Multi-emission Kernels for Parton Branching Algorithms ${ }^{a}$

Maximilian Löschner

Karlsruher Institut für Technologie
Institute for Theoretical Physics (Project B1d, PI: S. Gieseke)
Erwin Schrödinger Institut (research stays in Vienna)

20 Sep 2022, Newcastle

[Simon Plätzer]

$$
\mathrm{d} \sigma \simeq \mathrm{~d} \sigma_{\text {hard }}(Q) \times \operatorname{PS}(Q \rightarrow \mu) \times \operatorname{Had}(\mu \rightarrow \Lambda) \times \ldots
$$

Parton shower status

- Despite pushes for higher orders in parton showers (e.g. [Prestel, Hoeche—Phys.Rev.D 96 (2017) 7, 074017], [Skands, Li—PLB 771 (2017) 59-66]) Road to accuracy requires paradigm shift
- Recoil, ordering, colour, correlations
[Bewick, Seymour, Richardson-JHEP 04 (2020) 019], [Forshaw, Holguin,
Plätzer-JHEP 09 (2020) 014], [Ruffa, Plätzer-JHEP 06 (2021) 007], [ML, Plätzer,
Simpson-2112.14454], [also see PanScales]
- Amplitude level sets the complexity for resolving these
[Nagy, Soper], [DeAngelis, Forshaw, Plätzer- PRL 126 (2021) 11, 112001 \& JHEP 05 (2018) 044]

Non-global observables

- Coherent branching via angular ordering essential for including large-angle soft contributions
- No global measure of deviation from jet configuration: Coherent branching fails
- Dipole shower: correct LL@LC for non-global, but issues in NLL@LC
 and LL@NLC for global observables

Non-global observables

- Coherent branching via angular ordering essential for including large-angle soft contributions
- No global measure of deviation from jet configuration: Coherent branching fails
- Dipole shower: correct LL@LC for non-global, but issues in NLL@LC
 and LL@NLC for global observables
- Require dipole-type soft gluon evolution (to account for change in colour structure)
- Even with a dipole approach, $1 / N_{C}$ effects possibly become comparable to subleading logs, and intrinsically $\sim 10 \%$ effects

Bucket list

\Rightarrow Study approximations in emission iterations rather than iterations
of one emission approximation.
Or: amplitude vs. cross-section level
Goal: NLL@NLC accuracy for global and non-global observables

- Going beyond iterated $1 \rightarrow 2$ splittings in parton showers
- Combine with global recoil scheme

Systematic expansion
to handle uncertainties
\Leftrightarrow
higher logarithmic accuracy

- Include color and spin correlations
- Refine ad hoc models of MC-programs, e.g. azimuthal correlations
- Define language for connecting fixed order to parton showers

Comparison to CS dipoles

- Catani-Seymour dipole operators reproduce the partitioned soft and collinear behaviour for one emission:

$$
\begin{align*}
& \mathcal{D}_{i j, k}\left(p_{1}, \ldots, p_{m+1}\right)=-\frac{1}{2 p_{i} \cdot p_{j}} \tag{5.2}\\
& \quad{ }_{m}<1, \ldots, \tilde{j}, \ldots, \tilde{k}_{1} . . m+1\left|\frac{\boldsymbol{T}_{k} \cdot \boldsymbol{T}_{i j}}{\boldsymbol{T}_{i j}^{2}} \boldsymbol{V}_{i j, k}\right| 1, \ldots, \tilde{i}, \ldots, \tilde{k}, \ldots, m+1>_{m} . \\
& <s\left|\boldsymbol{V}_{q i g j, k}\left(\tilde{z}_{i} ; y_{i j, k}\right)\right| s^{\prime}>=8 \pi \mu^{2 \epsilon} \alpha_{\mathrm{S}} C_{F}\left[\frac{2}{1-\tilde{z}_{i}\left(1-y_{i j, k}\right)}-\left(1+\tilde{z}_{i}\right)-\epsilon\left(1-\tilde{z}_{i}\right)\right] \delta_{s s^{\prime}}
\end{align*}
$$

- Our idea: algorithmic generation of such splitting kernels for >1 emission
- Generate partitioned soft behaviour via power counting instead of construction 'by hand'
- Potential for constructing subtraction terms

Splitting kernels

Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

$$
\sigma=\sum_{n} \int \operatorname{Tr}[|\mathcal{M}(\mu)\rangle\langle\mathcal{M}(\mu)|] u\left(p_{1}, \ldots, p_{n}\right) \mathrm{d} \phi_{n}
$$

Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

$$
\sigma=\sum_{n} \int \operatorname{Tr}[|\mathcal{M}(\mu)\rangle\langle\mathcal{M}(\mu)|] u\left(p_{1}, \ldots, p_{n}\right) \mathrm{d} \phi_{n}
$$

Splitting kernel iterations

Density operator language is useful for discussing emissions in iterative manner:

[Forshaw, Holguin, Plätzer-JHEP 09 (2020) 014]

Partitioning

Disentangling different collinear sectors

- Use partition of one in terms of all possible collinear pairings

$$
1=\mathbb{P}_{1}^{(\mathcal{A})}+\mathbb{P}_{2}^{(\mathcal{A})}+\mathbb{P}_{3}^{(\mathcal{A})}+\ldots
$$

where $\mathbb{P}_{i}^{(\mathcal{A})}$ projects onto collinearity w.r.t. p_{i} for some amplitude \mathcal{A}

- Disentangle overlapping collinear singularities
- Keep smooth interpolation over whole phase space

Angular ordering and subtractions

- Radiation of a soft gluon leads to

$$
\begin{aligned}
& \mathrm{d} \sigma_{n+1}=\mathrm{d} \sigma_{n} \times \frac{\mathrm{d} \omega}{\omega} \frac{\mathrm{~d} \Omega}{2 \pi} \frac{\alpha_{S}}{2 \pi} \sum_{i, l} C_{i l} W_{i l} \\
& \text { where } \quad W_{i l}=\frac{\omega^{2} p_{i} \cdot p_{l}}{p_{i} \cdot p_{j} p_{l} \cdot p_{j}}: \quad \text { 'Radiation function' }
\end{aligned}
$$

Angular ordering and subtractions

- Radiation of a soft gluon leads to

$$
\mathrm{d} \sigma_{n+1}=\mathrm{d} \sigma_{n} \times \frac{\mathrm{d} \omega}{\omega} \frac{\mathrm{~d} \Omega}{2 \pi} \frac{\alpha_{S}}{2 \pi} \sum_{i, l} C_{i l} W_{i l}
$$

where $\quad W_{i l}=\frac{\omega^{2} p_{i} \cdot p_{l}}{p_{i} \cdot p_{j} p_{l} \cdot p_{j}}: \quad$ 'Radiation function'

- Can decompose $W_{i l}=W_{i l}^{[i]}+W_{i l}^{[l]}$

$$
W_{i l}^{[i]}=\frac{1}{2}\left(W_{i l}-\frac{1}{1-\cos \theta_{j l}}+\frac{1}{1-\cos \theta_{i j}}\right)
$$

- Then azimuthal averaging confines emissions to cone

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \phi_{i j}}{2 \pi} W_{i l}^{[i]}= \begin{cases}\frac{1}{1-\cos \theta_{i j}} & \text { if } \theta_{i j}<\theta_{i l}, \\ 0 & \text { otherwise. }\end{cases}
$$

- Textbook knowledge: subtraction partitioning implies angular ordering [Ellis, Stirling, Webber]

Subtraction partitioning

- As an alternative to fractional partitioning, define subtraction scheme:

$$
\begin{gathered}
\mathbb{P}_{(i \| j)}\left[\frac{1}{S_{i j} S_{j l}}\right]=\frac{1}{2}\left(\frac{1}{S_{i j} S_{j l}}-\Delta_{(j \| l)}+\Delta_{(i \| j)}\right) \\
\mathbb{P}_{(j \| l)}\left[\frac{1}{S_{i j} S_{j l}}\right]=\frac{1}{2}\left(\frac{1}{S_{i j} S_{j l}}-\Delta_{(i \| j)}+\Delta_{(j \| l)}\right), \\
\Delta_{(i \| j)}=\frac{E_{i}}{E_{j}} \frac{1}{S_{i l} S_{i j}}, \quad \Delta_{(j \| l)}=\frac{E_{l}}{E_{j}} \frac{1}{S_{i l} S_{j l}} .
\end{gathered}
$$

by exploiting $S_{i j} \xrightarrow{(j \| l)} E_{i} E_{j} n_{i} \cdot n_{l}=\frac{E_{j}}{E_{l}} S_{i l}$

- $\mathbb{P}_{(i \| j)}[\ldots]$ non-singular in $(j \| l)$-limit while original singular behaviour is reproduced in $(i \| j)$-limit
- Algorithmic generalisation to multi emissions under control

Subtraction partitioning behaviour

Recent work: subtraction partitioning \Longrightarrow angular ordering for 2 E ?

$$
\mathcal{A} \propto \frac{1}{S_{i j} S_{j l}}:
$$

Subtraction partitioning behaviour

Recent work: subtraction partitioning \Longrightarrow angular ordering for 2 E ?

$$
\begin{gathered}
\mathcal{A} \propto \frac{1}{S_{i j} S_{j l}}: \\
\mathcal{A} \propto \frac{1}{S_{i j} S_{j k} S_{j l} S_{k l}}:
\end{gathered}
$$

Fractional partitioning for two emissions

Alternatively: cancel out 'unwanted' collinear singularities by partitioning factors

- Read
$(i\|j\| k): S_{i j k}=\left(q_{i}+q_{j}+q_{k}\right)^{2} \rightarrow 0$
- Collect non-singular factors in triple collinear and coll-coll pairings

configuration	$\mathcal{A} \propto \frac{1}{S_{i j} S_{k l} S_{i j k} S_{j k l}}$		
$i\\|j\\| k$	$S_{k l} S_{j k l}$		
$i\\|j\\| l$	$S_{k l} S_{i j k} S_{j k l}$		
$i\\|k\\| l$	$S_{i j} S_{i j k} S_{j k l}$		
$j\\|k\\| l$	$S_{S_{i j} S_{i j k}}$		
$(i \\| j),(k \\| l)$	$S_{i j k} S_{j k l}$		
$(i \\| k),(j \\| l)$	\times		
$(i \\| l),(j \\| k)$	\times		

Fractional partitioning for two emissions

Alternatively: cancel out 'unwanted' collinear singularities by partitioning factors

- Read
$(i\|j\| k): S_{i j k}=\left(q_{i}+q_{j}+q_{k}\right)^{2} \rightarrow 0$
- Collect non-singular factors in triple collinear and coll-coll pairings

configuration	$\mathcal{A} \propto \frac{1}{S_{i j} S_{k l} S_{i j k} S_{j k l}}$		
$i\\|j\\| k$	$S_{k l} S_{j k l}$		
$i\\|j\\| l$	$S_{k l} S_{i j k} S_{j k l}$		
$i\\|k\\| l$	$S_{i j} S_{i j k} S_{j k l}$		
$j\\|k\\| l$	$S_{i j} S_{i j k}$		
$(i \\| j),(k \\| l)$	$S_{i j k} S_{j k l}$		
$(i \\| k),(j \\| l)$	\times		
$(i \\| l),(j \\| k)$	\times		

\Rightarrow Construct partitioning factors of the form

$$
\mathbb{P}_{(i j k)}^{(\mathcal{A})}=\frac{S_{k l} S_{j k l}}{S_{k l} S_{j k l}+S_{i j} S_{i j k}+S_{i j k} S_{j k l}+\left(S_{k l}+S_{i j}\right) S_{i j k} S_{j k l}}
$$

- $\mathbb{P}_{(i j k)}^{(\mathcal{A})} \times \mathcal{A}$ extracts the $(i\|j\| k)$ - singular behaviour
- $\mathbb{P}_{(i j k)}^{(\mathcal{A})}$ is non-singular in any collinear configuration

Power Counting

Power counting

- Discuss soft and collinear scaling of internal lines in general way
- Sudakov-like decomposition of momenta:

$$
q_{I}^{\mu}=\sum_{k \in I} r_{i k}=z_{I} p_{i}^{\mu}+\frac{S_{I}+p_{\perp, I}^{2}}{2 z_{I} p_{i} \cdot n} n^{\mu}+k_{\perp, I}{ }^{\mu},
$$

- Decompose fermion and gluon lines (factors of $\sqrt{z_{I}}$ absorbed in vertices for fermions):
$\because \square \longrightarrow=\not{ }_{i}$,

$$
\text { aee } \square \text { eees }=d^{\mu \nu}\left(p_{i}\right),
$$

$\leadsto \longrightarrow=\frac{S_{I}+p_{\perp, I}^{2}}{2 z_{I}^{2} p_{i} \cdot n} \not h$,
aeenlees $=\frac{S_{I}+p_{\perp, I}^{2}}{\left(z_{I} p_{i} \cdot n\right)^{2}} n^{\mu} n^{\nu}$,
$\because \rightarrow \square \rightarrow \frac{k_{\perp, I}}{z_{I}}$,
eeerைees $=\frac{k_{\perp, I}^{\mu} n^{\nu}+n^{\mu} k_{\perp, I}^{\nu}}{z_{I} p_{i} \cdot n}$.

- Leads to power counting rules with potential connection to SCET

Soft and collinear scaling

- Algorithmically determine soft or collinear scaling of an emission amplitude via scaling of internal lines (and propagators)

Scaling of hard lines:

	h	h+c	h+s	$h+c+s$			c	S+C
- 마	λ 0	λ λ		$\begin{gathered} \lambda \text { (bal.) } \\ \lambda \text { (unbal.) } \end{gathered}$	$\frac{1}{1}$	1	λ	λ
$\square \square$		$\begin{aligned} & \lambda^{2} \\ & \lambda^{2} \end{aligned}$	λ λ	$\begin{gathered} \lambda \text { (bal.) } \\ \lambda \text { (unbal.) } \end{gathered}$	\downarrow	1	λ^{2}	λ

- Note differences between mappings, e.g. with and without balanced k_{\perp}-components

One emission amplitudes

- Determine list of all relevant sub-amplitudes via power counting rules
- Combine these in density operator (\simeq squared amp) to find full splitting kernel

	C	S		C	S
	λ	λ		λ	λ
	λ	1		λ^{2}	λ^{2}
	λ	λ		λ^{2}	λ^{2}
	λ^{2}	λ		λ^{2}	λ
	λ^{2}	λ^{2}	官	1	1
	λ^{2}	λ	亩	λ	1

One emission example

Full one emission ($i j$)-splitting kernel (balanced mapping) consists of

- Exhibits factorisation to hard amplitude
- Smooth interpolation between soft and collinear limits
- Algorithmically generalizable for more emissions

Balanced vs. unbalanced mapping

- Can test different implementations of momentum mappings, e.g. the balancing of transverse components

$$
k_{\perp, I}^{\mu}=\sum_{i \in I} k_{\perp, I}^{(i), \mu}
$$

- Yields different sets of diagrammatic contributions
- Nevertheless, the same collinear and soft behaviour is reproduced for one emission

unbalanced

- Still: can compare mappings and check for inconsistencies for > 1 emission

Check: One emission splitting function

- Reproduce Splitting function $P_{q g}$ as a crosscheck

Check: One emission splitting function

- Reproduce Splitting function $P_{q g}$ as a crosscheck

$$
\rightarrow \frac{4 \pi \alpha_{s} \mathbf{T}_{i}^{2}}{S_{i j}}\left[(d-2) \alpha_{i}+4 \frac{\left(1-\alpha_{i}\right)^{2}}{\alpha_{i}}+4\left(1-\alpha_{i}\right)\right] \not p_{i}+\mathcal{O}\left(\lambda^{-1}\right) .
$$

Soft-Collinear Interplay

- Soft singular part of splitting function cancelled by:

- Eikonal part remains:

- Smooth interpolation between soft and collinear limits in $\mathbb{U}_{(i j)}$
- Current work: investigate this interplay for two emissions

Two emissions: splitting amplitudes

- Same procedure applies to two emissions
- Some amplitudes can not be achieved by single emission iteration
- Signals for violation of exact factorisation (drop out for two emissions though)

Two emissions: combined contributions

- Determine amplitude scaling algorithmically:
combinedAmpsB2[\{c, s, c, s\}, 1]

- Combine with partitioned propagator scaling to find all leading contributions for full kernel

	CC	CS	SC	SS
$A^{(1)}$	$1 / \lambda^{2}$	$1 / \lambda^{3}$	$1 / \lambda$	$1 / \lambda^{4}$
$A^{(2)}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$A^{(3)}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$	$1 / \lambda$	$1 / \lambda^{3}$
$A^{(4)}$	$1 / \lambda^{3}$	$1 / \lambda^{2}$	$1 / \lambda$	$1 / \lambda^{4}$
$A^{(5)}$	$1 / \lambda^{3}$	$1 / \lambda$	$1 / \lambda$	$1 / \lambda^{4}$
$B^{(1)}$	$1 / \lambda^{3}$	$1 / \lambda^{4}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$B^{(2)}$	$1 / \lambda^{3}$	$1 / \lambda^{3}$	$1 / \lambda^{3}$	$1 / \lambda^{4}$
$B^{(3)}$	$1 / \lambda^{3}$	$1 / \lambda^{3}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$B^{(4)}$	$1 / \lambda^{3}$	$1 / \lambda^{4}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$B^{(5)}$	$1 / \lambda^{3}$	$1 / \lambda^{3}$	$1 / \lambda^{3}$	$1 / \lambda^{4}$
$B^{(6)}$	$1 / \lambda^{3}$	$1 / \lambda^{3}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$X^{(1)}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$	$1 / \lambda^{4}$
$X^{(2)}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$
$E^{(1)}$	$1 / \lambda^{4}$	$1 / \lambda^{4}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$E^{(2)}$	$1 / \lambda^{4}$	$1 / \lambda^{3}$	$1 / \lambda^{3}$	$1 / \lambda^{4}$
$E^{(3)}$	$1 / \lambda^{4}$	$1 / \lambda^{3}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$E^{(4)}$	$1 / \lambda^{4}$	$1 / \lambda^{3}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$
$E^{(5)}$	$1 / \lambda^{4}$	$1 / \lambda^{2}$	$1 / \lambda^{2}$	$1 / \lambda^{4}$

Conclusions

Goal: universal algorithm for handling accuracy in multiple emissions (for applications in parton showers and beyond)

- Density-operator formalism to study iterative behaviour of emissions
- Partitioning algorithms to separate overlapping singularities
- Momentum mapping for exposing collinear and soft factorization
- Global recoil via Lorentz transformation
- Set of power counting rules to single out leading amplitudes
- Can handle and compare different momentum mappings
- Two-emission kernels/power counting under control

Conclusions

Goal: universal algorithm for handling accuracy in multiple emissions (for applications in parton showers and beyond)

- Density-operator formalism to study iterative behaviour of emissions
- Partitioning algorithms to separate overlapping singularities
- Momentum mapping for exposing collinear and soft factorization
- Global recoil via Lorentz transformation
- Set of power counting rules to single out leading amplitudes
- Can handle and compare different momentum mappings
- Two-emission kernels/power counting under control

Backup slides

Coherent branching

- Coherent emission of soft large angle gluons from systems of collinear partons
- Angular ordering essential for including large-angle soft contributions

[Simon Plätzer]
- Resummation of global jet observables such as thrust τ
- NLL accurate @Next-to-Leading-Colour (NLC) if inclusive over secondary soft gluon emission

Applications

- Use projectors and helicity sums to represent emission amplitudes as (complex) weights for numerical evaluation

$$
\begin{aligned}
& \mathbf{P}(q) \equiv\left\{\begin{array}{llr}
P^{\rho \sigma}(p)=d^{\rho \sigma}(p), & \text { (gluon) }, & d^{\mu \nu}(p)=\epsilon_{+}^{\mu}(p, n) \epsilon_{-}^{\nu}(p, n)+(\mu \leftrightarrow \nu), \\
P(p)=\frac{\not p}{2 n \cdot p}, & \text { (quark), } & \not x=\sum_{\lambda} u_{\lambda}(n) \bar{u}_{\lambda}(n),
\end{array}\right.
\end{aligned}
$$

Applications

- Use projectors and helicity sums to represent emission amplitudes as (complex) weights for numerical evaluation

$$
\begin{aligned}
& \mathbf{P}(q) \equiv\left\{\begin{array}{llr}
P^{\rho \sigma}(p)=d^{\rho \sigma}(p), & \text { (gluon) }, & d^{\mu \nu}(p)=\epsilon_{+}^{\mu}(p, n) \epsilon_{-}^{\nu}(p, n)+(\mu \leftrightarrow \nu), \\
\not P(p)=\frac{\not x}{2 n \cdot p}, & \text { (quark), } & \nsim=\sum_{\lambda} u_{\lambda}(n) \bar{u}_{\lambda}(n),
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \sum_{\lambda_{i}, \bar{\lambda}_{i}} \frac{u_{\lambda_{1}}}{\sqrt{2 n \cdot p_{i}}}\left[\frac{\bar{u}_{\lambda_{1}}}{\sqrt{2 n \cdot p_{i}}} \not \psi_{\perp} \not_{\lambda_{3}} \not p_{i} \frac{u_{\lambda_{2}}}{\sqrt{2 n \cdot p_{i}}}\right] \frac{\bar{u}_{\lambda_{2}}}{\sqrt{2 n \cdot p_{i}}} \epsilon_{\lambda_{3}}^{\sigma} \\
& \times \frac{u_{\bar{\lambda}_{1}}}{\sqrt{2 n \cdot p_{i}}}\left[\frac{\bar{u}_{\bar{\lambda}_{1}}}{\sqrt{2 n \cdot p_{k}}} \not p_{k} \frac{u_{\bar{\lambda}_{2}}}{\sqrt{2 n \cdot p_{k}}} p_{k} \cdot \epsilon_{\bar{\lambda}_{3}}\right] \frac{\bar{u}_{\bar{\lambda}_{2}}}{\sqrt{2 n \cdot p_{k}}} \epsilon_{\bar{\sigma}, \bar{\lambda}_{3}} .
\end{aligned}
$$

Team

Karlsruhe/Manchester/Vienna network with support from SFB drives significant parts of the development, also relating to aspects such as color reconnection [e.g. Gieseke, Kirchgaesser, Plätzer-JHEP 11 (2018) 149]

Forshaw + De Angelis, Holguin, ...

RWTHANACHESN
Czakon + NN,

A highly ambitious program:
Need to combine diverse expertise from different networks to gain momentum.

Plătzer + Ruffa, ...
universität wien

Gieseke + Löschner, Simpson-Dore, ..

Algorithm for subtraction partitioning

- General form of partitioned propagator P for config σ $\mathbb{P}_{\sigma}[P]=\frac{1}{m}\left(P+(m-1) \Delta_{\sigma ; \tau_{1}, \ldots, \tau_{m-1}}[P]-\sum_{i=1}^{m-1} \Delta_{\tau_{i} ; \tau_{1}, \ldots, \tau_{i-1}, \sigma, \tau_{i+1}, \ldots, \tau_{m-1}[P]}\right)$,
- with Subtraction terms

$$
\Delta_{\tau_{1} ; \tau_{2}, \ldots, \tau_{m}}[P]=\underbrace{\mathbb{F}_{\tau_{1}}[P]}_{\begin{array}{c}
\text { non-singular } \\
\text { bits }
\end{array}}(\underbrace{\mathbb{S}_{\tau_{1}}[P]}_{\begin{array}{c}
\text { singular } \\
\text { bits }
\end{array}}-\overline{\sum_{\mathcal{S} / \tau_{1}}} \Delta_{\tau_{i_{1}} ; \tau_{i_{2}}, \ldots, \tau_{i_{m-1}}}\left[\mathbb{S}_{\tau_{1}}[P]\right]),
$$

- When partitioning e.g. to $\sigma=(i\|j\| k)$, subtract off all (sub-)divergences of other singular configs τ_{i} for propagator factor P.
- Combinatorial factor m : number of singular configs for P

Two emission example

- Partitioned version of $A^{(1)} \propto 1 / S_{i j} S_{i j k} S_{k l} S_{j k l}$

$$
\begin{aligned}
\mathcal{P}\left(A^{(1)}\right) & =\frac{1}{3}\left(\frac{1}{S_{i j} S_{i j k} S_{k l} S_{j k l}}+2 \Delta_{(i j k)}\left[\mathcal{P}\left(A^{(1)}\right)\right]-\Delta_{(j k l)}\left[\mathcal{P}\left(A^{(1)}\right)\right]-\Delta_{(i j)(k l)}\left[\mathcal{P}\left(A^{(1)}\right)\right]\right), \\
& +\frac{1}{3}\left(\frac{1}{S_{i j} S_{i j k} S_{k l} S_{j k l}}-\Delta_{(i j k)}\left[\mathcal{P}\left(A^{(1)}\right)\right]+2 \Delta_{(j k l)}\left[\mathcal{P}\left(A^{(1)}\right)\right]-\Delta_{(i j)(k l)}\left[\mathcal{P}\left(A^{(1)}\right)\right]\right), \\
& +\frac{1}{3}\left(\frac{1}{S_{i j} S_{i j k} S_{k l} S_{j k l}}-\Delta_{(i j k)}\left[\mathcal{P}\left(A^{(1)}\right)\right]-\Delta_{(j k l)}\left[\mathcal{P}\left(A^{(1)}\right)\right]+2 \Delta_{(i j)(k l)}\left[\mathcal{P}\left(A^{(1)}\right)\right]\right),
\end{aligned}
$$

where e.g.

$$
\Delta_{(j k l)}\left[\mathcal{P}\left(A^{(1)}\right)\right]=\frac{E_{l}^{2}}{E_{j}\left(E_{j}+E_{k}\right)} \frac{1}{S_{i l}^{2}}\left(\frac{1}{S_{k l} S_{j k l}}-\frac{E_{i} E_{l}}{E_{j}\left(E_{l}+E_{k}\right)} \frac{1}{S_{i l} S_{k l}}\right),
$$

Check: Two Emissions

- Reproduced from general two-emission kernel which includes soft-limit too (here: in lightcone-gauge)

Vertex rules

- Can find vertex rules such as:

Insights from Power Counting Rules

- Powerful vertex rule for lines belonging to same collinear sector:

Insights from Power Counting Rules

- Powerful vertex rule for lines belonging to same collinear sector:

- Shows (known fact) that interference diagrams do not contribute in splitting function in a physical gauge
- Reason: denominator goes as $1 / \lambda^{2 k} S_{\text {(col) }}^{k}$ for k coll. emissions
- Can only contribute in splitting function ($\left.\propto 1 / \lambda^{2 k} S_{\text {(col) }}^{k}\right)$ if numerator goes as $\mathcal{O}(1)$, but the only possible contribution $\equiv 0$

Global and non-global observables

[Dasgupta, Salam (2001)]

- Example: heavy and light jet mass (global) vs. hemisphere jet mass (non-global)
- Cancellations between large angle-soft and virtual contributions (from k_{2}) not guaranteed
\Rightarrow NLL enhancement from leftover $\alpha_{S}^{2} L^{2}$ terms

Partitioning

Amplitudes carry different singular S-invariants

$$
\mathcal{A}\left(S_{1}, S_{2}\right)=\frac{\mathcal{N}\left(S_{1}, S_{2}\right)}{S_{1} S_{2}},
$$

Decomposition using partitioning factors:

$$
\mathbb{P}_{(1)}^{(\mathcal{A})}=\frac{S_{2}}{S_{1}+S_{2}}, \quad \mathbb{P}_{(2)}^{(\mathcal{A})}=\frac{S_{1}}{S_{1}+S_{2}},
$$

we can decompose \mathcal{A} into

$$
\mathcal{A}=\left[\mathbb{P}_{(1)}^{(\mathcal{A})}+\mathbb{P}_{(2)}^{(\mathcal{A})}\right] \mathcal{A}=\frac{\mathcal{N}\left(S_{1}, S_{2}\right)}{S_{1}\left(S_{1}+S_{2}\right)}+\frac{\mathcal{N}\left(S_{1}, S_{2}\right)}{S_{2}\left(S_{1}+S_{2}\right)}
$$

Parton Shower

- Soft and collinear regions are of special interest:

$$
S_{i j} \equiv\left(q_{i}+q_{j}\right)^{2}=2 q_{i} \cdot q_{j}=2 q_{i}^{0} q_{j}^{0}\left[1-\cos \theta_{i j}\right], \quad \text { for } q_{i / j}^{2}=0
$$

- Amplitude goes as $\propto 1 / S_{i j}$ \Rightarrow becomes singular/enhanced when $S_{i j} \rightarrow 0$
- Large logarithms due to phase space integrations of the kind

$$
\frac{\mathrm{d} q_{j}^{0}}{q_{j}^{0}}, \quad \frac{\mathrm{~d} \theta_{i j}}{\theta_{i j}} \rightarrow \alpha_{S} \log ^{2} \frac{Q}{Q_{0}} \sim 1
$$

for some scale $Q \in\left\{\theta, p_{\perp}, \ldots\right\}$ and cut-off Q_{0}

Parton shower: collinear limit

- Single emission approach is then usually iterated in a probabilistic manner

$$
\begin{aligned}
W_{2+2} & =\left(\int|\lesssim|^{2}+|\lesssim|^{2}+|\approx|^{2}+\left|\left\langle\left.\right|^{2} \mathrm{~d} \Phi_{2}\right) /|<|^{2}\right.\right. \\
& =2^{2} \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} \int_{t_{0}}^{t^{\prime}} \mathrm{d} t^{\prime \prime} W\left(t^{\prime}\right) W\left(t^{\prime \prime}\right)=\frac{2^{2}}{2!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{2} .
\end{aligned}
$$

- Sum over any number of emissions: result exponentiates

$$
\sigma_{>2}\left(t_{0}\right)=\sigma_{2}\left(t_{0}\right) \sum_{k=1}^{\infty} \frac{2^{k}}{k!}\left(\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right)^{k}
$$

- Sudakov Form Factor (\simeq no emission probability in range $t \rightarrow t_{0}$)

$$
\Delta\left(t_{0}\right)=\exp \left[-\int_{t_{0}}^{t} \mathrm{~d} t W(t)\right], \quad W(t)=\int_{z_{-}}^{z_{+}} \frac{\alpha_{S}(z, t)}{2 \pi} \frac{\hat{P}(z, t)}{t} \mathrm{~d} z
$$

Momentum mapping

Momentum mapping

Adding emissions

- Start with on-shell (OS) momenta p_{i} (to be emitters) and p_{r} (to be recoilers) with overall momentum transfer $Q \equiv \sum_{i} p_{i}+\sum_{r} p_{r}$

Momentum mapping

Adding emissions

- Start with on-shell (OS) momenta p_{i} (to be emitters) and p_{r} (to be recoilers) with overall momentum transfer $Q \equiv \sum_{i} p_{i}+\sum_{r} p_{r}$
- Add emissions to the process with:

1. Momentum conservation: $\sum_{i} q_{i}+\sum_{i, l} k_{i l}+\sum_{r} q_{r}=Q$
2. On-shellness of all partons
3. Parametrization of soft \& collinear behaviour for any \# of emissions

Momentum mapping

$$
\begin{aligned}
q_{r} & =\frac{\Lambda}{\alpha_{L}} p_{r} \\
k_{i l} & =\frac{\Lambda}{\alpha_{L}}\left[\alpha_{i l} p_{i}+\tilde{\beta}_{i l} n_{i}+\sqrt{\alpha_{i l} \tilde{\beta}_{i l}} n_{i l}^{\frac{1}{l}}\right], \quad A_{i} \equiv \sum_{l} \alpha_{i l}, \quad \tilde{\beta}_{i l}=\left(1-A_{i}\right) \beta_{i l} \\
q_{i} & =\frac{\Lambda}{\alpha_{L}}\left[\left(1-A_{i}\right) p_{i}+\left(y_{i}-\sum_{l} \tilde{\beta}_{3 l}\right) n_{i}-\sum_{l} \sqrt{\alpha_{i l} \tilde{\beta}_{i l}} n_{i l}^{\frac{1}{l}}\right]
\end{aligned}
$$

- Decomposition w/ light-like momentum n_{i} and $n_{i l}^{\perp} \cdot p_{i}=n_{i l}^{\perp} \cdot n_{i}=0$
- Need $\alpha_{L}^{2}=(Q+N)^{2} / Q^{2}$ for momentum conservation

$$
Q=\sum_{r} q_{r}+\sum_{i} q_{i}+\sum_{i, l} k_{i l}=\frac{\Lambda}{\alpha_{L}}[\underbrace{\sum_{r} p_{r}+\sum_{i}\left(p_{i}\right.}_{Q}+\underbrace{\left.y_{i} n_{i}\right)}_{N}]
$$

- Lorentz transformation $\Lambda, \alpha_{L} \Rightarrow$ non-trivial global recoil

Momentum mapping II

- Using Λ and α_{L}, recoil effects are removed from considerations about factorization, due to Lorentz invariance and known mass dimension of the amplitudes:

$$
\left|\mathcal{M}\left(q_{1}, \ldots, q_{n}\right)\right\rangle=\frac{1}{\alpha_{L}^{2 n-4}}\left|\mathcal{M}\left(\hat{q}_{1}, \ldots, \hat{q}_{n}\right)\right\rangle
$$

- Soft and collinear power counting possible via scaling of $\alpha_{i l}$ and $\beta_{i l}$, i.e. $\left(p_{i}, n_{i}, n_{i l}^{\perp}\right)$-components

	$\left(\alpha_{i l}, y_{i}, \beta_{i l}\right)$
(forward) collinear	$\left(1, \lambda^{2}, \lambda^{2}\right)$
soft	$(\lambda, \lambda, \lambda)$.

- Facilitates study of an amplitude's singular behaviour for implementation in splitting kernels
- This mapping is just one possible instance. Can e.g. use different balancing of transverse components.

Two emissions: topologies

- Decompose squared amplitude in terms of set of topologies

$$
\begin{aligned}
\left|\mathcal{M}_{n+2}\right|^{2}= & \sum_{i} \sum_{\alpha}\left(E_{i j k}^{(\alpha)}+(j \leftrightarrow k)\right) \\
& +\sum_{i} \sum_{l \neq i} \sum_{\alpha}\left(A_{i j k l}^{(\alpha)}+B_{i j k l}^{(\alpha)}+X_{i j k l}^{(\alpha)}+(j \leftrightarrow k)\right)+\ldots
\end{aligned}
$$

- Examples:

