
Two-loop master integrals and form-factors for pseudo-scalar quarkonia

Melih A. Ozcelik

Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology

melih.oezcelik@kit.edu

based on arXiv: 2206.03848 & 22XX.XXXX
with S. Abreu, M. Becchetti, C. Duhr

HP2, Newcastle,
20 September 2022

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 1 / 28

https://arxiv.org/abs/2206.03848


Introduction: What is a Quarkonium?

• similar to positronium bound state e+e− in QED

• bound state of heavy quark and its anti-quark in QCD, e.g. Charmonium (charm quark)
and Bottomonium (bottom quark)

[Figure from Wikipedia ’Quarkonium’]

• Toponium (tt) bound state: high mass of top quark → decays via weak interaction before
formation of bound state

• for light quarks: mixing between (u,d,s) quarks due to low mass difference → π-meson,
the ρ-meson and the η-meson
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Motivation: Why study Quarkonia?

• charmonium production allows us to probe QCD at its interplay between the perturbative
and non-perturbative regimes

• deeper understanding of confinement (production mechanism)

• access to spin/momentum distribution of gluons in protons
→ use quarkonia to constrain the gluon PDFs in
the proton

• it is interesting to assess the convergence of perturbative expansion in αs where
αs(mc) ∼ 0.34 and αs(mb) ∼ 0.22
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the ηc - a good gluon probe

• ηc is a gluon probe at low scales at Mηc = 3 GeV

• is a pseudo-scalar particle and simplest of all quarkonia as far as computation of
hadro-production

• ηc cross section computation known
• at NLO since 1992 in collinear factorisation

[J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]

• at LO since 2012 and at NLO since 2013 in TMD factorisation
[D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007]

[J.P. Ma, J.X. Wang, S. Zhao, Phys.Rev. D88 (2013) no.1, 014027]
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scale variations and negative cross-sections
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• large scale uncertainties

• issue of negative cross-sections

• due to over-subtraction of initial-state collinear singularities into PDFs
• resolved with new scale prescription for µF (green curve)

[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

• for general scale reduction need NNLO calculation

→ need two-loop form-factors

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 5 / 28



scale variations and negative cross-sections

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

PDF4LHC30

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

NNPDFNLL

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

JR14NLO08VF

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

• large scale uncertainties
• issue of negative cross-sections

• due to over-subtraction of initial-state collinear singularities into PDFs
• resolved with new scale prescription for µF (green curve)

[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

• for general scale reduction need NNLO calculation

→ need two-loop form-factors

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 5 / 28



scale variations and negative cross-sections

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

PDF4LHC30

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

NNPDFNLL

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

JR14NLO08VF

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

• large scale uncertainties
• issue of negative cross-sections

• due to over-subtraction of initial-state collinear singularities into PDFs

• resolved with new scale prescription for µF (green curve)
[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

• for general scale reduction need NNLO calculation

→ need two-loop form-factors

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 5 / 28



scale variations and negative cross-sections

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

PDF4LHC30

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

NNPDFNLL

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

JR14NLO08VF

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

• large scale uncertainties
• issue of negative cross-sections

• due to over-subtraction of initial-state collinear singularities into PDFs
• resolved with new scale prescription for µF (green curve)

[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

• for general scale reduction need NNLO calculation

→ need two-loop form-factors

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 5 / 28



scale variations and negative cross-sections

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

PDF4LHC30

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

NNPDFNLL

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

JR14NLO08VF

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

• large scale uncertainties
• issue of negative cross-sections

• due to over-subtraction of initial-state collinear singularities into PDFs
• resolved with new scale prescription for µF (green curve)

[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

• for general scale reduction need NNLO calculation

→ need two-loop form-factors

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 5 / 28



scale variations and negative cross-sections

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

PDF4LHC30

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

NNPDFNLL

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

 0

 1

 2

 3

 4

 5

 0.01  0.1  1  10  100

K
N

L
O

η
c
  

 | |y
=

0

√s [TeV]

JR14NLO08VF

(ξR,ξF)=(1/√e,1/√e)

(ξR,ξF)=(1.0,1.0)

(ξR,ξF)=(1.0,2.0)

(ξR,ξF)=(1.0,0.5)

(ξR,ξF)=(0.5,0.5)

(ξR,ξF)=(2.0,1.0)

(ξR,ξF)=(2.0,2.0)

(ξR,ξF)=(0.5,1.0)

• large scale uncertainties
• issue of negative cross-sections

• due to over-subtraction of initial-state collinear singularities into PDFs
• resolved with new scale prescription for µF (green curve)

[J.-P. Lansberg, Melih A. Ozcelik, Eur.Phys.J.C 81 (2021) 6, 497 (arXiv:2012.00702)]

• for general scale reduction need NNLO calculation → need two-loop form-factors

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 5 / 28



Form-factors

• compute two-loop form-factors analytically in different channels that contribute at NNLO
accuracy

• γγ ↔ ηQ

(
1S

[1]
0

)
→ exclusive/inclusive decay

• gg ↔ ηQ

(
1S

[1]
0

)
→ hadro-production and hadronic decay width

• γg ↔ 1S
[8]
0 → colour-octet contribution

• gg ↔ 1S
[8]
0 → colour-octet contribution

• γγ ↔ para-Positronium

• form-factors applicable to both production and decay

• in the past form-factors have been computed only in numerical form
• ηQ → γγ [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.-L. Sang, Phys.Rev.Lett. 115 (2015) 22,

222001]

• para-Positronium→ γγ [A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys.Rev.A 61 (2000) 052502]
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Amplitude generation & partial fraction

γ(k1) + γ(k2)→ Q(p1)Q(p2) (1)

• p2 = m2
Q for final-state heavy quarks with p = p1 = p2

• k21 = k22 = 0 for initial-state photons

• threshold kinematics with ŝ = M2
Q = 4m2

Q where MQ = 2mQ

• generate Feynman diagram with FeynArts (∼ 450 diagrams for gg ↔ ηQ case)
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Amplitude generation & partial fraction
The fact that the two heavy-quark momenta are equal allows us to simplify some integrals
beforehand via the procedure of partial fractioning

Example

Feynman diagram:

k1

k2

p

p

ICoul. =

∫
dDq1

1

D1D2D3D4
=

k2

k1 p

pD3

D4D2

D1

(2)

Denominators are linearly dependent: D4 = 1
2 (D1 + D3)
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Amplitude generation & partial fraction

Example

Feynman diagram:

k1

k2

p

p

ICoul. =

∫
dDq1

1

D1D2D3D4
=

∫
dDq1

2

D1D2D2
3

−
∫

dDq1
1

D2D2
3D4

(3)

k2

k1 p

pD3

D4D2

D1

= 2

k2

k1

D3

2p
D2

D1

−
k2

k1 − p

D3

p
D2

D4

(4)

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 9 / 28



Amplitude generation & partial fraction

• partial fraction allows us to simplify integrals,
4-point function → 3-point function

• at higher loop orders, many denominators are involved
→ linearly dependent denominators can be systematically detected

• partial fractioning can be performed with $Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]

• perform tensor integral decomposition in new basis

• reduce integrals to master integrals via IBP with FIRE

[A.V. Smirnov, Comput.Phys.Commun. 189 (2015) 182-191]

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 10 / 28



Amplitude generation & partial fraction

• partial fraction allows us to simplify integrals,
4-point function → 3-point function

• at higher loop orders, many denominators are involved
→ linearly dependent denominators can be systematically detected

• partial fractioning can be performed with $Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]

• perform tensor integral decomposition in new basis

• reduce integrals to master integrals via IBP with FIRE

[A.V. Smirnov, Comput.Phys.Commun. 189 (2015) 182-191]

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 10 / 28



Amplitude generation & partial fraction

• partial fraction allows us to simplify integrals,
4-point function → 3-point function

• at higher loop orders, many denominators are involved
→ linearly dependent denominators can be systematically detected

• partial fractioning can be performed with $Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]

• perform tensor integral decomposition in new basis

• reduce integrals to master integrals via IBP with FIRE

[A.V. Smirnov, Comput.Phys.Commun. 189 (2015) 182-191]

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 10 / 28



Amplitude generation & partial fraction

• partial fraction allows us to simplify integrals,
4-point function → 3-point function

• at higher loop orders, many denominators are involved
→ linearly dependent denominators can be systematically detected

• partial fractioning can be performed with $Apart-package
[F. Feng, Comput.Phys.Commun. 183 (2012) 2158-2164]

• perform tensor integral decomposition in new basis

• reduce integrals to master integrals via IBP with FIRE
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Amplitude

• two-loop Amplitude A(2):

A(2) = A(0)
nmaster∑
i=1

ci (ε)MI[i ] (5)

• tree-level Amplitude A(0)

• coefficient ci contains information on:
• rational factor depending on dimensional regulator ε
• colour factor (CA, CF , TF )
• number of massive (nh) and massless (nl) closed fermion loops (vacuum & light-by-light)

• need to compute master integrals MI[i ]
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Topologies and master integrals

Some examples of topologies:

4m2 4m2
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Topologies and master integrals

• Appearance of 76 master integrals in total

• some are known in general kinematics but not usable at special kinematics

• Master integrals are seemingly independent, however we find some interesting equivalence
relations beyond IBP

• Partial Fraction Relations
• Triangle Relations
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Partial Fraction Identities

Identity

4m2

D3D1
=

1

2 m2

m2

D2

D1

+
1

2

m2

m2
D3

D2
(6)

relation at integrand level:

1[
(q + p)2 −m2

]
︸ ︷︷ ︸

D1

[
(q − p)2 −m2

]
︸ ︷︷ ︸

D3

=
1

2

1[
(q + p)2 −m2

]
︸ ︷︷ ︸

D1

q2︸︷︷︸
D2

+
1

2

1

q2︸︷︷︸
D2

[
(q − p)2 −m2

]
︸ ︷︷ ︸

D3

Example

4m2

= (7)
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Partial Fraction Identities

• linear relations between integrals in different topology families

• not detected during IBP reduction (e.g. Kira, ...)

• need to find these relations manually,

→ can find additional relations by combining with IBP reduction, e.g.

m45 =
2 (3d − 11)m2

(d − 3) (3d − 10)
m53 −

8m4

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10)m4
m76

• question for future: can one systematically incorporate partial fraction relations into IBP
reduction system (useful for phase-space integrations)?

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 15 / 28



Partial Fraction Identities

• linear relations between integrals in different topology families

• not detected during IBP reduction (e.g. Kira, ...)

• need to find these relations manually,

→ can find additional relations by combining with IBP reduction, e.g.

m45 =
2 (3d − 11)m2

(d − 3) (3d − 10)
m53 −

8m4

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10)m4
m76

• question for future: can one systematically incorporate partial fraction relations into IBP
reduction system (useful for phase-space integrations)?

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 15 / 28



Partial Fraction Identities

• linear relations between integrals in different topology families

• not detected during IBP reduction (e.g. Kira, ...)

• need to find these relations manually,

→ can find additional relations by combining with IBP reduction, e.g.

m45 =
2 (3d − 11)m2

(d − 3) (3d − 10)
m53 −

8m4

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10)m4
m76

• question for future: can one systematically incorporate partial fraction relations into IBP
reduction system (useful for phase-space integrations)?

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 15 / 28



Partial Fraction Identities

• linear relations between integrals in different topology families

• not detected during IBP reduction (e.g. Kira, ...)

• need to find these relations manually,
→ can find additional relations by combining with IBP reduction, e.g.

m45 =
2 (3d − 11)m2

(d − 3) (3d − 10)
m53 −

8m4

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10)m4
m76

• question for future: can one systematically incorporate partial fraction relations into IBP
reduction system (useful for phase-space integrations)?

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 15 / 28



Partial Fraction Identities

• linear relations between integrals in different topology families

• not detected during IBP reduction (e.g. Kira, ...)

• need to find these relations manually,
→ can find additional relations by combining with IBP reduction, e.g.

m45 =
2 (3d − 11)m2

(d − 3) (3d − 10)
m53 −

8m4

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10)m4
m76

• question for future: can one systematically incorporate partial fraction relations into IBP
reduction system (useful for phase-space integrations)?

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 15 / 28



Partial Fraction Identities

• linear relations between integrals in different topology families

• not detected during IBP reduction (e.g. Kira, ...)

• need to find these relations manually,
→ can find additional relations by combining with IBP reduction, e.g.

m45 =
2 (3d − 11)m2

(d − 3) (3d − 10)
m53 −

8m4

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10)m4
m76

• question for future: can one systematically incorporate partial fraction relations into IBP
reduction system (useful for phase-space integrations)?

Melih A. Ozcelik (TTP) Two-loop master integrals HP2 2022 Newcastle 15 / 28



Triangle Relations

Identity

k21 = 0

p21 p22

m2
2 m2

2

m2
1

=

k21 = 0

p21 p22

m2
1 m2

1

m2
2

(8)

relation at integral level:∫
ddq

1[
q2 −m2

1

]2 [
(q + p1)2 −m2

2

] [
(q − p2)2 −m2

2

] =

∫
ddq (m1 ↔ m2)

no constraint for p1 and p2 (can involve loop momenta), only constraint is that k21 = 0

Example

= (9)

questions for future: can we systematically incorporate these relations into IBP? And are there
more of these relations (box, pentagon integrals)?
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Special functions

• Multiple Polylogarithms - points on the Riemann sphere

• elliptic Multiple Polylogarithms - points on the torus

• iterated integrals of modular forms - rational points on the torus
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Multiple Polylogarithms (MPLs)

Multiple Polylogarithms (MPLs) [Goncharov,Remiddi,Vermaseren]

G (a1, ..., an; z) =

∫ z

0
dt

1

t − a1
G (a2, ..., an; t) (10)

G (0; t) = log t (11)

• weight of function corresponds to number of indices w = n

• m-loop amplitude usually exhibits functions up to weight of w = 2m → will be useful as
cross-check of amplitude

• numerical evaluation can be achieved with GiNaC-interface
[Vollinga, Weinzierl]
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elliptic Multiple Polylogarithms (eMPLs)
elliptic Multiple Polylogarithms (eMPLs) [Brown,Levin;Broedel,Duhr,Dulat,Tancredi;Weinzierl...]

E4( n1...nm
c1...cm ; x , ~q) =

∫ x

0
dt ψn1 (c1, t, ~q)E4( n2...nm

c2...cm ; t, ~q) (12)

E4

(
~1
~c

; x , ~q
)

= G (~c ; x) (13)

• ~q are the roots of the elliptic curve defined by

y2 = (t − q1) (t − q2) (t − q3) (t − q4) (14)

• ψn1 (c1, t, ~q) are the elliptic kernels

• e.g. ψ0 (0, t, ~q) = c4
y where c4 = 1

2

√
(q1 − q3) (q2 − q4)

• e.g. ψ1 (c , t, ~qr ) = 1
t−c

• define weight as w =
∑m

i |ni | and length as l = m
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elliptic Multiple Polylogarithms (eMPLs)

eMPLs in torus representation [Brown,Levin;Broedel,Duhr,Dulat,Tancredi;Weinzierl...]

Γ̃( n1...nm
z1...zm ; z , τ) =

∫ z

0
dz ′ g (n1)

(
z ′ − z1, τ

)
Γ̃
(
n2...nm
z2...zm ; z ′, τ

)
(15)

• a torus is double-periodic and can be defined as a two-dimensional lattice

Λτ = Z + Z τ = {m + n τ |m, n ∈ Z} (16)

• τ characterises the shape of the torus

• z are the points on the torus within Λτ
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Iterated integrals of modular forms

if all zi are rational points on the torus of the form

zi =
r

N
+

s

N
τ with 0 ≤ r , s < N and r , s,N ∈ N (17)

→ can rewrite them in terms of iterated integrals of modular forms

I (f1, ..., fn; τ) =

∫ τ

i∞

dτ ′

2πi
f1 I (f2, ..., fn; τ) (18)

fi = h
(n)
N,r ,s(τ) = −

∑
(a,b)∈Z2

(a,b) 6=(0,0)

e2πi
(bs−ar)

N

(aτ + b)n
(19)
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Direct Integration
Feynman integral can be represented via two graph polynomials U and F which are the first
and second Symanzik polynomial respectively.

I = (−1)a (eεγE )h Γ

(
a− h

D

2

)∫ ∞
0

dx1...

∫ ∞
0

dxmδ(1−∆H)×

×
m∏
i=1

(
xai−1i

Γ(ai )

)
Ua−(h+1)D

2

Fa−hD
2

(20)

• each xi corresponds to a edge/propagator in a graph

• the second Symanzik polynomial F distinguishes between massive and massless
propagators

• each massless propagator/edge contributes linearly to F
• each massive propagator/edge contributes quadratically to F

• need to integrate out each single edge xi ; one done via Cheng-Wu delta function
δ(1−∆H).
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Direct Integration

We now briefly discuss different cases that we have to consider,

• linear reducibility: an order of integration variables can be found where the integration
kernels are all linear

→ master integral expressible in terms of MPLs

• elliptic linear reducibility: an order of integration variables which is linear reducible
excluding the last integration which introduces a square-root

→ master integral expressible in terms of eMPLs

• elliptic next-to-linear reducibility: an order of integration variables which is linear
reducible excluding the second-last integration which introduces a square-root

→ requires rationalisation, e.g. RationalizeRoots, [Besier, Wasser, Weinzierl]

→ master integral expressible in terms of eMPLs
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Master Integrals - Elliptic Curves

We encounter two different types of elliptic curves,

• one is associated to the elliptic sunrise

~q =

(
1

2

(
1−
√

1 + 2i
)
,

1

2

(
1−
√

1− 2i
)
,

1

2

(
1 +
√

1 + 2i
)
,

1

2

(
1 +
√

1− 2i
))

(21)

• the other is associated to the master integral

4m2

~q =
(

1−
√

5, 0, 2, 1 +
√

5
)

(22)

and appears only in light-by-light scattering contribution
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Analytics and Numerics
• computed all integrals analytically via direct integration

• class 1: MPL integrals
→ high-precision numerics with GiNaC-package [Vollinga, Weinzierl]

• class 2: iterated integrals of modular forms
→ high-precision numerics with algorithm [Duhr, Tancredi, JHEP 02 (2020) 105]

• class 3: eMPLs integrals
→ numerics: convergence is rather slow

→ need a different method:
• make use of Auxiliary Mass Flow (AMFlow) technique [Liu, Ma, 2201.11669]

• cross-check/alternative: make use of differential equation approach and solve numerically via
series expansion approach, e.g. DiffExp [Hidding, 2006.05510]

→ produced high-precision numerics (1500 digits)

• validation of results numerically with pySecDec (only few digits)

• PSLQ procedure: find additional relations between elliptic integrals beyond equivalence
relations shown earlier
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• make use of Auxiliary Mass Flow (AMFlow) technique [Liu, Ma, 2201.11669]

• cross-check/alternative: make use of differential equation approach and solve numerically via
series expansion approach, e.g. DiffExp [Hidding, 2006.05510]

→ produced high-precision numerics (1500 digits)

• validation of results numerically with pySecDec (only few digits)

• PSLQ procedure: find additional relations between elliptic integrals beyond equivalence
relations shown earlier
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Form-factors

Now ready to plug in analytics and numerics for the form-factors. Validation of results,

• compare to known numerical results for γγ ↔ ηQ case
→ find full agreement [A. Czarnecki, K. Melnikov, Phys.Lett.B 519 (2001) 212-218] [F. Feng, Y. Jia, W.-L. Sang, Phys.Rev.Lett. 115

(2015) 22, 222001]

• for the new form-factors, validation is based on universal IR pole structure → amplitudes
are manifestly finite after UV and IR renormalisation [Catani; Becher, Neubert]

• all amplitudes contain functions of maximal weight w = 4 (e.g. π4, log4 2, πζ3) and
maximal length l = 4 for the elliptic functions.

• regular Abelian corrections
(
C 2
F ,CFTFnh/l

)
are identical for all form-factors → further

confirmation of the new form-factor results

• QED corrections to para-Positronium result, agreement with existing numerical results in
literature [A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys.Rev.A 61 (2000) 052502]
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Summary: Form-factors

• computed all two-loop master integrals analytically

• produced high-precision numerics (> 1000 digits)

• find some interesting equivalence relations

• have complete analytical results for form-factors available

• form-factors are finite after UV and IR renormalisation

→ ready for phenomenological applications
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Thank you for attention!
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