Modern methods for multi-loop multiscale amplitudes

High Precision for Hard Processes 2022

Bakul Agarwal, Karlsruhe Institute of Technology

Introduction

- With HL-LHC starting, $\sim 1 \%$ precision to be achieved for many important observables \rightarrow theory needs to catch up
- Higher order corrections needed to achieve theoretical precision; NLO already automated, NNLO corrections achieved for many processes
- Requires calculation of scattering amplitudes with many loops and scales (kinematic variables)
- Development of many new methods in recent years to push the state-of-the-art
- Talk mostly based on two papers:

Two-loop helicity amplitudes for $g g \rightarrow$ ZZ with full top-quark mass effects; BA, Jones, von Manteuffel; [https://doi.org/10.1007/JHEP05(2021)256]
Two-Loop Helicity Amplitudes for Diphoton Plus Jet Production in Full Color; BA, Buccioni, von Manteuffel, Tancredi; [https:/ / doi.org/10.1103/ PhysRevLett.127.262001]

- Not meant to be a comprehensive overview, rather a short description of methods that made the above calculations possible. Also see talks on related processes:
- Ryan Moodie -jjj and $\gamma \gamma+j$ (gluon fusion) production
- Giuseppe De Laurentis - $q \bar{q} \rightarrow \gamma \gamma \gamma$ at 2-loops
- Matthias Kerner - ZH production through gluon fusion

Loop Amplitudes

- $2 \rightarrow 2$ scattering process with internal masses
- Up to $s=4$ integrals
- 2 scales s, t (m_{t}, m_{Z} set to numbers)
- Extremely complicated due to internal masses

Loop Amplitudes

Recipe for a multi-loop amplitude:

1. Generation of unreduced amplitude
2. IBP reduction

- Major bottleneck for processes with many scales and / or legs
- Significant progress with syzygy based approaches and finite-field methods

3. Insertion of IBP identities into the amplitude

- Significant blow-up for intermediate results and final reduced amplitude
- Numerical instabilities in final coefficients
- Use of multivariate partial fractioning to tame the computational complexity and improve numerical performance

4. Evaluation of master integrals

- Express in terms of multiple polylogarithms; internal masses => Functions beyond multiple polylogarithms
- Use of numerical methods instead, improved with the use of finite integrals

Integration-By-Parts reduction using Syzygies

- Integration-By-Parts reduction to reduce all the integrals to a basis set
- Generate linear relations between integrals [Chetyrkin \& Tkachov (1981)]
- Systematically construct and reduce a linear system to a basis set of master integrals -> Laporta's algorithm Laporta (2000)]. Public codes available AIR, FIRE6, Kira, LiteRed, Reduze 2, etc.
- In Baikov representation [Baikov (1996)] :

$$
\begin{aligned}
& 0=\int\left(\prod_{i}^{L} d z_{i}\right) \sum_{i}^{N} \frac{\partial}{\partial z_{i}}\left(f_{i}\left(z_{1}, \ldots, z_{N}\right) P^{(d-L-E-1) / 2} \prod_{i}^{N} \frac{1}{z_{i}^{\nu_{i}}}\right) \\
& 0=\int\left(\prod_{i}^{L} d z_{i}\right) \sum_{i}^{N}\left(\frac{\partial f}{\partial z_{i}}+\frac{\left.\frac{d-L-E-1}{2 P} f_{i} \frac{\partial P}{\partial z_{i}}-\frac{\nu_{i} f_{i}}{z_{i}}\right) P^{(d-L-E-1) / 2}}{\text { Dimension shifting term }}\right. \text { Doubled propagators }
\end{aligned}
$$

- Require:
- No dimension-shifting terms
- No integrals with doubled propagators

Integration-By-Parts reduction using Syzygies

Disadvantages:

- Such integrals don't appear in amplitudes
- Significantly larger linear system to reduce for the appearance of auxiliary integrals

Would like to avoid doubled propagators:

- Generating vectors using Groebner basis [Gluza, Kajda, Kosower (2010)]
- Linear algebra based approach [Schabinger (2011)]
- Differential geometry [Zhang (2014)]

$$
f_{i} \frac{\partial P}{\partial z_{i}} \sim P
$$

$$
f_{i} \sim z_{i}
$$

Doubled propagator term

- Trivial to write explicit solutions
- Explicit solutions known [Boehm, Georgoudis, Larsen, Schulze, Zhang (2017)] [Abreu, Cordero, Ita, Page, Zeng (2017)]
- Polynomials of degree 1 in Baikov parameters
- Straightforward to write

Integration-By-Parts reduction using Syzygies

- Simultaneous solution for the two constraints highly non-trivial
- Compute module intersection of the two syzygy modules using e.g. Singular
- Conventional approaches insufficient for our purpose [Larsen, Zhang (2015)] [Boehm, Georgoudis, Larsen, Schoenemann, Zhang (2018)]
- Syzygies for top-level topologies inaccessible for $g g \rightarrow Z Z$
- Developed a new linear algebra approach based on finite fields [BA, Jones, von Manteuffel (2020)]
- Map the problem of module intersection to row reduction of a matrix; use Finred - IBP solver based on finite field methods [von Manteuffel, Schabinger (2014)], [Peraro (2016)] for the linear algebra
- Solutions produced up to a requested degree in z_{i}
- Much faster for our purpose than the Groebner basis approach; can run in a highly distributed manner
- Able to generate the required syzygies for this calculation
- Use Finred to compute the required IBP reductions
- Also use this approach for the 2-loop amplitudes for $\gamma \gamma+j[$ [BA, Buccioni, von Manteuffel, Tancredi (2021)], [BA, Buccioni, von Manteuffel, Tancredi (2021)]

Denominator Guessing

- Predetermine the denominator factors to reduce reconstruction cost [Abreu, Dormans, Febres Cordero, Ita, Page (2018)] [Heller, von Manteuffel (2021)]
- Write the reduced amplitude as:

$$
\mathscr{M}=\Sigma_{l} R_{l}\left(\left\{s_{i j}\right\},\left\{m_{i}^{2}\right\}, \epsilon\right) F_{l}\left(\left\{s_{i j}\right\},\left\{m_{i}^{2}\right\}, \epsilon\right)
$$

with F_{i} the master integrals and R_{i} the rational functions in kinematics $\left\{s_{i j}\right\}$ and masses $\left\{m_{i}^{2}\right\}$

- Can determine all the factors appearing in the rational functions by performing IBP reductions on cuts - much simpler than computing full reduction
- Determine the exponent of each denominator factor by performing an IBP reduction for large prime values for kinematic variables and analysing the prime factors of the resulting rational numbers
- Naively, expect a reduction in number of samples required by 2^{n} where n is the number of independent scales (including d), assuming roughly equal degrees for both the numerator and denominator polynomials; actual improvement is less and depends on the process; e.g. ~ 20 for diphoton plus jet production at full color compared to ideally 32

Multivariate partial fractioning

- Certain basis choices lead to spurious poles with denominators depending on both kinematics and d; want to avoid such poles, e.g.
$1250-500 d-9000 t+3600 d t+16200 t^{2}-6480 d t^{2}-4050 s+1575 d s+19440 s t-8100 d s t-52488 s t^{2}+20412 d s t^{2}-29160 s^{2} t+11664 d s^{2} t$

In $d \rightarrow 4$ this becomes : $-125+375 s+900 t-2160 s t+2916 s^{2} t-1620 t^{2}+4860 s t^{2}$

- Spurious poles may lead to numerical instabilities in the physical phase-space region
- Choose d-factoring basis to avoid such denominators [Smirnov, Smirnov (2020)], [Usovitsch(2020)]; for $\gamma \gamma+j$ not necessary since canonical basis already known
- Amplitudes for $g g \rightarrow Z Z$ reduced to such a basis of finite integrals; still need to insert the identities into the unreduced amplitude
- This is computationally very difficult; IBPs size of over 200 GB with intermediate steps requiring TB of disk space
- Employ multivariate partial fractioning [Pak (2011)], [Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov (2019)], [Böhm, Wittman, Wu, Xu, Zhang (2020)], [Bendle, Böhm, Heymann, Ma, Rahn, Ristau, Wittmann, Wu, Zhang (2021)]; Mathematica package MultivariateApart [Heller, von Manteuffel (2021)]
- Also see Ben Page's talk for another approach to partial fractioning

Multivariate partial fractioning

- Use Singular to perform partial fractioning using a Gröbner basis to prevent new denominators from appearing. E.g. naive partial fractioning in Mathematica:

$$
\frac{1}{(25-270 t+324 s t)} \frac{1}{(-5+18 t+9 s)}=\frac{-1}{(5+18 t)(-5+36 t)(-5+18 t+9 s)}+\frac{36 t}{(5+18 t)(-5+36 t)(25-270 t+324 s t)}
$$

- Instead use a Gröbner basis approach; find relations between all appearing denominators to reduce them to simpler ones
- Unique decomposition for a chosen ordering of denominator polynomials
- Handle nasty degree 6 denominators:

$$
\begin{aligned}
& 105625-468000 t-797850 t^{2}+3863700 t^{3}+2001105 t^{4}-5904900 t^{5}+2125764 t^{6}-3676500 s+17309700 s t \\
& -19260180 s t^{2}+25850340 s t^{3}-35901792 s t^{4}+8503056 s t^{5}+25891650 s^{2}-73614420 s^{2} t^{2}-75149694 s^{2} t^{3} \\
& +12754584 s^{2} t^{4}-50490540 s^{3}+80752788 s^{3} t-60466176 s^{3} t^{2}+8503056 s^{3} t^{3}+29452329 s^{4}-18187092 s^{4} t \\
& +2125764 s^{4} t^{2}
\end{aligned}
$$

Multivariate partial fractioning

- For a choice of basis of master integrals that are finite in $d=4$, further simplification can be obtained

1. Partial fraction in d to separate the poles (as usual)
2. Set $d=4$ (allowed since the basis is finite) everywhere except the poles

Factorised form: $\frac{1}{(-1+d)(-3+d)^{2}(-4+d)(-7+2 d)}=\left(\frac{1}{3}+\frac{2 \epsilon}{9}\right)(1+2 \epsilon)^{2}\left(\frac{-1}{2 \epsilon}\right)(1+4 \epsilon) \quad \sim 16$ terms
Partial fractioned: $\frac{1}{3(-4+d)}+\frac{5}{4(-3+d)}+\frac{1}{2(-3+d)^{2}}+\frac{1}{60(-1+d)}+\frac{-16}{5(-7+2 d)}=\frac{-1}{6 e}+\frac{-13}{9} \quad 2$ terms

- Prevents proliferation of terms
- Partial fraction in kinematics to arrive at final form
- Resulting coefficients smaller than 1 MB in size with total size of all coefficients $O(100) \mathrm{MB}$ (started from $O(100) \mathrm{GB}$ of coefficients)
- Very fast numerical evaluation; coefficients evaluated as exact rationals in $\sim 30 \mathrm{~s}$ and a few s for double precision reals

Multivariate partial fractioning

- Similar approach used in $\gamma \gamma+j$ production with the added benefit of the master integrals being expressed in terms of special functions with fast numerical evaluation [Chicherin, Sotnikov (2020)]
- Polynomials appearing in the denominator much simpler due to lack of internal masses; only 1 degree 2 polynomial appears i.e. the Gram determinant, rest are linear in kinematics [BA, Buccioni, vonManteuffel, Tancredi (2021)]. Use MultivariateApart [Heller, von Manteuffel (2021)] as frontend for the partial fractioning procedure
- Express the amplitude as linear combination of Pentagon functions with rational functions in kinematics only as coefficients, and exploit linear relations between the coefficients for further simplification
- Additionally, observed that canonical basis generates simpler factors than e.g. a naive choice based on numerator degree, with a reduction by a factor of 2
- Reduction of up to a factor of 100 in disk space for the coefficients, particularly significant for the complicated topologies; resulting coefficients less than 100 MB

Finite Integrals

- Feynman integrals often have UV and IR divergences
- Sector decomposition standard method to resolve IR poles [Binoth, Heinrich (2000)] [Bogner, Weinzierl (2007)]
- Public codes: Fiesta4, pySecDec, etc.

Why use finite integrals instead?

- Much better behaved numerically
- Require fewer orders in epsilon expansion in general
- Poles drop out into the coefficients $=>$ Easier to take $d \rightarrow 4$ limit

Constructing finite integrals:

- Dimension shifted integrals [Bern, Dixon, Kosower (1992]]
- Existence of a finite basis [Panzer (2014)] [von Manteuffel, Panzer, Schabinger (2014)]
- Reduze 2 to find such integrals, usually involving higher propagator powers (dots) and dimension shifts

Finite Integrals

Divergent integral in $d=4-2 \epsilon$

Finite integral in $d=6-2 \epsilon$

Divergent integral in $d=4-2 \epsilon$ with a numerator

Finite integral in $d=6-2 \epsilon$ with a dot

Finite Integrals

However:

- Integrals with dots and dimension-shifts often hard to reduce e.g. need reductions for integrals with 4 dots for the required finite integrals
- Higher dots implies higher powers of \mathscr{F} polynomial in the denominator $=>$ worse contour deformation which leads to numerical instabilities

Alternate approach - combining divergent integrals into finite linear combinations. Advantages:

- Integrals often already appearing in the amplitude $=>$ avoid computing extra reductions
- More "natural" $d=4$ representation
- Finite at the integrand level i.e. integrand free of non-integrable divergences
- In general a highly non-trivial task to find these numerators
- Algorithmically construct finite linear combinations in $d=4$ from a list of seed integrals [BA, Jones, von Manteuffel (2020)]
- Arbitrary integrals with numerators, dots, dimension shifts, subsector integrals etc allowed as seed integrals

Finite Integrals

Integrand $=a_{1} \frac{1}{D_{1} \ldots D_{N}}+a_{2} \frac{D_{N+1}}{D_{1} \ldots D_{N}}+a_{3} \frac{D_{j}}{D_{1} \ldots D_{j} \ldots D_{N}}+\ldots$

- Combine over a common denominator using the general formula for Feynman parametric representation $[B A, J$ ones, von Manteuffel (2020)] , embedding the subsector integrals in the parent topology

$$
\begin{aligned}
I\left(\nu_{1}, \ldots, \nu_{N}\right)= & \left.\left.(-1)^{r+\Delta t} \Gamma(\nu-L d / 2)\right]\left(\prod_{j \in \mathcal{N}_{T}} d x_{j}\right)\left(\prod_{j \in \mathcal{N}_{t}} \frac{x^{\nu_{j}-1}}{\Gamma\left(\nu_{j}\right)}\right) \delta\left(1-\sum_{j \in \mathcal{N}_{T}} x_{j}\right) \begin{array}{l}
\mathcal{N}_{T}: \begin{array}{l}
\mathcal{N}_{t}: \text { Parent sector } \\
\mathcal{N}_{\backslash T}: \text { Numerators } \\
\mathcal{N}_{\Delta t}: \text { Pinched propagators }
\end{array} \\
\\
\\
\end{array}\right]\left(\left[\prod_{j \in \mathcal{N}_{\backslash T}} \frac{\partial^{\left|\nu_{j}\right|}}{\partial x_{j}^{\left|\nu_{j}\right|}}\right)\left(\prod_{j \in \mathcal{N}_{\Delta t}} \frac{\partial^{\left|\nu_{j}\right|+1}}{\partial x_{j}^{\left|\nu_{j}\right|+1}}\right) \frac{\mathscr{U}^{\nu-(L+1) d / 2}}{\mathscr{F} \nu-L d / 2}\right]_{x_{j}=0 \forall j \in \mathcal{N}_{\backslash T}} \quad\left(\nu_{j} \in \mathbb{Z}\right)
\end{aligned}
$$

- Constrain a_{i} requiring absence of non-integrable divergences in the integrand

Finite Integrals

Finite Integrals

- Calculation of the four-loop collinear anomalous dimension in QCD and $\mathcal{N}=4$ SYM using finite integrals [BA, von Manteuffel, Panzer, Schabinger (2021)]
- Using pySecDec to numerically evaluate the leading term of the remaining (analytically unsolved) finite integral (in $d=6-2 \epsilon$) to 11 significant digits
- Guess the analytic solution in terms of Multiple Zeta Values with the help of PSLQ algorithm and certain assumptions for the $\mathcal{N}=4$ part
- Full result verified analytically [Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser (2021)]

Conclusions

- Use of syzygies and finite field methods for IBP reduction including presenting our new algorithm for constructing syzygies
- Significantly reducing the complexity of rational reconstruction by "inferring" the denominator
- Method of finite integrals with new general approach to construct finite integrals for faster converging numerical integration
- Multivariate partial fractioning to drastically simplify amplitude coefficients
- Allow the calculation of some challenging processes

Backup

Denominator Guessing

- E.g. with $d+2, d+3$, and $d-1$ as the denominators, use $d=1197433$

$$
\begin{gathered}
d+2=1197435=3 \times 5 \times 79829 \\
d+3=1197436=2^{2} \times 299359 \\
d-1=1197432=2^{3} \times 3^{2} \times 16631
\end{gathered}
$$

Perform IBP reduction with $d=1197433$ and read off the powers of 79829, 299359, 16631 in the denominators of the rational coefficients to determine the exponents of the corresponding denominator factors

Integration-By-Parts reduction using Syzygies

- It is observed that syzygies of a certain degree are sufficient for IBP reduction, instead of the complete syzygy module
- However, the current approach still not feasible to use for many difficult processes
- Putting kinematic variables in the variable field (like the Baikov parameters) reduces the effective degree e.g. $z_{2} z_{3} x_{12}^{2} x_{23} x_{35}$ is formally degree 6 but only degree 2 in the Baikov parameters
- Slightly modified version of the algorithm to put kinematics in the coefficient field; reconstruct the coefficients using finite field methods

