Multi-emission Kernels for Parton Branching Algorithms^a

Maximilian Löschner

Institute for Theoretical Physics (Project B1d, PI: S. Gieseke) Erwin Schrödinger Institut (research stays in Vienna)

20 Sep 2022, Newcastle

^ain collaboration with Simon Plätzer and Emma Simpson Dore. arXiv:2112.14454

 $\mathrm{d}\sigma \simeq \mathrm{d}\sigma_{\mathrm{hard}}(Q) \times \mathrm{PS}(Q \to \mu) \times \mathrm{Had}(\mu \to \Lambda) \times \dots$

Parton shower status

 Despite pushes for higher orders in parton showers (*e.g.* [Prestel, Hoeche—Phys.Rev.D 96 (2017) 7, 074017], [Skands, Li—PLB 771 (2017) 59-66])
 Road to accuracy requires paradigm shift

Recoil, ordering, colour, correlations

[Bewick, Seymour, Richardson—JHEP 04 (2020) 019], [Forshaw, Holguin, Plätzer–JHEP 09 (2020) 014], [Ruffa, Plätzer–JHEP 06 (2021) 007], [ML, Plätzer, Simpson–2112.14454], [also see PanScales]

Amplitude level sets the complexity for resolving these

[Nagy, Soper], [DeAngelis, Forshaw, Plätzer— PRL 126 (2021) 11, 112001 & JHEP 05 (2018) 044]

Non-global observables

- Coherent branching via angular ordering essential for including large-angle soft contributions
- No global measure of deviation from jet configuration: Coherent branching fails
- Dipole shower: correct LL@LC for non-global, but issues in NLL@LC and LL@NLC for global observables

Non-global observables

- Coherent branching via angular ordering essential for including large-angle soft contributions
- No global measure of deviation from jet configuration: Coherent branching fails
- Dipole shower: correct LL@LC for non-global, but issues in NLL@LC and LL@NLC for global observables

- Require dipole-type soft gluon evolution (to account for change in colour structure)
- ► Even with a dipole approach, $1/N_C$ effects possibly become comparable to subleading logs, and intrinsically $\sim 10\%$ effects

 \Rightarrow Study approximations in emission iterations rather than iterations of one emission approximation.

Or: amplitude vs. cross-section level

Goal: NLL@NLC accuracy for global and non-global observables

- Going beyond iterated 1 → 2 splittings in parton showers
- Combine with global recoil scheme
- Include color and spin correlations
- Refine ad hoc models of MC-programs, e.g. azimuthal correlations
- Define language for connecting fixed order to parton showers

Systematic expansion to handle uncertainties ⇔ higher logarithmic accuracy

Comparison to CS dipoles

 Catani-Seymour dipole operators reproduce the partitioned soft and collinear behaviour for one emission:

$$\mathcal{D}_{ij,k}(p_1,...,p_{m+1}) = -\frac{1}{2p_i \cdot p_j}$$

$$\cdot_m < 1,..,\tilde{ij},..,\tilde{k},..,m+1 | \frac{\boldsymbol{T}_k \cdot \boldsymbol{T}_{ij}}{\boldsymbol{T}_{ij}^2} \boldsymbol{V}_{ij,k} | 1,..,\tilde{ij},..,\tilde{k},..,m+1 >_m .$$
(5.2)

$$< s|\boldsymbol{V}_{q_ig_j,k}(\tilde{z}_i;y_{ij,k})|s'> = 8\pi\mu^{2\epsilon}\alpha_{\rm S} C_F \left[\frac{2}{1-\tilde{z}_i(1-y_{ij,k})} - (1+\tilde{z}_i) - \epsilon(1-\tilde{z}_i)\right] \delta_{ss'}$$
[Catani, Seymour '97]

- Our idea: algorithmic generation of such splitting kernels for > 1 emission
- Generate partitioned soft behaviour via power counting instead of construction 'by hand'
- Potential for constructing subtraction terms

