Massive quark form factors at three loops

8th International Workshop on High Precision for Hard Processes | September 20 - 22, 2022
Fabian Lange
in collaboration with Matteo Fael, Kay Schönwald, Matthias Steinhauser | Sep 20, 2022

Motivation

- Form factors are basic building blocks for many physical observables:
- $t \bar{t}$ production at hadron and $e^{+} e^{-}$colliders
- μ e scattering
- Higgs production and decay
- Form factors exhibit an universal infrared behavior which is interesting to study

The process

Types of contributions

nonsinglet

n_{\mid}singlet

contributions with $m^{\prime} \neq m$

Status of massive QCD corrections

This talk: full (numerical) results for nonsinglet and n_{h}-singlet contributions at NNNLO

Status of massive QCD corrections

```
Fi
- fermionic contributions [Hoang, Teubner 1997]
- complete [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004-2005]
\(F_{i}^{(3)}\) (NNNLO):
- nonsinglet large \(N_{\text {c }}\) [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2018;
singlet:
mol Ablinger, Blümlein, Marquard, Rana, Schneider \(2 \times\) 2018; Lee, Smirnov, Smirnov, Steinhauser 2018]
- nonsinglet \(n_{\text {I }}\) [Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider \(2 \times\) 2018]
- nonsinglet \(n_{\mathrm{h}}\) (partially) [Blümlein, Marquard, Rana, Schneider 2019]
```

This talk: full (numerical) results for nonsinglet and n_{h}-singlet contributions at NNNLO
Status for massless form factors:

- $F_{i}^{(4)}$ computed recently [Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 2022] \Rightarrow Matthias Steinhauser's talk
- Singlet contributions to $F_{a}^{(3)}$ with massive quark loop computed in [Chen, Czakon, Niggetiedt 2021]

Why numerical?

$$
q^{2}=s=-\frac{(1-x)^{2}}{x}
$$

- Large- N_{c} and n_{l} contributions at NNNLO can be written as iterated integrals over letters

$$
\frac{1}{x}, \frac{1}{1+x}, \frac{1}{1-x}, \frac{1}{1-x+x^{2}}, \frac{x}{1-x+x^{2}}
$$

- n_{n} terms already contain structures beyond iterated integrals (elliptic integrals)
\Rightarrow No ready-to-use tools available for analytic solution
\Rightarrow Instead: Full solution through analytic series expansions and numerical matching

Setup

	nonsinglet	n_{h}-singlet
diagrams	271	66
families	34	17
integrals	302671	106883
masters	422	316

- Generate diagrams with qgraf [Nogueira 1991]
- Map to predefined integral families with q2e/exp [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]
- FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013; Ruijl, Ueda, Vermaseren 2017] for Lorentz, Dirac, and color algebra [van Ritbergen, Schellekens, Vermaseren 1998]
- Reduction to master integrals with Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhöfer, Usovitsch 2020] and Fermat [Lewis]
- Construct good basis where denominators factorize in ϵ and \hat{s} with ImproveMasters.m [Smirnov, Smirnov 2020]
- Establish differential equations in \hat{s} with LiteRed [Lee 2012+2013]

Algorithm to solve master integrals

$$
\frac{\partial}{\partial \hat{s}} M_{n}=A_{n m}(\epsilon, \hat{s}) M_{m}
$$

- Compute expansion around $\hat{s}=0$ by:
- Inserting an ansatz for the master integrals into the differential equation:

$$
M_{n}(\epsilon, \hat{s}=0)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i} \hat{s}^{j}
$$

- Compare coefficients in ϵ and \hat{s} to establish linear system of equations for $c_{i j}^{(n)}$
- Solve system in terms of small number of boundary constants using Kira with FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020]
- Compute boundary values for $\hat{s}=0$ to fix remaining constants

Algorithm to solve master integrals

$$
\frac{\partial}{\partial \hat{s}} M_{n}=A_{n m}(\epsilon, \hat{s}) M_{m}
$$

- Compute expansion around $\hat{s}=0$ by:
- Inserting an ansatz for the master integrals into the differential equation:

$$
M_{n}(\epsilon, \hat{s}=0)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i} \hat{s}^{j}
$$

- Compare coefficients in ϵ and \hat{s} to establish linear system of equations for $c_{i j}^{(n)}$
- Solve system in terms of small number of boundary constants using Kira with FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020]
- Compute boundary values for $\hat{s}=0$ to fix remaining constants
- Construct expansion around new point $\hat{s}=\hat{s}_{0}$ by modifying the ansatz and repeating the steps above
- Match both expansions numerically at a point where both expansions converge, e.g. $\hat{s}_{0} / 2$
- Repeat

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text {max }}} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$

Series expansions

- Different ansätze for different points:
$\begin{array}{ll}\text { regular point: } & M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j} \\ s= \pm \infty \text { (high-energy limit): } & M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{s}^{-j} \ln ^{k}(\hat{s})\end{array}$

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$
$s= \pm \infty$ (high-energy limit): $\quad M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{\boldsymbol{s}}^{-j} \ln ^{k}(\hat{\boldsymbol{s}})$
$s=4 m^{2}$ (2-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=4)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\text {min }}}^{j_{\text {max }}} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{4-\hat{s}}]^{j} \ln ^{k}(\sqrt{4-\hat{s}})$

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$
$s= \pm \infty$ (high-energy limit): $\quad M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{\boldsymbol{s}}^{-j} \ln ^{k}(\hat{\boldsymbol{s}})$
$s=4 m^{2}$ (2-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=4)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\text {max }}} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{4-\hat{s}}]^{j} \ln ^{k}(\sqrt{4-\hat{s}})$
$s=16 m^{2}$ (4-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=16)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{16-\hat{s}}]^{j} \ln ^{k}(\sqrt{16-\hat{s}})$

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$
$s= \pm \infty$ (high-energy limit): $\quad M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{s}^{-j} \ln ^{k}(\hat{s})$
$s=4 m^{2}$ (2-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=4)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\text {max }}} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{4-\hat{s}}]^{j} \ln ^{k}(\sqrt{4-\hat{s}})$
$s=16 m^{2}$ (4-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=16)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{16-\hat{s}}]^{j} \ln ^{k}(\sqrt{16-\hat{s}})$
- We construct expansions up to $j_{\max }=50$ around

$$
\begin{aligned}
\hat{s}= & \{-\infty,-32,-28,-24,-16,-12,-8,-4,0,1,2,5 / 2,3,7 / 2,4 \\
& 9 / 2,5,6,7,8,10,12,14,15,16,17,19,22,28,40\}
\end{aligned}
$$

and similar for the n_{h}-singlet contributions

Calculation of boundary conditions: nonsinglet

- For $s=0$ the master integrals reduce to 3-loop on-shell propagators:
- Well studied in the literature [Laporta, Remiddi 1996; Melnikov, van Ritbergen 1999; Lee, Smirnov 2010]
- The reduction introduces high inverse powers in ϵ which requires some integrals up to weight 9
- Using the dimensional-recurrence relations from [Lee, Smirnov 2010] we calculated the missing terms with SummerTime.m [Lee, Mingulov 2015] and PSLQ [Ferguson, Bailey, Arno 1999]

Calculation of boundary conditions: n_{h} singlet

- Due to massless cuts we need an asymptotic expansion
- Hard region solved with the same methods as in nonsinglet case
- Other regions:
- Scalings identified with asy.m [Jantzen, Smirnov, Smirnov 2012]
- α parameters integrated directly or with HyperInt [Panzer 2014]

$$
\begin{aligned}
J_{3} & =y^{-4 \epsilon} \frac{\Gamma(\epsilon-1) \Gamma(2 \epsilon)}{2} \int_{0}^{\infty} \mathrm{d} \alpha_{3} \int_{0}^{\infty} \mathrm{d} \alpha_{4} \int_{0}^{\infty} \mathrm{d} \alpha_{6} \frac{\alpha_{4}^{-2 \epsilon} \alpha_{6}^{-2 \epsilon}\left(\alpha_{6}+\alpha_{4}\left(1+\alpha_{6}\right)\right)^{3 \epsilon-1}}{\alpha_{4}+\alpha_{6}+2 \alpha_{3} \alpha_{6}+\alpha_{3}^{2}\left(1+\alpha_{6}\right)} \\
& =y^{-4 \epsilon} \pi^{2} e^{-3 \gamma_{E} \epsilon}\left\{-\frac{1}{6 \epsilon^{2}}-\frac{7}{6 \epsilon}+\frac{13 \pi^{2}}{72}-\frac{43}{6}+\epsilon\left(\frac{59 \zeta_{3}}{6}-\frac{259}{6}+\frac{91 \pi^{2}}{72}\right)+\mathcal{O}\left(\epsilon^{2}\right)\right\}
\end{aligned}
$$

Example

- Expansion around $\hat{s}=0$

Example

- Expansion around $\hat{s}=0$
- Expansion around $\hat{s}=-4$, matched at $\hat{s}=-2$

Example

- Expansion around $\hat{s}=0$
- Expansion around $\hat{s}=-4$, matched at $\hat{s}=-2$
- Expansion around $\hat{s}=-8$, matched at $\hat{s}=-6$

Similar algorithms in the literature

Other approaches based on differential equations and series expansions:

- SolveCoupledSystems .m [Blümlein, Schneider 2017]
- DESS.m [Lee, Smirnov, Smirnov 2017]
- DiffExp.m [Hidding 2020] \Rightarrow Martijn Hidding's talk
- AMFlow [Liu, Ma 2022]
- SeaSyde.m [Armadillo, Bonciani, Devoto, Rana, Vicini 2022]
- ..

Our approach ..

- ... is tailored to problems with one real-valued kinematic variable
- ... does not require a special form for differential equations (except to be almost pole free on the diagonal)
- ... provides approximations over the whole kinematic range
- ... was successfully applied to physical quantities with 339, 422, and 316 master integrals [Fael, FL, Schönwald, Steinhauser 2021 + 2022]

Renormalization and infrared structure

UV renormalization

- $\overline{\mathrm{MS}}$ renormalization of α_{s}
- On-shell renormalization of mass $Z_{m}^{\text {OS }}$, wave function $Z_{2}^{\text {OS }}$, and (if needed) currents [Chetyrkin, Steinhauser 1999;

Melnikov, van Ritbergen 2000]
IR subtraction

- Structure of infrared poles given by cusp anomalous dimension 「cusp [Grozin, Henn, Korchemski, Marquard 2014]
- Define finite form factors $F=Z_{\mathrm{IR}} F^{\text {finite }}$ with UV-renormalized form factor F and

$$
Z_{\mathrm{IR}}=1-\frac{\alpha_{s}}{\pi} \frac{1}{2 \epsilon} \Gamma_{\text {cusp }}^{(1)}-\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{\cdots}{\epsilon^{2}}+\frac{1}{4 \epsilon} \Gamma_{\text {cusp }}^{(2)}\right)-\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left(\frac{\cdots}{\epsilon^{3}}+\frac{\cdots}{\epsilon^{2}}+\frac{1}{6 \epsilon} \Gamma_{\text {cusp }}^{(3)}\right)
$$

- $\Gamma_{\text {cusp }}=\Gamma_{\text {cusp }}(x)$ depends on kinematics
- $\Gamma_{\text {cusp }}$ universal for all currents

Results - analytic expansion around $\hat{s}=0$

$$
\begin{aligned}
F_{1}^{v, f,(3)}(\hat{s}=0) & =\left\{C _ { F } ^ { 3 } \left(-15 a_{4}-\frac{17 \pi^{2} \zeta_{3}}{24}-\frac{18367 \zeta_{3}}{1728}+\frac{25 \zeta_{5}}{8}-\frac{5 l_{2}^{4}}{8}-\frac{19}{40} \pi^{2} I_{2}^{2}+\frac{4957 \pi^{2} l_{2}}{720}+\frac{3037 \pi^{4}}{25920}\right.\right. \\
& \left.-\frac{24463 \pi^{2}}{7776}+\frac{13135}{20736}\right)+C_{A} C_{F}^{2}\left(\frac{19 a_{4}}{2}-\frac{\pi^{2} \zeta_{3}}{9}+\frac{17725 \zeta_{3}}{3456}-\frac{55 \zeta_{5}}{32}+\frac{19 l_{2}^{4}}{48}-\frac{97}{720} \pi^{2} l_{2}^{2}\right. \\
& \left.+\frac{29 \pi^{2} l_{2}}{240}-\frac{347 \pi^{4}}{17280}-\frac{4829 \pi^{2}}{10368}+\frac{707}{288}\right)+C_{A}^{2} C_{F}\left(-a_{4}+\frac{7 \pi^{2} \zeta_{3}}{96}+\frac{4045 \zeta_{3}}{5184}-\frac{5 \zeta_{5}}{64}-\frac{l_{2}^{4}}{24}\right. \\
& \left.\left.+\frac{67}{360} \pi^{2} l_{2}^{2}-\frac{5131 \pi^{2} l_{2}}{2880}+\frac{67 \pi^{4}}{8640}+\frac{172285 \pi^{2}}{186624}-\frac{7876}{2187}\right)\right\} \hat{s}+\text { fermionic corrections }+\mathcal{O}\left(\hat{s}^{2}\right)
\end{aligned}
$$

- $I_{2}=\ln (2), a_{4}=\operatorname{Li}_{4}(1 / 2)$ and $C_{\mathrm{A}}=3, C_{\mathrm{F}}=4 / 3$ for QCD
- Expansions for all currents are available up to $\mathcal{O}\left(\hat{s}^{67}\right)$

Results - high-energy limit

$$
\begin{aligned}
& \left.F_{1}^{\mathrm{vf},(3)}\right|_{s \rightarrow-\infty}=4.7318 C_{\mathrm{F}}^{3}-20.762 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+8.3501 C_{\mathrm{F}} C_{\mathrm{A}}^{2}+\left[3.4586 C_{\mathrm{F}}^{3}-4.0082 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-6.3561 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{S} \\
& +\left[1.4025 C_{\mathrm{F}}^{3}+0.51078 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-2.2488 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{2}+\left[0.062184 C_{\mathrm{F}}^{3}+0.90267 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.42778 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{3} \\
& +\left[-0.075860 C_{\mathrm{F}}^{3}+0.20814 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.035011 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{s}^{4}+\left[-0.023438 C_{\mathrm{F}}^{3}+0.019097 C_{\mathrm{F}}^{2} C_{\mathrm{A}}\right] I_{s}^{5} \\
& +\left[-0.0026042 C_{\mathrm{F}}^{3}\right] I_{S}^{6}-\left\{-92.918 C_{\mathrm{F}}^{3}+123.65 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-47.821 C_{\mathrm{F}} C_{\mathrm{A}}^{2}+\left[-10.381 C_{\mathrm{F}}^{3}+2.3223 C_{\mathrm{F}}^{2} C_{\mathrm{A}}\right.\right. \\
& \left.+17.305 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{S}+\left[4.9856 C_{\mathrm{F}}^{3}-19.097 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+8.0183 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{s}^{2}+\left[3.0499 C_{\mathrm{F}}^{3}-6.8519 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+1.9149 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{S}^{3} \\
& +\left[0.67172 C_{\mathrm{F}}^{3}-0.91213 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+0.24069 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{4}+\left[0.13229 C_{\mathrm{F}}^{3}-0.051389 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+0.0043403 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{5} \\
& \left.+\left[0.0041667 C_{\mathrm{F}}^{3}-0.0010417 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.00052083 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{6}\right\} \frac{m^{2}}{s}+\mathcal{O}\left(\frac{m^{4}}{s^{2}}\right)+\text { fermionic contributions }
\end{aligned}
$$

- Dedicated calculation of leading logarithms [Liu, Penin, Zerf 2017]:

$$
F_{1}^{F_{1}^{v,(3)}}=-\frac{C_{F}^{3}}{384} I_{s}^{6}-\frac{m^{2}}{s}\left(\frac{C_{F}^{3}}{240}-\frac{C_{F}^{2} C_{A}}{960}-\frac{C_{F} C_{A}^{2}}{1920}\right) I_{s}^{6}+\ldots, \quad \text { with } I_{s}=\ln \left(\frac{m^{2}}{-s}\right)
$$

- We reproduce these terms with high precision

Results - pole cancellation

- We use the pole cancellation to estimate the precision
- To estimate the number of significant digits we use

$$
\log _{10}\left(\left|\frac{\text { expansion }- \text { analytic } C T}{\text { analytic } C T}\right|\right)
$$

\Rightarrow We estimate at least 8 correct digits for the finite terms

- Most regions for most color factors and especially n_{h} singlet much more precise

Results - some plots: nonsinglet

Results - some plots: n_{h} singlet

Results - threshold expansion around $s=4 m^{2}$

Karlsruhe Institute of Technology

- Close to threshold we can construct cross-sections and decay rates like

$$
\sigma\left(e^{+} e^{-} \rightarrow Q \bar{Q}\right)=\sigma_{0} \beta \underbrace{\left(\left|F_{1}^{v}+F_{2}^{v}\right|^{2}+\frac{\left|\left(1-\beta^{2}\right) F_{1}^{v}+F_{2}^{v}\right|^{2}}{2\left(1-\beta^{2}\right)}\right)}_{=3 / 2 \Delta^{v}}
$$

with the quark velocity $\beta=\sqrt{1-4 m^{2} / s}$

- Real radiation suppressed by β^{3}
\Rightarrow Direct phenomenological relevance
- We find (with $I_{2 \beta}=\ln (2 \beta)$)

$$
\begin{aligned}
\Delta^{v,(3)}= & C_{F}^{3}\left[-\frac{32.470}{\beta^{2}}+\frac{1}{\beta}\left(14.998-32.470 I_{2 \beta}\right)\right]+C_{A}^{2} C_{F} \frac{1}{\beta}\left[16.586 l_{2 \beta}^{2}-22.572 I_{2 \beta}+42.936\right] \\
& +C_{A} C_{F}^{2}\left[\frac{1}{\beta^{2}}\left(-29.764 I_{2 \beta}-7.7703\right)+\frac{1}{\beta}\left(-12.516 l_{2 \beta}-11.435\right)\right] \\
& +\mathcal{O}\left(\beta^{0}\right)+\text { fermionic contributions }
\end{aligned}
$$

- Agrees with dedicated calculation [Kiyo, Maier, Maierhöfer, Marquard 2009]
(

Conclusions and outlook

Conclusions

- Calculated nonsinglet and n_{h}-singlet contributions to massive quark form factors at NNNLO in QCD
- Applied a semianalytic method by constructing series expansions and matching numerically
- Reproduce known results from the literature, e.g.
- large- N_{c} limit, n_{l} and partial n_{h} contributions
- static, high-energy, and threshold expansions
- Estimate precision to at least 8 significant digits over the whole real axis
- Extracted matching coefficients between QCD and NRQCD [Egner, Fael, FL, Schönwald, Steinhauser 2022]

Conclusions and outlook

Conclusions

- Calculated nonsinglet and n_{h}-singlet contributions to massive quark form factors at NNNLO in QCD
- Applied a semianalytic method by constructing series expansions and matching numerically
- Reproduce known results from the literature, e.g.
- large- N_{c} limit, n_{l} and partial n_{h} contributions
- static, high-energy, and threshold expansions
- Estimate precision to at least 8 significant digits over the whole real axis
- Extracted matching coefficients between QCD and NRQCD [Egner, Fael, FL, Schönwald, Steinhauser 2022]

Outlook

- n_{1}-singlet contributions work in progress
- Singlet contributions to NRQCD matching coefficients
- $\gamma^{\star} \rightarrow \ell \bar{\ell}$ in QED most realistic first phenomenological application \Rightarrow talks by Fulvio Piccinini and Yannick Ulrich

Calculation of Boundary Conditions

E.g. extension of G_{66} (given up to and including $\mathcal{O}\left(\epsilon^{3}\right)$ in [Lee, Smirnov 2010]):

Moebius Transformations

- The radius of convergence is at most the distance to the closest singularity.
- We can extend the radius of convergence by changing to a new expansion variable.
- If we want to expand around the point x_{k} with the closest singularities at x_{k-1} and x_{k+1}, we can use:

$$
y_{k}=\frac{\left(x-x_{k}\right)\left(x_{k+1}-x_{k-1}\right)}{\left(x-x_{k+1}\right)\left(x_{k-1}-x_{k}\right)+\left(x-x_{k-1}\right)\left(x_{k+1}-x_{k}\right)}
$$

- The variable change maps $\left\{x_{k-1}, x_{k}, x_{k+1}\right\} \rightarrow\{-1,0,1\}$.
(

