac{1}{a} \frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T,\max}^2}$$

if i, j have the same non-zero flavour of opposite sign



## Flavoured jet algorithm study

Massless *b* beyond NLO: IR unsafe with standard jet algorithm due to soft wide angle  $q\bar{q}$  pair

Flavour  $k_{\mathcal{T}[Banfi,Salam,Zanderighi(2006)]}$  jet algorithm widely used in theoretical calculations

Experimental measurements use anti- $k_T$  jet algorithm  $\Rightarrow$  unfold data to match theory definition by comparing NLO+PS employing both jet definitions [Gauld,Gehrmann-De Ridder,Glover,Huss,Majer(2020)]

Flavour anti- $k_T$ [Czakon,Mitov,Poncelet(2022)]

 $\Rightarrow$  minimize the effect of unfolding

 $\Rightarrow$  introduce damping function to the standard anti- $k_T$ 

$$\mathcal{S}_{ij} = 1 - \Theta(1-x) \cdot \cos\left(\frac{\pi}{2}x\right) \qquad x \equiv \frac{1}{a} \frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T,\max}^2}$$

if i, j have the same non-zero flavour of opposite sign

