
Multi-emission Kernels for Parton
Branching Algorithmsa

Maximilian Löschner

Institute for Theoretical Physics (Project B1d, PI: S. Gieseke)
Erwin Schrödinger Institut (research stays in Vienna)

20 Sep 2022, Newcastle

ain collaboration with Simon Plätzer and Emma Simpson Dore. arXiv:2112.14454



[Simon Plätzer]

dσ ≃ dσhard(Q)× PS(Q → µ)×Had(µ → Λ)× . . .



Parton shower status
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▶ Despite pushes for higher orders in parton showers (e.g. [Prestel,

Hoeche—Phys.Rev.D 96 (2017) 7, 074017], [Skands, Li—PLB 771 (2017) 59-66])
Road to accuracy requires paradigm shift
▶ Recoil, ordering, colour, correlations

[Bewick, Seymour, Richardson—JHEP 04 (2020) 019], [Forshaw, Holguin,

Plätzer–JHEP 09 (2020) 014], [Ruffa, Plätzer—JHEP 06 (2021) 007], [ML, Plätzer,

Simpson—2112.14454], [also see PanScales]

▶ Amplitude level sets the complexity for resolving these
[Nagy, Soper], [DeAngelis, Forshaw, Plätzer— PRL 126 (2021) 11, 112001 & JHEP 05

(2018) 044]
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Non-global observables

▶ Coherent branching via angular
ordering essential for including
large-angle soft contributions

▶ No global measure of deviation from
jet configuration: Coherent
branching fails

▶ Dipole shower: correct LL@LC for
non-global, but issues in NLL@LC
and LL@NLC for global observables

▶ Require dipole-type soft gluon evolution (to account for change in
colour structure)

▶ Even with a dipole approach, 1/NC effects possibly become
comparable to subleading logs, and intrinsically ∼ 10% effects
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Bucket list

⇒ Study approximations in emission iterations rather than iterations
of one emission approximation.
Or: amplitude vs. cross-section level

Goal: NLL@NLC accuracy for global and non-global observables

▶ Going beyond iterated 1 → 2
splittings in parton showers

▶ Combine with global recoil scheme


Systematic expansion
to handle uncertainties
⇔
higher logarithmic accuracy

▶ Include color and spin correlations
▶ Refine ad hoc models of MC-programs,

e.g. azimuthal correlations
▶ Define language for connecting fixed order to parton showers
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Comparison to CS dipoles

▶ Catani-Seymour dipole operators reproduce the partitioned soft
and collinear behaviour for one emission:

[Catani, Seymour ’97]

▶ Our idea: algorithmic generation of such splitting kernels for > 1
emission

▶ Generate partitioned soft behaviour via power counting instead
of construction ‘by hand’

▶ Potential for constructing subtraction terms
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Splitting kernels



Splitting kernels from amplitudes

From the cross-section level to decomposed amplitudes:

σ =
∑
n

∫
Tr [ |M(µ)⟩ ⟨M(µ)| ]u(p1, . . . , pn)dϕn

⟨M| |M⟩

Sp
Sp

Sp → Trc

 |M⟩ ⟨M|

Sp
Sp

Sp

 ×P

|M⟩ ⟨M|

Sp
Sp

Sp → |M⟩ ⟨M|

Sp
Sp

Sp
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Splitting kernel iterations

Density operator language is useful for discussing emissions in
iterative manner:

[Forshaw, Holguin, Plätzer–JHEP 09 (2020) 014]
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Partitioning



Disentangling different collinear sectors

▶ Use partition of one in terms
of all possible collinear
pairings

1 = P(A)
1 + P(A)

2 + P(A)
3 + . . .

where P(A)
i projects onto

collinearity w.r.t. pi for some
amplitude A

▶ Disentangle overlapping
collinear singularities

▶ Keep smooth interpolation
over whole phase space

|M⟩ ⟨M|

p1
Sp

p2
Sp

Sp

Sp

p3 Sp
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Angular ordering and subtractions

▶ Radiation of a soft gluon leads to

dσn+1 = dσn × dω

ω

dΩ

2π

αS

2π

∑
i,l

CilWil

where Wil =
ω2pi · pl

pi · pj pl · pj
: ‘Radiation function’

▶ Can decompose Wil = W
[i]
il +W

[l]
il

W
[i]
il =

1

2

(
Wil −

1

1− cos θjl
+

1

1− cos θij

)
▶ Then azimuthal averaging confines emissions to cone∫ 2π

0

dϕij

2π
W

[i]
il =

{
1

1−cos θij
if θij < θil,

0 otherwise.

▶ Textbook knowledge: subtraction partitioning implies angular
ordering [Ellis, Stirling, Webber]
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Subtraction partitioning

▶ As an alternative to fractional partitioning, define subtraction
scheme:

P(i∥j)

[
1

Sij Sjl

]
=

1

2

(
1

Sij Sjl
−∆(j∥l) +∆(i∥j)

)
,

P(j∥l)

[
1

Sij Sjl

]
=

1

2

(
1

Sij Sjl
−∆(i∥j) +∆(j∥l)

)
,

∆(i∥j) =
Ei

Ej

1

SilSij
, ∆(j∥l) =

El

Ej

1

SilSjl
.

by exploiting Sij
(j∥l)−−−→ EiEj ni ·nl =

Ej

El
Sil

▶ P(i∥j) [. . . ] non-singular in (j ∥ l)-limit while original singular
behaviour is reproduced in (i ∥ j)-limit

▶ Algorithmic generalisation to multi emissions under control
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Subtraction partitioning behaviour

Recent work: subtraction partitioning =⇒ angular ordering for 2E?

A ∝ 1

SijSjl
:

A ∝ 1

SijSjkSjlSkl
:

0.5 1.0 1.5 2.0 2.5 3.0
θi1

-100

100

200

300

Azimuthally averaged single emission kernel

partitioning−−−−−−→
(i∥j)(k∥l)
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Fractional partitioning for two emissions

Alternatively: cancel out ‘unwanted’ collinear singularities by
partitioning factors

▶ Read
(i ∥ j ∥ k) : Sijk = (qi + qj + qk)

2 → 0

▶ Collect non-singular factors in triple
collinear and coll-coll pairings

configuration A ∝ 1
SijSklSijkSjkl

i ∥ j ∥ k SklSjkl

i ∥ j ∥ l SklSijkSjkl

i ∥ k ∥ l SijSijkSjkl

j ∥ k ∥ l SijSijk

(i ∥ j), (k ∥ l) SijkSjkl

(i ∥ k), (j ∥ l) ✕

(i ∥ l), (j ∥ k) ✕

⇒ Construct partitioning factors of the form

P(A)
(ijk) =

SklSjkl

SklSjkl + SijSijk + SijkSjkl + (Skl + Sij)SijkSjkl

▶ P(A)
(ijk) ×A extracts the (i ∥ j ∥ k)- singular behaviour

▶ P(A)
(ijk) is non-singular in any collinear configuration
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Power Counting



Power counting

▶ Discuss soft and collinear scaling of internal lines in general way
▶ Sudakov-like decomposition of momenta:

qµI =
∑
k∈I

rik = zI pi
µ +

SI + p2⊥,I

2zI pi ·n
nµ + k⊥,I

µ ,

▶ Decompose fermion and gluon lines (factors of
√
zI absorbed in

vertices for fermions):

= /pi,

=
SI + p2⊥,I

2z2I pi ·n
/n,

⊥ =
/k⊥,I

zI
,

= dµν(pi),

=
SI + p2⊥,I

(zI pi ·n)2
nµnν ,

⊥ =
kµ⊥,In

ν + nµkν⊥,I

zI pi ·n
.

▶ Leads to power counting rules with potential connection to SCET
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Soft and collinear scaling

▶ Algorithmically determine soft or collinear scaling of an emission
amplitude via scaling of internal lines (and propagators)

Scaling of hard lines:

h h+c h+s h+c+s

⊥ λ λ λ λ (bal.)

0 λ λ λ (unbal.)

λ2 λ2 λ λ (bal.)

0 λ2 λ λ (unbal.)

Scaling of emissions:

s c s+c

⊥ 1 λ λ

1 λ2 λ

▶ Note differences between mappings, e.g. with and without
balanced k⊥-components
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One emission amplitudes

▶ Determine list of all
relevant
sub-amplitudes via
power counting
rules

▶ Combine these in
density operator (≃
squared amp) to
find full splitting
kernel

C S C S

⊥
λ λ

⊥
λ λ

⊥ λ 1
⊥ ⊥

λ2 λ2

⊥
λ λ

⊥ ⊥
λ2 λ2

⊥

⊥ λ2 λ
⊥

⊥ λ2 λ

⊥ ⊥
λ2 λ2 1 1

⊥

⊥ λ2 λ ⊥ λ 1
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One emission example

Full one emission (ij)-splitting kernel (balanced mapping) consists of

U(ij) = P(ij)

(
⊥

+
⊥

⊥

)

+ ⊥ ⊥ +
⊥ ⊥

+ ⊥

⊥

+ ⊥

⊥

▶ Exhibits factorisation to hard amplitude
▶ Smooth interpolation between soft and collinear limits
▶ Algorithmically generalizable for more emissions
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Balanced vs. unbalanced mapping

▶ Can test different implementations of momentum mappings, e.g.
the balancing of transverse components

k⊥,I
µ =

∑
i∈I

k
(i),µ
⊥,I ,

▶ Yields different sets of diagrammatic contributions
▶ Nevertheless, the same collinear and soft behaviour is

reproduced for one emission

balanced unbalanced

⊥ ⊥ ⊥ ⊥

▶ Still: can compare mappings and check for inconsistencies for
> 1 emission
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Check: One emission splitting function

▶ Reproduce Splitting function Pqg as a crosscheck

⊥ ⊥ +
⊥ ⊥

+ ⊥

⊥

+ ⊥

⊥

→ 4παsT
2
i

Sij

[
(d− 2)αi + 4

(1− αi)
2

αi
+ 4(1− αi)

]
/pi +O(λ−1).
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Soft-Collinear Interplay

▶ Soft singular part of splitting function cancelled by:

⊥

⊥
∝ 4παsTi ·Tk

Sjk

4(1− αi)
2

αi

pk ·n
pi ·n

[/pi][/pk]

▶ Eikonal part remains:

⊥

∝ 4παsTi ·Tk

SijSjk
4(1− αi)

√
β̃i

αi
pk ·n⊥[/pi][/pk]

▶ Smooth interpolation between soft and collinear limits in U(ij)

▶ Current work: investigate this interplay for two emissions
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Two emissions: splitting amplitudes

▶ Same procedure
applies to two
emissions

▶ Some amplitudes can
not be achieved by
single emission
iteration

▶ Signals for violation of
exact factorisation
(drop out for two
emissions though)

C1C2 C1S2 S1C2 S1S2

⊥

⊥ λ2 λ λ2 λ

⊥ ⊥ λ2 λ λ 1

⊥ ⊥

λ2 λ2 λ2 λ2

⊥ λ3 λ2 λ λ

...
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Two emissions: combined contributions

▶ Determine amplitude scaling algorithmically:

▶ Combine with partitioned propagator scaling to
find all leading contributions for full kernel
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Conclusions

Goal: universal algorithm for handling accuracy in multiple
emissions (for applications in parton showers and beyond)

▶ Density-operator formalism to study iterative behaviour of
emissions

▶ Partitioning algorithms to separate overlapping singularities
▶ Momentum mapping for exposing collinear and soft factorization
▶ Global recoil via Lorentz transformation
▶ Set of power counting rules to single out leading amplitudes
▶ Can handle and compare different momentum mappings
▶ Two-emission kernels/power counting under control

Thank
you!
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Backup slides



Coherent branching

▶ Coherent emission of soft large angle gluons from systems of
collinear partons

▶ Angular ordering essential for including large-angle soft
contributions

[Simon Plätzer]

▶ Resummation of global jet observables such as thrust τ
▶ NLL accurate @Next-to-Leading-Colour (NLC) if inclusive over

secondary soft gluon emission



Applications

▶ Use projectors and helicity sums to represent emission
amplitudes as (complex) weights for numerical evaluation

P(q) ≡

{
P ρσ(p) = dρσ(p), (gluon),
/P (p) = /n

2n·p , (quark),

dµν(p) = ϵµ+(p, n)ϵ
ν
−(p, n) + (µ ↔ ν),

/n =
∑
λ

uλ(n)ūλ(n),

P P⊥

P

PP

P

→
∑
λi,λ̄i

uλ1√
2n·pi

[ ūλ1√
2n·pi

/k⊥/ϵλ3
/pi

uλ2√
2n·pi

] ūλ2√
2n·pi

ϵσλ3

×
uλ̄1√
2n·pi

[ ūλ̄1√
2n·pk

/pk
uλ̄2√
2n·pk

pk · ϵλ̄3

] ūλ̄2√
2n·pk

ϵσ̄,λ̄3
.
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Team

Karlsruhe/Manchester/Vienna network with support from SFB
drives significant parts of the development, also relating to aspects
such as color reconnection [ e.g. Gieseke, Kirchgaesser, Plätzer-JHEP 11 (2018)

149]

[Plätzer—Annual CRC Meeting 2019]



Algorithm for subtraction partitioning

▶ General form of partitioned propagator P for config σ

Pσ [P ] =
1

m

(
P + (m − 1)∆σ;τ1,...,τm−1

[P ] −
m−1∑
i=1

∆τi;τ1,...,τi−1,σ,τi+1,...,τm−1
[P ]

)
,

▶ with Subtraction terms

∆τ1;τ2,...,τm [P ] = Fτ1 [P ]︸ ︷︷ ︸
non-singular

bits

(
Sτ1 [P ]︸ ︷︷ ︸
singular

bits

−
∑
S/τ1

∆τi1 ;τi2 ,...,τim−1
[Sτ1 [P ]]

)
,

▶ When partitioning e.g. to σ = (i ∥ j ∥ k), subtract off all
(sub-)divergences of other singular configs τi for propagator
factor P .

▶ Combinatorial factor m: number of singular configs for P



Two emission example

▶ Partitioned version of A(1) ∝ 1/SijSijkSklSjkl

P(A
(1)

) =
1

3

(
1

SijSijkSklSjkl

+ 2∆(ijk)[P(A
(1)

)] − ∆(jkl)[P(A
(1)

)] − ∆(ij)(kl)[P(A
(1)

)]

)
,

+
1

3

(
1

SijSijkSklSjkl

− ∆(ijk)[P(A
(1)

)] + 2∆(jkl)[P(A
(1)

)] − ∆(ij)(kl)[P(A
(1)

)]

)
,

+
1

3

(
1

SijSijkSklSjkl

− ∆(ijk)[P(A
(1)

)] − ∆(jkl)[P(A
(1)

)] + 2∆(ij)(kl)[P(A
(1)

)]

)
,

where e.g.

∆(jkl)[P(A(1))] =
E2

l

Ej(Ej + Ek)

1

S2
il

(
1

SklSjkl
− EiEl

Ej(El + Ek)

1

SilSkl

)
,



Check: Two Emissions

▶ Reproduced from general two-emission kernel which includes
soft-limit too (here: in lightcone-gauge)

µ2ε

α̂2S2
i12

{
p̂i |

i
| p̂i +

[
p̂i |

2

i

1

| p̂i +

p̂i |
2

i
| p̂i1 + p̂i |

i

2

| p̂i1 + (1 ↔ 2)

] }
CACF

=

(
8παS

α̂Si12
µε

)2

CACF ⟨P̂ (non-Ab)
ggq ⟩/̂pi +O

(
β
−3/2
il

)
.



Vertex rules

▶ Can find vertex rules such as:

= 0, = 0,

⊥

= 0.

⊥ = 0, ⊥
⊥

= 0, ⊥
⊥⊥

= 0.



Insights from Power Counting Rules

▶ Powerful vertex rule for lines belonging to same collinear sector:

pi

pipi

= 0,

▶ Shows (known fact) that interference diagrams do not contribute
in splitting function in a physical gauge

▶ Reason: denominator goes as 1/λ2kSk
(col) for k coll. emissions

▶ Can only contribute in splitting function (∝ 1/λ2kSk
(col)) if

numerator goes as O(1), but the only possible contribution ≡ 0

= 0.
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Global and non-global observables

[Dasgupta, Salam (2001)]

▶ Example: heavy and light jet mass (global) vs. hemisphere jet
mass (non-global)

▶ Cancellations between large angle-soft and virtual contributions
(from k2) not guaranteed
⇒ NLL enhancement from leftover α2

SL
2 terms



Partitioning

Amplitudes carry different singular S-invariants

A(S1, S2) =
N (S1, S2)

S1S2
,

Decomposition using partitioning factors:

P(A)
(1) =

S2

S1 + S2
, P(A)

(2) =
S1

S1 + S2
,

we can decompose A into

A =
[
P(A)
(1) + P(A)

(2)

]
A =

N (S1, S2)

S1(S1 + S2)
+

N (S1, S2)

S2(S1 + S2)
.



Parton Shower

∫ ∣∣∣∣∣
k

j

i ∣∣∣∣∣
2

dΦ3

▶ Soft and collinear regions are of special interest:

Sij ≡ (qi + qj)
2 = 2 qi· qj = 2q0i q

0
j [1− cos θij ] , for q2i/j = 0

▶ Amplitude goes as ∝ 1/Sij

⇒ becomes singular/enhanced when Sij → 0

▶ Large logarithms due to phase space integrations of the kind

dq0j
q0j

,
dθij
θij

→ αS log2
Q

Q0
∼ 1

for some scale Q ∈ {θ, p⊥, . . . } and cut-off Q0



Parton shower: collinear limit

▶ Single emission approach is then usually iterated in a
probabilistic manner

[Stefan Gieseke]

▶ Sum over any number of emissions: result exponentiates

σ>2(t0) = σ2(t0)

∞∑
k=1

2k

k!

 t∫
t0

dtW (t)

k

▶ Sudakov Form Factor (≃ no emission probability in range t → t0)

∆(t0) = exp

− t∫
t0

dtW (t)

 , W (t) =

∫ z+

z−

αS(z, t)

2π

P̂ (z, t)

t
dz.



Momentum mapping



Momentum mapping
Adding emissions

{pr}

{pi}

M

add emissions−−−−−−−−→ M̃

{qr}

qn

{knl}

q1

{k1l}

Sp

Sp

▶ Start with on-shell (OS) momenta pi (to be emitters) and pr (to
be recoilers) with overall momentum transfer Q ≡

∑
i pi +

∑
r pr

▶ Add emissions to the process with:
1. Momentum conservation:

∑
i qi +

∑
i,l kil +

∑
r qr = Q

2. On-shellness of all partons
3. Parametrization of soft & collinear behaviour for any # of emissions
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Momentum mapping

qr =
Λ

αL
pr

kil =
Λ

αL

[
αil pi + β̃il ni +

√
αilβ̃il n

⊥
il

]
, Ai ≡

∑
l

αil, β̃il = (1−Ai)βil

qi =
Λ

αL

[
(1−Ai)pi +

(
yi −

∑
l

β̃il

)
ni −

∑
l

√
αilβ̃il n

⊥
il

]

▶ Decomposition w/ light-like momentum ni and n⊥
il ·pi = n⊥

il ·ni = 0

▶ Need α2
L = (Q+N)2/Q2 for momentum conservation

Q =
∑
r

qr +
∑
i

qi +
∑
i,l

kil =
Λ

αL

[∑
r

pr +
∑
i

(
pi︸ ︷︷ ︸

Q

+ yini︸︷︷︸
N

)]

▶ Lorentz transformation Λ, αL ⇒ non-trivial global recoil



Momentum mapping II

▶ Using Λ and αL, recoil effects are removed from considerations
about factorization, due to Lorentz invariance and known mass
dimension of the amplitudes:

|M(q1, ..., qn)⟩ =
1

α2n−4
L

|M(q̂1, ..., q̂n)⟩ .

▶ Soft and collinear power counting possible via scaling of αil and
βil, i.e. (pi, ni, n

⊥
il )-components

(αil, yi, βil)
(forward) collinear (1, λ2, λ2)

soft (λ, λ, λ).

▶ Facilitates study of an amplitude’s singular behaviour for
implementation in splitting kernels

▶ This mapping is just one possible instance. Can e.g. use different
balancing of transverse components.



Two emissions: topologies

▶ Decompose squared amplitude in terms of set of topologies

|Mn+2|2 =
∑
i

∑
α

(
E

(α)
ijk + (j ↔ k)

)
+
∑
i

∑
l ̸=i

∑
α

(
A

(α)
ijkl +B

(α)
ijkl +X

(α)
ijkl + (j ↔ k)

)
+ . . .

▶ Examples:
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