Splitting kernels

Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

$$\sigma = \sum_{n} \int \operatorname{Tr} \left[\left| \mathcal{M}(\mu) \right\rangle \left\langle \mathcal{M}(\mu) \right| \right] u(p_1, \dots, p_n) \mathrm{d}\phi_n$$

Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

$$\sigma = \sum_{n} \int \operatorname{Tr} \left[\left| \mathcal{M}(\mu) \right\rangle \left\langle \mathcal{M}(\mu) \right| \right] u(p_1, \dots, p_n) \mathrm{d}\phi_n$$

Splitting kernel iterations

Density operator language is useful for discussing emissions in iterative manner:

[Forshaw, Holguin, Plätzer–JHEP 09 (2020) 014]

Partitioning

Disentangling different collinear sectors

 Use partition of one in terms of all possible collinear pairings

 $1 = \mathbb{P}_1^{(\mathcal{A})} + \mathbb{P}_2^{(\mathcal{A})} + \mathbb{P}_3^{(\mathcal{A})} + \dots$

where $\mathbb{P}_i^{(\mathcal{A})}$ projects onto collinearity w.r.t. p_i for some amplitude \mathcal{A}

- Disentangle overlapping collinear singularities
- Keep smooth interpolation over whole phase space

Angular ordering and subtractions

Angular ordering and subtractions

$$\int_0^{2\pi} \frac{\mathrm{d}\phi_{ij}}{2\pi} W_{il}^{[i]} = \begin{cases} \frac{1}{1 - \cos \theta_{ij}} & \text{if } \theta_{ij} < \theta_{il}, \\ 0 & \text{otherwise.} \end{cases}$$

 Textbook knowledge: subtraction partitioning implies angular ordering [Ellis, Stirling, Webber]

Maximilian Löschner | ITP @ KIT

Subtraction partitioning

As an alternative to fractional partitioning, define subtraction scheme:

$$\begin{split} \mathbb{P}_{(i||j)}\left[\frac{1}{S_{ij}S_{jl}}\right] &= \frac{1}{2}\left(\frac{1}{S_{ij}S_{jl}} - \Delta_{(j||l)} + \Delta_{(i||j)}\right),\\ \mathbb{P}_{(j||l)}\left[\frac{1}{S_{ij}S_{jl}}\right] &= \frac{1}{2}\left(\frac{1}{S_{ij}S_{jl}} - \Delta_{(i||j)} + \Delta_{(j||l)}\right),\\ \Delta_{(i||j)} &= \frac{E_i}{E_j}\frac{1}{S_{il}S_{ij}}, \quad \Delta_{(j||l)} &= \frac{E_l}{E_j}\frac{1}{S_{il}S_{jl}}. \end{split}$$

by exploiting $S_{ij} \xrightarrow{(j||l)} E_i E_j n_i \cdot n_l = \frac{E_j}{E_l} S_{il}$

▶ P_(i||j) [...] non-singular in (j || l)-limit while original singular behaviour is reproduced in (i || j)-limit

Algorithmic generalisation to multi emissions under control

Subtraction partitioning behaviour

Recent work: subtraction partitioning \implies angular ordering for 2E?

 $\mathcal{A} \propto \frac{1}{S_{ij}S_{jl}}:$

Subtraction partitioning behaviour

Recent work: subtraction partitioning \implies angular ordering for 2E?

Maximilian Löschner | ITP @ KIT

Fractional partitioning for two emissions

Alternatively: cancel out 'unwanted' collinear singularities by partitioning factors

	connyuration
► Read	$i \parallel j \parallel k$
$(i \parallel j \parallel k) : S_{ijk} = (q_i + q_j + q_k)^2 \to 0$	$i \parallel j \parallel l$
	$i\parallel k\parallel l$
Collect non-singular factors in triple	$i \parallel k \parallel l$

collinear and coll-coll pairings

configuration	$\mathcal{A} \propto \frac{1}{S_{ij}S_{kl}S_{ijk}S_{jkl}}$
$i \parallel j \parallel k$	$S_{kl}S_{jkl}$
$i \parallel j \parallel l$	$S_{kl}S_{ijk}S_{jkl}$
$i\parallel k\parallel l$	$S_{ij}S_{ijk}S_{jkl}$
$j\parallel k\parallel l$	$S_{ij}S_{ijk}$
$(i \parallel j), (k \parallel l)$	$S_{ijk}S_{jkl}$
$(i \parallel k), (j \parallel l)$	×
$(i \parallel l), (j \parallel k)$	×

configuration 1 4~

Fractional partitioning for two emissions

Alternatively: cancel out 'unwanted' collinear singularities by partitioning factors

		configuration	$\mathcal{A} \propto \frac{1}{S_{ij}S_{kl}S_{ijk}S_{jkl}}$
	Read	$i \parallel j \parallel k$	$S_{kl}S_{jkl}$
	$(i \parallel j \parallel k) : S_{ijk} = (q_i + q_j + q_k)^2 \to 0$	$i \parallel j \parallel l$	$S_{kl}S_{ijk}S_{jkl}$
► C	Collect non-singular factors in triple	$i\parallel k\parallel l$	$S_{ij}S_{ijk}S_{jkl}$
		$j\parallel k\parallel l$	$S_{ij}S_{ijk}$
(collinear and coll-coll pairings	$(i \parallel j), (k \parallel l)$	$S_{ijk}S_{jkl}$
		$(i \parallel k), (j \parallel l)$	×
		$(i \parallel l), (j \parallel k)$	×

 \Rightarrow Construct partitioning factors of the form

$$\mathbb{P}_{(ijk)}^{(\mathcal{A})} = \frac{S_{kl}S_{jkl}}{S_{kl}S_{jkl} + S_{ij}S_{ijk} + S_{ijk}S_{jkl} + (S_{kl} + S_{ij})S_{ijk}S_{jkl}}$$

Power Counting

Power counting

Discuss soft and collinear scaling of internal lines in general way
 Sudakov-like decomposition of momenta:

$$q_I^{\mu} = \sum_{k \in I} r_{ik} = z_I p_i^{\mu} + \frac{S_I + p_{\perp,I}^2}{2z_I p_i \cdot n} n^{\mu} + k_{\perp,I}^{\mu} ,$$

• Decompose fermion and gluon lines (factors of $\sqrt{z_I}$ absorbed in vertices for fermions):

$$\begin{array}{c} & & & \\ \bullet & \\ \bullet$$

Leads to power counting rules with potential connection to SCET

Soft and collinear scaling

 Algorithmically determine soft or collinear scaling of an emission amplitude via scaling of internal lines (and propagators)

Note differences between mappings, e.g. with and without balanced k⊥-components

One emission amplitudes

- Determine list of all relevant sub-amplitudes via power counting rules
- Combine these in density operator (~ squared amp) to find full splitting kernel

One emission example

Full one emission (ij)-splitting kernel (balanced mapping) consists of

- Smooth interpolation between soft and collinear limits
- Algorithmically generalizable for more emissions

Balanced vs. unbalanced mapping

Can test different implementations of momentum mappings, e.g. the balancing of transverse components

$$k_{\perp,I}{}^{\mu} = \sum_{i \in I} k_{\perp,I}^{(i),\mu} ,$$

- Yields different sets of diagrammatic contributions
- Nevertheless, the same collinear and soft behaviour is reproduced for one emission

Still: can compare mappings and check for inconsistencies for > 1 emission

Check: One emission splitting function

• Reproduce Splitting function P_{qg} as a crosscheck

Check: One emission splitting function

Reproduce Splitting function P_{qg} as a crosscheck

Soft-Collinear Interplay

Soft singular part of splitting function cancelled by:

Eikonal part remains:

Smooth interpolation between soft and collinear limits in $\mathbb{U}_{(ij)}$

Current work: investigate this interplay for two emissions

Two emissions: splitting amplitudes

- Same procedure applies to two emissions
- Some amplitudes can not be achieved by single emission iteration
- Signals for violation of exact factorisation (drop out for two emissions though)

	C_1C_2	C_1S_2	S_1C_2	S_1S_2
╼ ╷ ╻╷╻	λ^2	λ	λ^2	λ
	λ^2	λ	λ	1
╶╔┬╔┬┏╢ ╿╺╿	λ^2	λ^2	λ^2	λ^2
╶─┬─┬╋╢ ╟	λ^3	λ^2	λ	λ
:				

Two emissions: combined contributions

Determine amplitude scaling algorithmically:

 Combine with partitioned propagator scaling to find all leading contributions for full kernel

	cc	\mathbf{CS}	\mathbf{SC}	ss
$A^{(1)}$	$1/\lambda^2$	$1/\lambda^3$	$1/\lambda$	$1/\lambda^4$
$A^{(2)}$	$1/\lambda^2$	$1/\lambda^2$	$1/\lambda^2$	$1/\lambda^4$
$A^{(3)}$	$1/\lambda^2$	$1/\lambda^2$	$1/\lambda$	$1/\lambda^3$
$A^{(4)}$	$1/\lambda^3$	$1/\lambda^2$	$1/\lambda$	$1/\lambda^4$
$A^{(5)}$	$1/\lambda^3$	$1/\lambda$	$1/\lambda$	$1/\lambda^4$
$B^{(1)}$	$1/\lambda^3$	$1/\lambda^4$	$1/\lambda^2$	$1/\lambda^4$
$B^{(2)}$	$1/\lambda^3$	$1/\lambda^3$	$1/\lambda^3$	$1/\lambda^4$
$B^{(3)}$	$1/\lambda^3$	$1/\lambda^3$	$1/\lambda^2$	$1/\lambda^4$
$B^{(4)}$	$1/\lambda^3$	$1/\lambda^4$	$1/\lambda^2$	$1/\lambda^4$
$B^{(5)}$	$1/\lambda^3$	$1/\lambda^3$	$1/\lambda^3$	$1/\lambda^4$
$B^{(6)}$	$1/\lambda^3$	$1/\lambda^3$	$1/\lambda^2$	$1/\lambda^4$
$X^{(1)}$	$1/\lambda^2$	$1/\lambda^2$	$1/\lambda^4$	$1/\lambda^4$
$X^{(2)}$	$1/\lambda^2$	$1/\lambda^2$	$1/\lambda^2$	$1/\lambda^2$
$E^{(1)}$	$1/\lambda^4$	$1/\lambda^4$	$1/\lambda^2$	$1/\lambda^4$
$E^{(2)}$	$1/\lambda^4$	$1/\lambda^3$	$1/\lambda^3$	$1/\lambda^4$
$E^{(3)}$	$1/\lambda^4$	$1/\lambda^3$	$1/\lambda^2$	$1/\lambda^4$
$E^{(4)}$	$1/\lambda^4$	$1/\lambda^3$	$1/\lambda^2$	$1/\lambda^4$
$E^{(5)}$	$1/\lambda^4$	$1/\lambda^2$	$1/\lambda^2$	$1/\lambda^4$

combinedAmpsB2[{c, s, c, s}, 1]

Conclusions

Goal: universal algorithm for handling accuracy in multiple emissions (for applications in parton showers and beyond)

- Density-operator formalism to study iterative behaviour of emissions
- Partitioning algorithms to separate overlapping singularities
- Momentum mapping for exposing collinear and soft factorization
- Global recoil via Lorentz transformation
- Set of power counting rules to single out leading amplitudes
- Can handle and compare different momentum mappings
- Two-emission kernels/power counting under control

Conclusions

Goal: universal algorithm for handling accuracy in multiple emissions (for applications in parton showers and beyond)

- Density-operator formalism to study iterative behaviour of emissions
- Partitioning algorithms to separate overlapping singularities
- Momentum mapping for exposing collinear and soft factorization
- Global recoil via Lorentz transformation
- Set of power counting rules to single out leading amplitudes
- Can handle and compare different momentum mappings
- Two-emission kernels/power counting under control

Backup slides

Coherent branching

- Coherent emission of soft large angle gluons from systems of collinear partons
- Angular ordering essential for including large-angle soft contributions

- Resummation of global jet observables such as thrust τ
- NLL accurate @Next-to-Leading-Colour (NLC) if inclusive over secondary soft gluon emission

Applications

 Use projectors and helicity sums to represent emission amplitudes as (complex) weights for numerical evaluation

$$\begin{split} d^{\mu\nu}(p) &= \epsilon^{\mu}_{+}(p,n)\epsilon^{\nu}_{-}(p,n) + (\mu \leftrightarrow \nu), \\ \not n &= \sum_{\lambda} u_{\lambda}(n)\bar{u}_{\lambda}(n), \end{split}$$

Applications

 Use projectors and helicity sums to represent emission amplitudes as (complex) weights for numerical evaluation

$$\begin{split} \mathbf{P}(q) &\equiv \begin{cases} P^{\rho\sigma}(p) = d^{\rho\sigma}(p), & (\mathsf{gluon}), \\ \not P(p) = \frac{\not n}{2n \cdot p}, & (\mathsf{quark}), \\ \not P &= \sum_{\lambda} u_{\lambda}(n) \bar{u}_{\lambda}(n), \\ \mathbf{P} &= \sum_{\lambda$$

Team

Karlsruhe/Manchester/Vienna network with support from SFB drives significant parts of the development, also relating to aspects such as color reconnection [*e.g.* Gieseke, Kirchgaesser, Plätzer-JHEP 11 (2018) 149]

[Plätzer—Annual CRC Meeting 2019]

Algorithm for subtraction partitioning

• General form of partitioned propagator P for config σ

$$\mathbb{P}_{\sigma}[P] = \frac{1}{m} \left(P + (m-1)\Delta_{\sigma;\tau_1,...,\tau_{m-1}}[P] - \sum_{i=1}^{m-1} \Delta_{\tau_i;\tau_1,...,\tau_{i-1},\sigma,\tau_{i+1},...,\tau_{m-1}}[P] \right) ,$$

with Subtraction terms

$$\Delta_{\tau_1;\tau_2,\ldots,\tau_m}[P] = \underbrace{\mathbb{F}_{\tau_1}[P]}_{\text{non-singular}} \left(\underbrace{\mathbb{S}_{\tau_1}[P]}_{\text{singular}} - \overline{\sum_{\mathcal{S}/\tau_1}} \Delta_{\tau_{i_1};\tau_{i_2},\ldots,\tau_{i_{m-1}}} \left[\mathbb{S}_{\tau_1}[P] \right] \right),$$

- When partitioning e.g. to σ = (i || j || k), subtract off all (sub-)divergences of other singular configs τ_i for propagator factor P.
- Combinatorial factor m: number of singular configs for P

Two emission example

$$A_{ijkl}^{(1)} = \underbrace{ \left(\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right)}^{i}$$

► Partitioned version of
$$A^{(1)} \propto 1/S_{ij}S_{ijk}S_{kl}S_{jkl}$$

 $\mathcal{P}(A^{(1)}) = \frac{1}{3} \left(\frac{1}{S_{ij}S_{ijk}S_{kl}S_{jkl}} + 2\Delta_{(ijk)}[\mathcal{P}(A^{(1)})] - \Delta_{(jkl)}[\mathcal{P}(A^{(1)})] - \Delta_{(ij)(kl)}[\mathcal{P}(A^{(1)})] \right)$
 $+ \frac{1}{3} \left(\frac{1}{S_{ij}S_{ijk}S_{kl}S_{jkl}} - \Delta_{(ijk)}[\mathcal{P}(A^{(1)})] + 2\Delta_{(jkl)}[\mathcal{P}(A^{(1)})] - \Delta_{(ij)(kl)}[\mathcal{P}(A^{(1)})] \right)$
 $+ \frac{1}{3} \left(\frac{1}{S_{ij}S_{ijk}S_{kl}S_{jkl}} - \Delta_{(ijk)}[\mathcal{P}(A^{(1)})] - \Delta_{(jkl)}[\mathcal{P}(A^{(1)})] + 2\Delta_{(ij)(kl)}[\mathcal{P}(A^{(1)})] \right)$

where e.g.

$$\Delta_{(jkl)}[\mathcal{P}(A^{(1)})] = \frac{E_l^2}{E_j(E_j + E_k)} \frac{1}{S_{il}^2} \left(\frac{1}{S_{kl}S_{jkl}} - \frac{E_iE_l}{E_j(E_l + E_k)} \frac{1}{S_{il}S_{kl}} \right),$$

Check: Two Emissions

Reproduced from general two-emission kernel which includes soft-limit too (here: in lightcone-gauge)

Vertex rules

Can find vertex rules such as:

Insights from Power Counting Rules

Powerful vertex rule for lines belonging to same collinear sector:

Insights from Power Counting Rules

Powerful vertex rule for lines belonging to same collinear sector:

- Shows (known fact) that interference diagrams do not contribute in splitting function in a physical gauge
- ► Reason: denominator goes as $1/\lambda^{2k}S^k_{(col)}$ for k coll. emissions
- Can only contribute in splitting function (∝ 1/λ^{2k}S^k_(col)) if numerator goes as O(1), but the only possible contribution ≡ 0

Global and non-global observables

- Example: heavy and light jet mass (global) vs. hemisphere jet mass (non-global)
- Cancellations between large angle-soft and virtual contributions (from k₂) not guaranteed

 \Rightarrow NLL enhancement from leftover $\alpha_S^2 L^2$ terms

Partitioning

Amplitudes carry different singular S-invariants

$$\mathcal{A}(S_1, S_2) = \frac{\mathcal{N}(S_1, S_2)}{S_1 S_2},$$

Decomposition using partitioning factors:

$$\mathbb{P}_{(1)}^{(\mathcal{A})} = \frac{S_2}{S_1 + S_2}, \quad \mathbb{P}_{(2)}^{(\mathcal{A})} = \frac{S_1}{S_1 + S_2},$$

we can decompose ${\mathcal A}$ into

$$\mathcal{A} = \left[\mathbb{P}_{(1)}^{(\mathcal{A})} + \mathbb{P}_{(2)}^{(\mathcal{A})}\right] \mathcal{A} = \frac{\mathcal{N}(S_1, S_2)}{S_1(S_1 + S_2)} + \frac{\mathcal{N}(S_1, S_2)}{S_2(S_1 + S_2)}$$

Parton Shower

Soft and collinear regions are of special interest:

$$S_{ij} \equiv (q_i + q_j)^2 = 2 q_i \cdot q_j = 2q_i^0 q_j^0 \left[1 - \cos \theta_{ij}\right], \quad \text{for } q_{i/j}^2 = 0$$

► Amplitude goes as $\propto 1/S_{ij}$ \Rightarrow becomes singular/enhanced when $S_{ij} \rightarrow 0$

Large logarithms due to phase space integrations of the kind

$$\frac{\mathrm{d}q_j^0}{q_j^0}, \quad \frac{\mathrm{d}\theta_{ij}}{\theta_{ij}} \to \alpha_S \log^2 \frac{Q}{Q_0} \sim 1$$

for some scale $Q \in \{\theta, p_{\perp}, \dots\}$ and cut-off Q_0

Parton shower: collinear limit

 Single emission approach is then usually iterated in a probabilistic manner

$$W_{2+2} = \left(\int \left| \bigvee_{t_0}^{t_0} \right|^2 + \left| \bigvee_{t_0}^{t_0} \right|^2 + \left| \bigvee_{t_0}^{t_0} \right|^2 + \left| \bigvee_{t_0}^{t_0} \right|^2 d\Phi_2 \right) / \left| \bigvee_{t_0}^{t_0} \right|^2$$
$$= 2^2 \int_{t_0}^{t} dt' \int_{t_0}^{t'} dt'' W(t') W(t'') = \frac{2^2}{2!} \left(\int_{t_0}^{t} dt W(t) \right)^2 .$$

[Stefan Gieseke]

Sum over any number of emissions: result exponentiates

$$\sigma_{>2}(t_0) = \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^t \mathrm{d}t \, W(t) \right)^k$$

Sudakov Form Factor (\simeq no emission probability in range $t \rightarrow t_0$)

$$\Delta(t_0) = \exp\left[-\int_{t_0}^t \mathrm{d}t \, W(t)\right], \quad W(t) = \int_{z_-}^{z_+} \frac{\alpha_S(z,t)}{2\pi} \frac{\hat{P}(z,t)}{t} \mathrm{d}z.$$

Momentum mapping

Momentum mapping Adding emissions

Start with on-shell (OS) momenta p_i (to be emitters) and p_r (to be recoilers) with overall momentum transfer $Q \equiv \sum_i p_i + \sum_r p_r$

Momentum mapping Adding emissions

- Start with on-shell (OS) momenta p_i (to be emitters) and p_r (to be recoilers) with overall momentum transfer $Q \equiv \sum_i p_i + \sum_r p_r$
- Add emissions to the process with:
 - 1. Momentum conservation: $\sum_{i} q_i + \sum_{i,l} k_{il} + \sum_{r} q_r = Q$
 - 2. On-shellness of all partons
 - 3. Parametrization of soft & collinear behaviour for any # of emissions

Momentum mapping

$$q_{r} = \frac{\Lambda}{\alpha_{L}} p_{r}$$

$$k_{il} = \frac{\Lambda}{\alpha_{L}} \left[\alpha_{il} p_{i} + \tilde{\beta}_{il} n_{i} + \sqrt{\alpha_{il} \tilde{\beta}_{il}} n_{il}^{\perp} \right], \quad A_{i} \equiv \sum_{l} \alpha_{il}, \quad \tilde{\beta}_{il} = (1 - A_{i}) \beta_{il}$$

$$q_{i} = \frac{\Lambda}{\alpha_{L}} \left[(1 - A_{i}) p_{i} + (y_{i} - \sum_{l} \tilde{\beta}_{il}) n_{i} - \sum_{l} \sqrt{\alpha_{il} \tilde{\beta}_{il}} n_{il}^{\perp} \right]$$

Decomposition w/ light-like momentum n_i and n[⊥]_{il} · p_i = n[⊥]_{il} · n_i = 0
 Need α²_L = (Q + N)²/Q² for momentum conservation

$$Q = \sum_{r} q_{r} + \sum_{i} q_{i} + \sum_{i,l} k_{il} = \frac{\Lambda}{\alpha_{L}} \Big[\underbrace{\sum_{r} p_{r} + \sum_{i} \left(p_{i} + y_{i} n_{i} \right)}_{Q} \Big]$$

• Lorentz transformation $\Lambda, \alpha_L \Rightarrow$ non-trivial global recoil

Momentum mapping II

Using Λ and α_L, recoil effects are removed from considerations about factorization, due to Lorentz invariance and known mass dimension of the amplitudes:

$$|\mathcal{M}(q_1,...,q_n)\rangle = \frac{1}{\alpha_L^{2n-4}} |\mathcal{M}(\hat{q}_1,...,\hat{q}_n)\rangle .$$

Soft and collinear power counting possible via scaling of α_{il} and β_{il} , *i.e.* $(p_i, n_i, n_{il}^{\perp})$ -components

	$(\alpha_{il}, y_i, \beta_{il})$
(forward) collinear	$(1, \lambda^2, \lambda^2)$
soft	$(\lambda, \lambda, \lambda).$

- Facilitates study of an amplitude's singular behaviour for implementation in splitting kernels
- This mapping is just one possible instance. Can *e.g.* use different balancing of transverse components.

Two emissions: topologies

Decompose squared amplitude in terms of set of topologies

$$|\mathcal{M}_{n+2}|^2 = \sum_i \sum_{\alpha} \left(E_{ijk}^{(\alpha)} + (j \leftrightarrow k) \right) + \sum_i \sum_{l \neq i} \sum_{\alpha} \left(A_{ijkl}^{(\alpha)} + B_{ijkl}^{(\alpha)} + X_{ijkl}^{(\alpha)} + (j \leftrightarrow k) \right) + \dots$$

► Examples:

