

European Research Council Established by the European Commission

MIXED QCD-EW CORRECTIONS TO DILEPTON PRODUCTION AT THE LHC IN THE HIGH INVARIANT MASS REGION

Herschel A. Chawdhry (University of Oxford)

HP2 conference 2022, Newcastle, 20/09/2022

In collaboration with F. Buccioni, F. Caola, F. Devoto, M. Heller, A. v. Manteuffel, K. Melnikov, R. Röntsch, C. Signorile-Signorile

Based on JHEP 06 (2022) 022 [arXiv:2203.11237]

OUTLINE

- Introduction
 - Motivation
 - Previous works
- Loop amplitudes
- Infrared subtractions
- Phenomenological results
 - Setup
 - Fiducial cross-sections
 - Behaviour at large invariant mass
 - Differential distributions
 - Forward-backward asymmetry
- Conclusion

MOTIVATION

- l^+l^- production: testing SM and searching for BSM
- High m_{ll} region
 - studied by ATLAS [<u>1707.02424</u>] and CMS [<u>2103.02708</u>]
 - SMEFT operators: contributions grow like $\left(\frac{\sqrt{s}}{M}\right)^2$
 - Compare $\mu^+\mu^-$ and e^+e^- to constrain models explaining flavour anomalies
- Percent-level precision
 - Required to constrain Wilson coefficients of SMEFT operators
 - Needs QCD; EW; mixed QCDxEW
 - N3LO QCD corrections (refs: next slide) are close to 1%
 - NLO EW corrections (refs: next slide) reach tens of % at large m_{ll} due to EW Sudakov logs

PREVIOUS WORKS

• NLO EW

- [Dittmaier, Kraemer, '02]
- [Baur, Brein, Hollik, Schappacher, Wackeroth, '02]
- [Baur, Wackeroth, '04]
- [Arbuzov, Bardin, Bondarenko, Christova, Kalinovskaya, Nanava, Sadykov, '06 and '08]
- [Zykunov, '06 and '07]
- Carloni Calame, Montagna, Nicrosini, Vicini, '06 and '07]
- [Dittmaier and Huber '10]
- N2LO QCD
 - [Hamberg, v. Neerven, Matsuura, '02]
 - [v.Neerven, Zijlstra, '92]
 - [Harlander, Kilgore, '02]
 - [Anastasiou, Dixon, Melnikov, Petriello, '03 and '04]
 - [Melnikov, Petriello, '06]
 - [Catani, Cieri, Ferrera, d. Florian, Grazzini, '09]
 - [Gavin, Li, Petriello, Quackenbush, '11]

• N3LO QCD

- [Duhr, Dulat, Mistlberger, '20] x2
- [Duhr, Mistlberger, '22]
- [Chen, Gehrmann, Glover, Huss, Yang, Zhu, '22]
- [Camarda, Cieri, Ferrera, '21]
- [Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli, '22]
- Mixed QCDxEW
 - Resonant
 - [Delto, Jaquier, Melnikov, Rontsch, '20]
 - [Buccioni, Caola, Delto, Jaquier, Melnikov, Rontsch, '20]
 - [Bonciani, Buccioni, Rana, Vicini, '20 and '22]
 - [Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Rontsch, '21] x2
 - Off-shell
 - [Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini, '21]

ASIDE: DIFFERENCES FROM THE ON-SHELL PROCESS

- Mixed corrections to on-shell W/Z production were previously calculated by several groups (see earlier refs)
 - Small: per-mille level
- Common contributions:
 - Real/virtual corrections to production or decay

• e.g. virtual:

- New contributions in off-shell calculation:
 - New virtual contributions
 - 2-loop 4-point massive, e.g.

- New real contributions
 - singularities from emission off initial and final state

NOTE

- Independent calculation of off-shell Drell-Yan [Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini, '21]
 - Found percent-level effects
 - We couldn't directly compare our results (they use bare leptons, we use dressed leptons) but we qualitatively confirmed those findings
 - Quantitative checks ongoing in private looks OK

VIRTUAL CONTRIBUTIONS: 1-LOOP AMPLITUDES

- 1-loop QCD amplitude for $q\bar{q} \rightarrow l^+ l^-$: $\langle F_{\text{LV}}^{(\text{QCD}), \text{fin}}(1_q, 2_{\bar{q}}, 3, 4) \rangle = \mathcal{C}^{\text{QCD}} \langle F_{\text{LM}}(1_q, 2_{\bar{q}}, 3, 4) \rangle$, with $\mathcal{C}^{\text{QCD}} = -8C_F \frac{\alpha_s(\mu)}{2\pi}$
- 1-loop QCD amplitude for $q\bar{q} \rightarrow l^+l^- + \gamma$
 - Adapting $q\bar{q} \rightarrow Z + j$ [Bern, Dixon, Kosower, '98] [MCFM: Campbell, Ellis, '99]
- 1-loop EW amplitudes for $q\bar{q} \rightarrow l^+l^-$ and $q\bar{q} \rightarrow l^+l^- + g$
 - Computed using OpenLoops2

2-LOOP AMPLITUDES

- Fermionic-loop contributions
 - calculated independently
 - checked against [Dittmaier, Schmidt, Schwarz, 2009.02229] [Djouadi, Gambino, hep-ph/9309298] _____ Difficult; slow; small
- Bosonic contributions split (gauge-invariantly) into factorizable & non-factorizable

 $\mathcal{H}_{\text{non-fact}}^{(1,1)} = \mathcal{H}^{(1,1)} - \frac{\mathcal{H}^{(1,0)}\mathcal{H}^{(0,1)}}{\mathcal{H}^{(0,0)}}$

 $\mathcal{H}^{(m,n)}$: infrared subtracted finite helicity remainders at $\mathcal{O}(\alpha^{1+m}\alpha_s^n)$, no fermionic loops

- Bosonic non-factorizable contributions
 - Using fully-analytic amplitudes from [Heller, v. Manteuffel, Schabinger, Spiesberger, 2012.05918]
 - GPLs evaluated with HandyG library
 - Optimised speed with Q-linear relations, MultivariateApart, common sub-expression elimination
 - Double-virtual evaluation time: ~0.7s per phase-space point
 - ~10 times smaller than factorizable part (Reminder: $m_{ll} > 200 \text{ GeV}$)
 - Top quarks excluded

(Reminder: $m_{ll} > 200$ GeV)

Easy; fast; large

INFRARED SUBTRACTIONS

- Nested soft-collinear subtraction scheme [Caola, Melnikov, Rontsch, '17]
 - Fully analytic and local
 - Color coherence: subtract soft then collinear singularities
 - Collinear singularities: sector decomposition [Czakon, '10]
- Mixed QCD-EW: simplifications compared to NNLO QCD
 - Soft limits of photon and gluon commute
 - No singularities from photon collinear to gluon
 - but triple-collinear limits remain complicated
- Off-shell Z: more limits (sectors) compared to on-shell
 - due to emission from initial <u>and</u> final states

OUTLINE

- Introduction
 - Motivation
 - Previous works
- Loop amplitudes
- Infrared subtractions
- Phenomenological results
 - Setup
 - Fiducial cross-sections
 - Behaviour at large invariant mass
 - Differential distributions
 - Forward-backward asymmetry
- Conclusion

SETUP

- pp collisions with $\sqrt{S} = 13.6$ TeV
- Renormalisation
 - on-shell for wavefunctions, masses, α
 - \overline{MS} for α_s and PDFs
- Complex-mass scheme [hep-ph/0505042, 2009.02229]
 - $m_Z = 91.1876 \text{ GeV}$ $\Gamma_Z = 2.4952 \text{ GeV}$
 - $m_W = 80.398 \text{ GeV}$ $\Gamma_W = 2.1054 \text{ GeV}$
 - $m_H = 125 \text{ GeV}$ $\Gamma_H = 4.165 \text{ MeV}$
- $m_t = 173.2 \, \text{GeV}$
- G_{μ} input scheme for EW parameters, with $G_F = 1.16639 \cdot 10^{-5} \text{GeV}^{-2}$
 - $\hookrightarrow \alpha \approx 1/132.277$
- NNPDF31_nnlo_as_0118_luxqed everywhere (even for LO and NLO)
 - $\hookrightarrow \alpha_s(m_Z) = 0.118$
 - LHAPDF, HOPPET
 - We don't estimate PDF uncertainties

SETUP (CONTINUED)

- Cuts: (based on ATLAS analysis <u>1606.01736</u>) $m_{\ell\ell} > 200 \,\text{GeV}, \quad p_{T,\ell^{\pm}} > 30 \,\text{GeV}, \quad \sqrt{p_{T,\ell^{-}} p_{T,\ell^{+}}} > 35 \,\text{GeV}, \quad |y_{\ell^{\pm}}| < 2.5$
- Dressed leptons (also for cuts)
 - Cluster leptons and photons into "lepton jets" when $\sqrt{2}$

$$R_{l\gamma} \equiv \sqrt{(y_l - y_{\gamma})^2 + (\varphi_l - \varphi_{\gamma})^2} < R_{\text{cut}}, \text{ with } R_{\text{cut}} = 0.1$$

- Recombine in *E* scheme: $p_{dressed}^{\mu} = p_{lepton}^{\mu} + p_{photon}^{\mu}$
- $\mu_R = \mu_F = \frac{m_{ll}}{2}$, with 3-point variation for scale uncertainties

FIDUCIAL CROSS-SECTION

Checked against Sherpa and MoCaNLO+Recola

Herschel A. Chawdhry (Oxford)

Mixed QCD-EW Drell-Yan

FIDUCIAL CROSS-SECTION (CONTINUED)

• Estimate uncertainties with envelope of:

•
$$\mu (= \mu_R = \mu_F) = \frac{m_{ll}}{4}$$
 or $\frac{m_{ll}}{2}$ or m_{ll}

- $G_{\mu} = 1.16639 \cdot 10^{-5} \text{GeV}^{-2}$ or $\alpha(m_Z) = 1/128$
- Reminder: not estimating PDF uncertainties
 - Note that $q\bar{q}$ luminosity uncertainty is ~2% for $m_{ll}<1~{\rm TeV}$ and ~5% for $m_{ll}{\sim}2~{\rm TeV}$

Uncertainties: +12% / -6%

$$\int_{\text{LO}} \sigma_{\text{NLO QCD}} + \delta \sigma^{(1,0)} + \delta \sigma^{(0,1)} + \delta \sigma^{(2,0)} = 1928.3^{+1.8\%}_{-0.15\%} \text{ fb}$$

$$\int_{\text{NLO QCD}} \sigma_{\text{NLO QCD}} = \sigma^{(0,0)}_{\text{NLO QCD}} + \delta \sigma^{(1,0)}_{\text{NLO QCD}} + \delta \sigma^{(2,0)}_{\text{NLO QCD}} + \delta \sigma^{(1,1)}_{\text{mixed}} = 1912.6^{+0.65\%}_{-0\%} \text{ fb}$$

BEHAVIOUR AT LARGE m_{ll}

- At high m_{ll} , EW corrections dominated by universal Sudakov logs
 - So expect mixed QCD-EW corrections to be welldescribed by product of QCD and EW corrections
 - Define factorised approximation:

$$\delta \sigma_{\text{fact}}^{(1,1)} = \delta_{\text{NLO}}^{(1,0)} \, \delta_{\text{NLO}}^{(0,1)} \, \sigma^{(0,0)}$$

!! Do not confuse with earlier discussion about treatment of 2-loop amplitudes !!

where

$$\delta_{\rm NLO}^{(1,0)} = \frac{\delta \sigma^{(1,0)}}{\sigma^{(0,0)}}, \qquad \delta_{\rm NLO}^{(0,1)} = \frac{\delta \sigma^{(0,1)}}{\sigma^{(0,0)}}$$

and compare it against exact result

• Consider 4 windows: $\Phi^{(1)}$: $200 \text{ GeV} < m_{\ell\ell} < 300 \text{ GeV}$,

$$\Phi^{(2)}:$$
 300 GeV < $m_{\ell\ell}$ < 500 GeV,

- $\Phi^{(3)}$: 500 GeV < $m_{\ell\ell}$ < 1.5 TeV,
- $\Phi^{(4)}: \qquad 1.5 \,\mathrm{TeV} < m_{\ell\ell} < \infty.$

Herschel A. Chawdhry (Oxford)

Mixed QCD-EW Drell-Yan

BEHAVIOUR AT LARGE m_{ll} (CONTINUED)

	sum						
σ [fb]	$\sigma^{(0,0)}$	$\delta\sigma^{(1,0)}$	$\delta\sigma^{(0,1)}$	$\delta\sigma^{(2,0)}$	$\delta\sigma^{(1,1)}$	$\delta \sigma_{\rm fact.}^{(1,1)}$	$\sigma_{ m QCD imes EW}$
$\Phi^{(1)}$	1169.8	254.3	-30.98	10.18	-10.74	-6.734	$1392.6^{+0.75\%}_{-0\%}$
$\Phi^{(2)}$	368.29	71.91	-11.891	2.85	-4.05	-2.321	$427.1_{-0.02\%}^{+0.41\%}$
$\Phi^{(3)}$	82.08	14.31	-4.094	0.691	-1.01	-0.7137	$91.98^{+0.22\%}_{-0.14\%}$
$\Phi^{(4)} \times 10$	9.107	1.577	-1.124	0.146	-0.206	-0.1946	$9.500^{+0\%}_{-0.97\%}$
Recall: $\Phi^{(1)}$ = 200 CeV < m < 200 CeV					Exact result	Factorised approximatio	As before, estimating uncertainties by varying scales and input scheme
$\Phi^{(2)}$: 200 GeV < $m_{\ell\ell}$ < 300 GeV, $\Phi^{(2)}$: 300 GeV < $m_{\ell\ell}$ < 500 GeV,						Recall: $\delta\sigma$	$\delta_{ m fact}^{(1,1)} = \delta_{ m NLO}^{(1,0)} \delta_{ m NLO}^{(0,1)} \sigma^{(0,0)}$
$\Phi^{(3)}:$ 500 G	$5\mathrm{TeV},$		$\delta_{ m NI}^{(1)}$	$\delta_{ m LO}^{(0)} = rac{\delta \sigma^{(1,0)}}{\sigma^{(0,0)}}, \qquad \delta_{ m NLO}^{(0,1)} = rac{\delta \sigma^{(0,1)}}{\sigma^{(0,0)}}$			

 $\Phi^{(4)}: \qquad 1.5 \,\mathrm{TeV} < m_{\ell\ell} < \infty.$

THE m_{ll} DISTRIBUTION

Herschel A. Chawdhry (Oxford)

HP2, Newcastle, 20/9/2022 Slide 17

p_T DISTRIBUTION OF l^+

- Related to mll distribution
- NLO EW large and negative
- QCDxEW corrections unusually large at low pT (largest contribution to cross-section)
- Mixed QCDxEW follows NLO EW but grows to -3% at pT=500 GeV

THE y_{ll} DISTRIBUTION

DISTRIBUTION IN COLLINS-SOPER ANGLE

Herschel A. Chawdhry (Oxford)

Mixed QCD-EW Drell-Yan

FORWARDS-BACKWARDS ASYMMETRY

• From Collins-Soper angular distribution, calculate forwards-backwards asymmetry

$$A_{\rm FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \qquad \qquad \sigma_F = \int_0^1 d\cos\theta^* \, \frac{d\sigma(pp \to \ell^- \ell^+)}{d\cos\theta^*}, \quad \sigma_B = \int_{-1}^0 d\cos\theta^* \, \frac{d\sigma(pp \to \ell^- \ell^+)}{d\cos\theta^*}$$

• We find: $A_{\rm FB} = 0.1580^{+0.15\%}_{-0.07\%}$

	without mixed	with mixed
	$ ilde{A}_{ m FB}$	$A_{ m FB}$
$\Phi^{(1)}$	$0.1442^{+0.05\%}_{-0.31\%}$	$0.1440^{+0.11\%}_{-0.09\%}$
$\Phi^{(2)}$	$0.1852^{+0.08\%}_{-0.40\%}$	$0.1847^{+0.10\%}_{-0.19\%}$
$\Phi^{(3)}$	$0.2401^{+0.13\%}_{-0.64\%}$	$0.2388^{+0.06\%}_{-0.47\%}$
$\Phi^{(4)}$	$0.3070^{+0.49\%}_{-1.5\%}$	$0.3031^{+0.19\%}_{-1.2\%}$

As before, estimating uncertainties by varying scales and input scheme

Herschel A. Chawdhry (Oxford)

 $200 \,\text{GeV} < m_{\ell\ell} < 300 \,\text{GeV},$

 $300 \,\text{GeV} < m_{\ell\ell} < 500 \,\text{GeV},$

 $500 \,\text{GeV} < m_{\ell\ell} < 1.5 \,\text{TeV},$

 $1.5 \,\mathrm{TeV} < m_{\ell\ell} < \infty.$

 $\Phi^{(1)}$.

 $\Phi^{(2)}$:

 $\Phi^{(3)}$:

 $\Phi^{(4)}$:

CONCLUSION

- Mixed QCD-EW corrections to pp -> I+I-
 - Fully differential in final-state resolved particles
 - Nested soft-collinear subtraction scheme for IR singularities
 - Fully analytic 2-loop amplitudes
- At mll ~ 200 GeV, mixed corrections are ~ -1%
 - larger than NNLO QCD (in this setup)
 - Input-scheme uncertainties reduced to sub percent level
- At mll > 1 TeV, mixed corrections are larger
 - explainable by Sudakov logarithms
 - can be approximated to within 30% by product of NLO QCD and EW
 - percent-level effect on forwards-backwards asymmetry