

Massive quark form factors at three loops

8th International Workshop on High Precision for Hard Processes | September 20 – 22, 2022

Fabian Lange

in collaboration with Matteo Fael, Kay Schönwald, Matthias Steinhauser | Sep 20, 2022

Motivation

- Form factors are basic building blocks for many physical observables:
 - $t\bar{t}$ production at hadron and e^+e^- colliders
 - \blacksquare μe scattering
 - Higgs production and decay
 - ...
- Form factors exhibit an universal infrared behavior which is interesting to study

The process

$$egin{align} X(q)
ightarrow Q(q_1) + ar{Q}(q_2) \ & \ q_1^2 = q_2^2 = m^2, \quad q^2 = s = \hat{s} \cdot m^2 \ & \ \end{array}$$

vector:
$$\begin{split} & j_{\mu}^{\rm v} = \overline{\psi}\gamma_{\mu}\psi, \qquad \Gamma_{\mu}^{\rm v} = \digamma_1^{\rm v}(s)\gamma_{\mu} - \frac{{\rm i}}{2m}\digamma_2^{\rm v}(s)\sigma_{\mu\nu}q^{\nu} \\ & {\rm axial\text{-vector}}: \qquad j_{\mu}^{\rm a} = \overline{\psi}\gamma_{\mu}\gamma_5\psi, \qquad \Gamma_{\mu}^{\rm a} = \digamma_1^{\rm a}(s)\gamma_{\mu}\gamma_5 - \frac{1}{2m}\digamma_2^{\rm a}(s)q_{\mu}\gamma_5 \\ & {\rm scalar}: \qquad j^{\rm s} = m\overline{\psi}\psi, \qquad \Gamma^{\rm s} = mF^{\rm s}(s) \\ & {\rm pseudo\text{-scalar}}: \qquad j^{\rm p} = {\rm i}m\overline{\psi}\gamma_5\psi, \qquad \Gamma^{\rm p} = {\rm i}m\digamma_1^{\rm p}(s)\gamma_5 \end{split}$$

Types of contributions

Institute for Theoretical Particle Physics and Institute for Astroparticle Physics

Status of massive QCD corrections

nonsinglet:

singlet:

$F_{:}^{(2)}$ (NNLO):

- fermionic contributions [Hoang, Teubner 1997]
- **complete** [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004 2005]

(NNNLO):

- nonsinglet large N_c [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018; Lee, Smirnov, Smirnov, Steinhauser 2018]
- nonsinglet n [Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018]
- nonsinglet n_h (partially) [Blümlein, Marquard, Rana, Schneider 2019]

This talk: full (numerical) results for nonsinglet and n_h -singlet contributions at NNNLO

Status of massive QCD corrections

nonsinglet:

singlet:

$F_{:}^{(2)}$ (NNLO):

- fermionic contributions [Hoang, Teubner 1997]
- **complete** [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004 2005]

(NNNLO):

- nonsinglet large N_c [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018; Lee, Smirnov, Smirnov, Steinhauser 2018]
- nonsinglet n [Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018]
- nonsinglet n_h (partially) [Blümlein, Marquard, Rana, Schneider 2019]

This talk: full (numerical) results for nonsinglet and n_h -singlet contributions at NNNLO

Status for massless form factors:

- $F_i^{(4)}$ computed recently [Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 2022] \Rightarrow Matthias Steinhauser's talk
- Singlet contributions to $F_a^{(3)}$ with massive quark loop computed in [Chen, Czakon, Niggetiedt 2021]

Why numerical?

$$q^2 = s = -\frac{(1-x)^2}{x}$$

• Large- N_c and n_l contributions at NNNLO can be written as iterated integrals over letters

$$\frac{1}{x}$$
, $\frac{1}{1+x}$, $\frac{1}{1-x}$, $\frac{1}{1-x+x^2}$, $\frac{x}{1-x+x^2}$

- \blacksquare n_h terms already contain structures beyond iterated integrals (elliptic integrals)
- No ready-to-use tools available for analytic solution
- Instead: Full solution through analytic series expansions and numerical matching

Setup

	nonsinglet	n _h -singlet
diagrams	271	66
families	34	17
integrals	302671	106883
masters	422	316

- Generate diagrams with qgraf [Nogueira 1991]
- Map to predefined integral families with q2e/exp [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]
- FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013; Ruijl, Ueda, Vermaseren 2017] for Lorentz, Dirac, and color algebra [van Ritbergen, Schellekens, Vermaseren 1998]
- Reduction to master integrals with Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhöfer, Usovitsch 2020] and Fermat [Lewis]
 - Construct good basis where denominators factorize in ϵ and \hat{s} with ImproveMasters.m [Smirnov, Smirnov 2020]
- Establish differential equations in ŝ with LiteRed [Lee 2012 + 2013]

Algorithm to solve master integrals

$$\frac{\partial}{\partial \hat{\mathsf{s}}} M_n = A_{nm}(\epsilon, \hat{\mathsf{s}}) M_m$$

- Compute expansion around $\hat{s} = 0$ by:
 - Inserting an ansatz for the master integrals into the differential equation:

$$M_n(\epsilon, \hat{s} = 0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max}} c_{ij}^{(n)} \epsilon^i \hat{s}^j$$

- lacktriangle Compare coefficients in ϵ and \hat{s} to establish linear system of equations for $c_{ii}^{(n)}$
 - Solve system in terms of small number of boundary constants using Kira with FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020]
- Compute boundary values for $\hat{s} = 0$ to fix remaining constants

Algorithm to solve master integrals

$$\frac{\partial}{\partial \hat{\mathbf{s}}} M_n = A_{nm}(\epsilon, \hat{\mathbf{s}}) M_m$$

- Compute expansion around $\hat{s} = 0$ by:
 - Inserting an ansatz for the master integrals into the differential equation:

$$M_n(\epsilon, \hat{\mathbf{s}} = 0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\mathsf{max}}} c_{ij}^{(n)} \, \epsilon^i \, \hat{\mathbf{s}}^j$$

- lacktriangle Compare coefficients in ϵ and \hat{s} to establish linear system of equations for $c_{ii}^{(n)}$
- Solve system in terms of small number of boundary constants using Kira with FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020]
- Compute boundary values for $\hat{s} = 0$ to fix remaining constants
- Construct expansion around new point $\hat{s} = \hat{s}_0$ by modifying the ansatz and repeating the steps above
- Match both expansions numerically at a point where both expansions converge, e.g. $\hat{s}_0/2$
- Repeat

$$M_n(\epsilon, \hat{\mathbf{s}} = \hat{\mathbf{s}}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text{max}}} c_{ij}^{(n)} \, \epsilon^i \, (\hat{\mathbf{s}} - \hat{\mathbf{s}}_0)^j$$

regular point:
$$M_n(\epsilon, \hat{\mathbf{s}} = \hat{\mathbf{s}}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text{max}}} c_{ij}^{(n)} \, \epsilon^i \, (\hat{\mathbf{s}} - \hat{\mathbf{s}}_0)^j$$

regular point:
$$M_n(\epsilon, \hat{\mathbf{s}} = \hat{\mathbf{s}}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text{max}}} c_{ij}^{(n)} \, \epsilon^i \, (\hat{\mathbf{s}} - \hat{\mathbf{s}}_0)^j$$

$$\mathbf{s} = \pm \infty \text{ (high-energy limit):} \qquad M_n(\epsilon, \hat{\mathbf{s}} \to \pm \infty) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+6} c_{ijk}^{(n)} \, \epsilon^i \, \hat{\mathbf{s}}^{-j} \, \ln^k \left(\hat{\mathbf{s}} \right)$$

Series expansions

regular point:
$$M_n(\epsilon, \hat{s} = \hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text{max}}} c_{ij}^{(n)} \, \epsilon^i \, (\hat{s} - \hat{s}_0)^j$$

$$s = \pm \infty \text{ (high-energy limit):} \qquad M_n(\epsilon, \hat{s} \to \pm \infty) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+6} c_{ijk}^{(n)} \, \epsilon^i \, \hat{s}^{-j} \, \ln^k (\hat{s})$$

$$s = 4m^2 \text{ (2-particle threshold):} \qquad M_n(\epsilon, \hat{s} = 4) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+3} c_{ijk}^{(n)} \, \epsilon^i \, \left[\sqrt{4-\hat{s}} \right]^j \, \ln^k \left(\sqrt{4-\hat{s}} \right)$$

Series expansions

regular point:
$$M_n(\epsilon,\hat{s}=\hat{s}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text{max}}} c_{ij}^{(n)} \epsilon^{j} \left(\hat{s}-\hat{s}_0\right)^{j}$$

$$s = \pm \infty \text{ (high-energy limit):} \qquad M_n(\epsilon,\hat{s}\to\pm\infty) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+6} c_{ijk}^{(n)} \epsilon^{i} \, \hat{s}^{-j} \, \ln^k \left(\hat{s}\right)$$

$$s = 4m^2 \text{ (2-particle threshold):} \qquad M_n(\epsilon,\hat{s}=4) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+3} c_{ijk}^{(n)} \epsilon^{i} \left[\sqrt{4-\hat{s}}\right]^{j} \ln^k \left(\sqrt{4-\hat{s}}\right)$$

$$s = 16m^2 \text{ (4-particle threshold):} \qquad M_n(\epsilon,\hat{s}=16) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+3} c_{ijk}^{(n)} \epsilon^{i} \left[\sqrt{16-\hat{s}}\right]^{j} \ln^k \left(\sqrt{16-\hat{s}}\right)$$

Series expansions

Different ansätze for different points:

regular point:
$$M_n(\epsilon,\hat{\mathbf{s}}=\hat{\mathbf{s}}_0) = \sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text{max}}} c_{ij}^{(n)} \, \epsilon^i \, (\hat{\mathbf{s}}-\hat{\mathbf{s}}_0)^j$$

$$s = \pm \infty \text{ (high-energy limit):} \qquad M_n(\epsilon,\hat{\mathbf{s}}\to\pm\infty) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+6} c_{ijk}^{(n)} \, \epsilon^i \, \hat{\mathbf{s}}^{-j} \, \ln^k (\hat{\mathbf{s}})$$

$$s = 4m^2 \text{ (2-particle threshold):} \qquad M_n(\epsilon,\hat{\mathbf{s}}=4) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+3} c_{ijk}^{(n)} \, \epsilon^i \, \left[\sqrt{4-\hat{\mathbf{s}}}\right]^j \, \ln^k \left(\sqrt{4-\hat{\mathbf{s}}}\right)$$

$$s = 16m^2 \text{ (4-particle threshold):} \qquad M_n(\epsilon,\hat{\mathbf{s}}=16) = \sum_{i=-3}^{\infty} \sum_{j=-s_{\text{min}}}^{j_{\text{max}}} \sum_{k=0}^{i+3} c_{ijk}^{(n)} \, \epsilon^i \, \left[\sqrt{16-\hat{\mathbf{s}}}\right]^j \, \ln^k \left(\sqrt{16-\hat{\mathbf{s}}}\right)^j$$

• We construct expansions up to $i_{max} = 50$ around

$$\begin{split} \hat{s} &= \{\, -\infty, -32, -28, -24, -16, -12, -8, -4, 0, 1, 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \\ &\frac{9}{2}, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 22, 28, 40 \} \end{split}$$

and similar for the n_h -singlet contributions

- For s = 0 the master integrals reduce to 3-loop on-shell propagators:
 - Well studied in the literature [Laporta, Remiddi 1996; Melnikov, van Ritbergen 1999; Lee, Smirnov 2010]
 - lacktriangle The reduction introduces high inverse powers in ϵ which requires some integrals up to weight 9
 - Using the dimensional-recurrence relations from [Lee, Smirnov 2010] we calculated the missing terms with SummerTime.m [Lee, Mingulov 2015] and PSLQ [Ferguson, Bailey, Arno 1999]

Calculation of boundary conditions: n_h singlet

- Due to massless cuts we need an asymptotic expansion
- Hard region solved with the same methods as in nonsinglet case
- Other regions:
 - Scalings identified with asy.m [Jantzen, Smirnov, Smirnov 2012]
 - lacktriangleq lpha parameters integrated directly or with HyperInt [Panzer 2014]

$$\begin{split} J_3 &= y^{-4\epsilon} \frac{\Gamma(\epsilon-1)\Gamma(2\epsilon)}{2} \int\limits_0^\infty \mathrm{d}\alpha_3 \int\limits_0^\infty \mathrm{d}\alpha_4 \int\limits_0^\infty \mathrm{d}\alpha_6 \frac{\alpha_4^{-2\epsilon} \; \alpha_6^{-2\epsilon} \; \left(\alpha_6 + \alpha_4(1+\alpha_6)\right)^{3\epsilon-1}}{\alpha_4 + \alpha_6 + 2\alpha_3\alpha_6 + \alpha_3^2(1+\alpha_6)} \\ &= y^{-4\epsilon} \pi^2 e^{-3\gamma_E \epsilon} \left\{ -\frac{1}{6\epsilon^2} - \frac{7}{6\epsilon} + \frac{13\pi^2}{72} - \frac{43}{6} + \epsilon \left(\frac{59\zeta_3}{6} - \frac{259}{6} + \frac{91\pi^2}{72}\right) + \mathcal{O}(\epsilon^2) \right\} \end{split}$$

Example

• Expansion around $\hat{s} = 0$

Example

- Expansion around $\hat{s} = 0$
- Expansion around $\hat{s} = -4$, matched at $\hat{s} = -2$

Example

- Expansion around $\hat{s} = 0$
- Expansion around $\hat{s} = -4$, matched at $\hat{s} = -2$
- Expansion around $\hat{s} = -8$, matched at $\hat{s} = -6$

Other approaches based on differential equations and series expansions:

- SolveCoupledSystems.m [Blümlein, Schneider 2017]
- DESS.m [Lee, Smirnov, Smirnov 2017]
- DiffExp.m [Hidding 2020] ⇒ Martijn Hidding's talk
- AMFlow [Liu, Ma 2022]
- SeaSyde.m [Armadillo, Bonciani, Devoto, Rana, Vicini 2022]

Our approach ...

- ... is tailored to problems with one real-valued kinematic variable
- does not require a special form for differential equations (except to be almost pole free on the diagonal)
- provides approximations over the whole kinematic range
- was successfully applied to physical quantities with 339, 422, and 316 master integrals [Fael, FL, Schönwald, Steinhauser 2021 + 2022]

UV renormalization

- MS renormalization of α_s
- On-shell renormalization of mass Z_2^{OS} , wave function Z_2^{OS} , and (if needed) currents [Chetyrkin, Steinhauser 1999; Melnikov, van Ritbergen 20001

IR subtraction

- Structure of infrared poles given by cusp anomalous dimension Γ_{cusp} [Grozin, Henn, Korchemski, Marquard 2014]
- Define finite form factors $F = Z_{IR} F^{finite}$ with UV-renormalized form factor F and

$$Z_{\text{IR}} = 1 - \frac{\alpha_s}{\pi} \frac{1}{2\epsilon} \Gamma_{\text{cusp}}^{(1)} - \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{\cdots}{\epsilon^2} + \frac{1}{4\epsilon} \Gamma_{\text{cusp}}^{(2)}\right) - \left(\frac{\alpha_s}{\pi}\right)^3 \left(\frac{\cdots}{\epsilon^3} + \frac{\cdots}{\epsilon^2} + \frac{1}{6\epsilon} \Gamma_{\text{cusp}}^{(3)}\right)$$

- $\Gamma_{\text{cusp}} = \Gamma_{\text{cusp}}(x)$ depends on kinematics
- Γ_{cusp} universal for all currents

$$\begin{split} F_1^{\text{v.f.}(3)}(\hat{\mathbf{s}} = 0) &= \Bigg\{ C_{\text{F}}^3 \Big(-15a_4 - \frac{17\pi^2\zeta_3}{24} - \frac{18367\zeta_3}{1728} + \frac{25\zeta_5}{8} - \frac{5l_2^4}{8} - \frac{19}{40}\pi^2l_2^2 + \frac{4957\pi^2l_2}{720} + \frac{3037\pi^4}{25920} \\ &- \frac{24463\pi^2}{7776} + \frac{13135}{20736} \Big) + C_{\text{A}}C_{\text{F}}^2 \Big(\frac{19a_4}{2} - \frac{\pi^2\zeta_3}{9} + \frac{17725\zeta_3}{3456} - \frac{55\zeta_5}{32} + \frac{19l_2^4}{48} - \frac{97}{720}\pi^2l_2^2 \\ &+ \frac{29\pi^2l_2}{240} - \frac{347\pi^4}{17280} - \frac{4829\pi^2}{10368} + \frac{707}{288} \Big) + C_{\text{A}}^2C_{\text{F}} \Big(-a_4 + \frac{7\pi^2\zeta_3}{96} + \frac{4045\zeta_3}{5184} - \frac{5\zeta_5}{64} - \frac{l_2^4}{24} \\ &+ \frac{67}{360}\pi^2l_2^2 - \frac{5131\pi^2l_2}{2880} + \frac{67\pi^4}{8640} + \frac{172285\pi^2}{186624} - \frac{7876}{2187} \Big) \Bigg\} \hat{\mathbf{s}} + \text{fermionic corrections} + \mathcal{O}(\hat{\mathbf{s}}^2) \end{split}$$

- $I_2 = In(2)$, $a_4 = Li_4(1/2)$ and $C_A = 3$, $C_F = 4/3$ for QCD
- Expansions for all currents are available up to $\mathcal{O}(\hat{s}^{67})$

$$\begin{split} F_{1}^{\text{v,f,(3)}}\Big|_{s \to -\infty} &= 4.7318C_{\text{F}}^{3} - 20.762C_{\text{F}}^{2}C_{\text{A}} + 8.3501C_{\text{F}}C_{\text{A}}^{2} + \left[3.4586C_{\text{F}}^{3} - 4.0082C_{\text{F}}^{2}C_{\text{A}} - 6.3561C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}} \\ &+ \left[1.4025C_{\text{F}}^{3} + 0.51078C_{\text{F}}^{2}C_{\text{A}} - 2.2488C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{2} + \left[0.062184C_{\text{F}}^{3} + 0.90267C_{\text{F}}^{2}C_{\text{A}} - 0.42778C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{3} \\ &+ \left[-0.075860C_{\text{F}}^{3} + 0.20814C_{\text{F}}^{2}C_{\text{A}} - 0.035011C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{4} + \left[-0.023438C_{\text{F}}^{3} + 0.019097C_{\text{F}}^{2}C_{\text{A}}\right]I_{\text{S}}^{5} \\ &+ \left[-0.0026042C_{\text{F}}^{3}\right]I_{\text{S}}^{6} - \left\{-92.918C_{\text{F}}^{3} + 123.65C_{\text{F}}^{2}C_{\text{A}} - 47.821C_{\text{F}}C_{\text{A}}^{2} + \left[-10.381C_{\text{F}}^{3} + 2.3223C_{\text{F}}^{2}C_{\text{A}}\right]I_{\text{S}}^{2} + 17.305C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}} + \left[4.9856C_{\text{F}}^{3} - 19.097C_{\text{F}}^{2}C_{\text{A}} + 8.0183C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{2} + \left[3.0499C_{\text{F}}^{3} - 6.8519C_{\text{F}}^{2}C_{\text{A}} + 1.9149C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{5} \\ &+ \left[0.67172C_{\text{F}}^{3} - 0.91213C_{\text{F}}^{2}C_{\text{A}} + 0.24069C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{4} + \left[0.13229C_{\text{F}}^{3} - 0.051389C_{\text{F}}^{2}C_{\text{A}} + 0.0043403C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{5} \\ &+ \left[0.0041667C_{\text{F}}^{3} - 0.0010417C_{\text{F}}^{2}C_{\text{A}} - 0.00052083C_{\text{F}}C_{\text{A}}^{2}\right]I_{\text{S}}^{6} + \mathcal{O}\left(\frac{m^{4}}{\text{S}^{2}}\right) + \text{fermionic contributions} \end{aligned}$$

Dedicated calculation of leading logarithms [Liu, Penin, Zerf 2017]:

$$F_1^{\text{v,f},(3)} = -\frac{C_{\text{F}}^3}{384} \textit{I}_{\text{s}}^6 - \frac{\textit{m}^2}{\textit{s}} \left(\frac{\textit{C}_{\text{F}}^3}{240} - \frac{\textit{C}_{\text{F}}^2 \textit{C}_{\text{A}}}{960} - \frac{\textit{C}_{\text{F}} \textit{C}_{\text{A}}^2}{1920} \right) \textit{I}_{\text{s}}^6 + \dots, \quad \text{with } \textit{I}_{\text{s}} = \ln \left(\frac{\textit{m}^2}{-\textit{s}} \right)$$

We reproduce these terms with high precision

Results – pole cancellation

- We use the pole cancellation to estimate the precision
- To estimate the number of significant digits we use

$$\log_{10} \left(\left| \frac{\text{expansion} - \text{analytic CT}}{\text{analytic CT}} \right| \right)$$

- ⇒ We estimate at least 8 correct digits for the finite terms
 - Most regions for most color factors and especially n_h singlet much more precise

Results – some plots: nonsinglet

Results – some plots: n_h singlet

Close to threshold we can construct cross-sections and decay rates like

$$\sigma(e^{+}e^{-} \to Q\bar{Q}) = \sigma_{0}\beta \underbrace{\left(\left|F_{1}^{v} + F_{2}^{v}\right|^{2} + \frac{\left|(1 - \beta^{2})F_{1}^{v} + F_{2}^{v}\right|^{2}}{2(1 - \beta^{2})}\right)}_{=3/2\Delta^{v}}$$

with the quark velocity $\beta = \sqrt{1 - 4m^2/s}$

- Real radiation suppressed by β^3
- ⇒ Direct phenomenological relevance
- We find (with $I_{2\beta} = \ln(2\beta)$)

$$\begin{split} \Delta^{\nu,(3)} &= \textit{C}_{\text{F}}^{3} \Big[-\frac{32.470}{\beta^{2}} + \frac{1}{\beta} \Big(14.998 - 32.470\textit{l}_{2\beta} \Big) \Big] + \textit{C}_{\text{A}}^{2} \textit{C}_{\text{F}} \frac{1}{\beta} \Big[16.586\textit{l}_{2\beta}^{2} - 22.572\textit{l}_{2\beta} + 42.936 \Big] \\ &+ \textit{C}_{\text{A}} \textit{C}_{\text{F}}^{2} \Big[\frac{1}{\beta^{2}} \big(-29.764\textit{l}_{2\beta} - 7.7703 \big) + \frac{1}{\beta} \big(-12.516\textit{l}_{2\beta} - 11.435 \big) \Big] \\ &+ \mathcal{O}(\beta^{0}) + \text{fermionic contributions} \end{split}$$

Agrees with dedicated calculation [Kiyo, Maier, Maierhöfer, Marguard 2009]

Conclusions and outlook

Conclusions

- Calculated nonsinglet and n-singlet contributions to massive quark form factors at NNNLO in QCD
- Applied a semianalytic method by constructing series expansions and matching numerically
- Reproduce known results from the literature, e.g.
 - large- N_c limit, n_l and partial n_h contributions
 - static, high-energy, and threshold expansions
- Estimate precision to at least 8 significant digits over the whole real axis
- Extracted matching coefficients between QCD and NRQCD [Egner, Fael, FL, Schönwald, Steinhauser 2022]

Conclusions and outlook

Conclusions

- Calculated nonsinglet and n-singlet contributions to massive quark form factors at NNNLO in QCD
- Applied a semianalytic method by constructing series expansions and matching numerically
- Reproduce known results from the literature, e.g.
 - large-N_c limit, n_l and partial n_h contributions
 - static, high-energy, and threshold expansions
- Estimate precision to at least 8 significant digits over the whole real axis
- Extracted matching coefficients between QCD and NRQCD [Egner, Fael, FL, Schönwald, Steinhauser 2022]

Outlook

- n_l-singlet contributions work in progress
- Singlet contributions to NRQCD matching coefficients
- ullet $\gamma^\star o \ellar\ell$ in QED most realistic first phenomenological application \Rightarrow talks by Fulvio Piccinini and Yannick Ulrich

E.g. extension of G_{66} (given up to and including $\mathcal{O}(\epsilon^3)$ in [Lee, Smirnov 2010]):

$$=\cdots+\epsilon^4\left(-4704s_6-9120s_{7a}-9120s_{7b}-547s_{8a}+9120s_6\ln(2)+28\ln^4(2)+\frac{112\ln^5(2)}{3}-\frac{808}{45}\ln^6(2)\right)$$

$$-\frac{347}{9}\ln^8(2)+672\text{Li}_4\left(\frac{1}{2}\right)-\frac{5552}{3}\ln^4(2)\text{Li}_4\left(\frac{1}{2}\right)-22208\text{Li}_4\left(\frac{1}{2}\right)^2-4480\text{Li}_5\left(\frac{1}{2}\right)-12928\text{Li}_6\left(\frac{1}{2}\right)+\ldots\right)$$

$$+\epsilon^5\left(14400s_6-\frac{377568s_{7a}}{7}-\frac{93984s_{7b}}{7}-2735s_{8a}+7572912s_{9a}-3804464s_{9b}-\frac{5092568s_{9c}}{3}-136256s_{9d}\right)$$

$$+681280s_{9e}+272512s_{9f}+\frac{377568}{7}s_6\ln(2)-\frac{32465121}{20}s_{8a}\ln(2)-10185136s_{8b}\ln(2)+136256s_{7b}\ln^2(2)+\ldots\right)$$

$$+\mathcal{O}(\epsilon^6)$$

Moebius Transformations

- The radius of convergence is at most the distance to the closest singularity.
- We can extend the radius of convergence by changing to a new expansion variable.
- If we want to expand around the point x_k with the closest singularities at x_{k-1} and x_{k+1} , we can use:

$$y_k = \frac{(x - x_k)(x_{k+1} - x_{k-1})}{(x - x_{k+1})(x_{k-1} - x_k) + (x - x_{k-1})(x_{k+1} - x_k)}$$

■ The variable change maps $\{x_{k-1}, x_k, x_{k+1}\} \rightarrow \{-1, 0, 1\}$.