Towards improving the logarithmic accuracy of PS: Higher-order kernels

[^0]
Basem Kamal El-Menoufi - The University of Manchester

HP2 - NewCastle upon Tyne (20-22 Sept. 2022)

> MANCHEsTER 1824

A bird's eye view

- (Semi)-analytic resummation has achieved an impressive accuracy (NNLL and $\mathrm{N}^{3} L L$) over previous decades.

$1-T$	$0803.0342,1006.3080,1105.4560$
ρ_{H}	1005.1644
B_{T}, B_{W}	1210.0580
C-parameter	1411.6633
EEC	hep-ph/0407241,1708.04093,1801.02627
Angularities	$1806.10622,1807.11487$
D-parameter	1912.09341

- Parton showers (PS) have not kept up with such progress.
- PS are essential due to their versatility: It is much more efficient to simulate QCD dynamics than to resum a specific observable.

Motivation: Recent progress in NLL accurate PS

- The PanScales family of PS has been able to achieve NLL accuracy for any recursive IRC safe observable:

$$
\begin{array}{|c|}
\hline \text { Dasgupta et. al. (2002.11114), color and } \\
\text { spin } \\
(2011.10054,2103.16526,2111.01161), \\
\text { G. Salam "The power and limits of } \\
\text { parton showers "https:// } \\
\text { gsalam.web.cern.ch/gsalam/talks/repo/ } \\
\frac{\text { 202109-SLAC-seminarl\-SLAC- }}{\text { panscales-seminar.pdf" }} \\
\hline
\end{array}
$$

- The crux of this development is simply choosing recoil maps that preserve the correct physical limits required for NLL.

Outline

- What do we need to achieve NNLL in PS?
(t) The hard-collinear facet: B_{2}
- Tool kit: triple-collinear splitting functions
- The physical coupling beyond the soft limit
- Extracting a differential B_{2}
(\mathcal{A} A definition of an effective splitting probability
- Outlook

Look back at NLL

- Over 30 years ago Catani, Marchesini \& Webber introduced the notion of a soft physical coupling:

$$
\mathrm{d} \mathcal{P}_{\mathrm{sc}}=C_{i} \frac{\alpha_{s}^{\text {phys }}}{\pi} \frac{\mathrm{d} k_{t}^{2}}{k_{t}^{2}} \frac{\mathrm{~d} z}{1-z}, \quad \alpha_{s}^{\text {phys }}=\alpha_{s}\left(k_{t}^{2}\right)\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}\left(k_{t}^{2}\right)}{2 \pi}\right)
$$

- The CMW coupling represents the intensity of soft gluon radiation.

$$
K_{\mathrm{CMW}}=\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right) C_{A}-\frac{10}{9} T_{F}
$$

- For showers that intertwine real and virtual corrections through unitarity, specifying the scheme and scale of the coupling is the sole NLO ingredient to achieve NLL accuracy.

Questions for NNLL PS

- What is the scale of the coupling beyond the soft limit?

$$
k_{t}^{2} \rightarrow k_{t}^{2} * f(z), \quad f(z)=?
$$

- The inclusive limit of the double-soft function defines the CMW coupling. Can we furnish a commensurate understanding of the triple-collinear splitting functions?
- What is the underlying physics of the coefficient B_{2} ? Can we define a suitable differential version thereof?
- Can we extend the notion of the web beyond the soft limit?

Introduction into B_{2}

- So what exactly is $B_{2}^{q / g}$?
- Let us take an example from the transverse momentum distribution in hadronic collisions:

$$
\frac{\mathrm{d} \sigma_{a b \rightarrow F}}{\mathrm{~d} p_{t}^{2}}=\frac{1}{2} \int b \mathrm{~d} b J_{0}\left(b p_{t}\right) W_{a b}^{F}(s, Q, b)
$$

- The interesting piece is the function $W_{a b}^{F}$, which includes the quark/gluon form factor:

$$
S_{q / g}(Q, b)=\exp \left(-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}}\left[A_{q / g}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{q^{2}}+B_{q / g}\left(\alpha_{s}\right)\right]\right)
$$

Introduction into B_{2}

- Each function has a perturbative expansion. The A functions has a soft origin, while the B function has a hard-collinear origin.

$$
A_{q / g}=\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{2 \pi}\right)^{n} A_{(n)}^{q / g}, \quad B_{q / g}=\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{2 \pi}\right)^{n} B_{(n)}^{q / g}
$$

- Let us focus on the B series. Going back to direct space, one finds a hard-collinear logarithm:

$$
\left(\frac{\alpha_{s}}{2 \pi}\right) B_{1}^{q / g} \quad \| \quad\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} B_{2}^{q / g}
$$

- This talk is about B_{2}^{q} and a suitably defined differential version $\mathscr{B}_{2}^{q}(z)$.

Introduction into B_{2}

- What do we know about the structure of B_{2}^{q} ?
- In $e^{+} e^{-}$, there exists a complete framework to resum any recursive IRC safe observable to NNLL accuracy - ARES
- For any observable, we have:

```
Banfi, BKE \& Monni 1807.11487, Banfi et. al. 1412.2126
```

$$
B_{2}^{q}=-\gamma_{q}^{(2)}+C_{F} b_{0} X_{v}, \quad b_{0}=\frac{11}{6} C_{A}-\frac{2}{3} T_{R} n_{f}
$$

```
See also de Florian & Grazzini hep-
ph/0407241, Davies & Stirling Nucl.
    Phys. B 244 (1984)
```

- We have two pieces. An observable dependent constant, X_{v}, that comes multiplied by b_{0}. The other pieces, $\gamma_{q}^{(2)}$, is universal and represents the endpoint contribution, i.e. $\delta(1-x)$, to the NLO non-singlet DGLAP kernel obtained from sum rules.

Triple-collinear splitting functions

- At NLO, a nearly off-shell quark can emit either two gluons or a $q \bar{q}$ pair.
(t) $q \rightarrow g_{1} g_{2} q_{3}$

- These two graphs are squared, summed over spin and colour.
\circ We are interested in the limit when all pairwise angles are small $\theta_{i j} \rightarrow 0$.

Triple-collinear splitting functions

- Therefore, we end up with an abelian channel, C_{F}^{2}, and a non-abelian channel, $C_{F} C_{A}$.

$$
\left\langle\hat{P}_{g_{1} g_{2} q_{3}}\right\rangle=C_{F}^{2}\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{ab})}\right\rangle+C_{F} C_{A}\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{nab})}\right\rangle
$$

- These are functions of the invariant masses, $s_{i j} \simeq z_{i} z_{j} \theta_{i j}^{2}$, where z_{i} is the light-cone momentum fraction of parton i.

$$
\begin{aligned}
\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{ab})}\right\rangle & =\left\{\frac{s_{123}^{2}}{2 s_{13} s_{23}} z_{3}\left[\frac{1+z_{3}^{2}}{z_{1} z_{2}}-\epsilon \frac{z_{1}^{2}+z_{2}^{2}}{z_{1} z_{2}}-\epsilon(1+\epsilon)\right]\right. \\
& +\frac{s_{123}}{s_{13}}\left[\frac{z_{3}\left(1-z_{1}\right)+\left(1-z_{2}\right)^{3}}{z_{1} z_{2}}+\epsilon^{2}\left(1+z_{3}\right)-\epsilon\left(z_{1}^{2}+z_{1} z_{2}+z_{2}^{2}\right) \frac{1-z_{2}}{z_{1} z_{2}}\right] \\
& \left.+(1-\epsilon)\left[\epsilon-(1-\epsilon) \frac{s_{23}}{s_{13}}\right]\right\}+(1 \leftrightarrow 2)
\end{aligned}
$$

Triple-collinear splitting functions

- The non-abelian channel is much more involved but features a nice property: angular ordering

$$
\begin{aligned}
\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{nab})}\right\rangle & =\left\{(1-\epsilon)\left(\frac{t_{12,3}^{2}}{4 s_{12}^{2}}+\frac{1}{4}-\frac{\epsilon}{2}\right)\right. \\
& +\frac{s_{123}^{2}}{2 s_{12} s_{13}}\left[\frac{\left(1-z_{3}\right)^{2}(1-\epsilon)+2 z_{3}}{z_{2}}+\frac{z_{2}^{2}(1-\epsilon)+2\left(1-z_{2}\right)}{1-z_{3}}\right] \\
& -\frac{s_{123}^{2}}{4 s_{13} s_{23}} z_{3}\left[\frac{\left(1-z_{3}\right)^{2}(1-\epsilon)+2 z_{3}}{z_{1} z_{2}}+\epsilon(1-\epsilon)\right] \\
& +\frac{s_{123}}{2 s_{12}}\left[(1-\epsilon) \frac{z_{1}\left(2-2 z_{1}+z_{1}^{2}\right)-z_{2}\left(6-6 z_{2}+z_{2}^{2}\right)}{z_{2}\left(1-z_{3}\right)}+2 \epsilon \frac{z_{3}\left(z_{1}-2 z_{2}\right)-z_{2}}{z_{2}\left(1-z_{3}\right)}\right] \\
& +\frac{s_{123}}{2 s_{13}}\left[(1-\epsilon) \frac{\left(1-z_{2}\right)^{3}+z_{3}^{2}-z_{2}}{z_{2}\left(1-z_{3}\right)}-\epsilon\left(\frac{2\left(1-z_{2}\right)\left(z_{2}-z_{3}\right)}{z_{2}\left(1-z_{3}\right)}-z_{1}+z_{2}\right)\right. \\
& \left.\left.-\frac{z_{3}\left(1-z_{1}\right)+\left(1-z_{2}\right)^{3}}{z_{1} z_{2}}+\epsilon\left(1-z_{2}\right)\left(\frac{z_{1}^{2}+z_{2}^{2}}{z_{1} z_{2}}-\epsilon\right)\right]\right\}+(1 \leftrightarrow 2)
\end{aligned}
$$

- The only collinear pole is when the angle between the gluon pair, θ_{12}, goes to zero.

Triple-collinear splitting functions

- The quark can also split to a quark plus a $q \bar{q}$ pair, of identical (different) flavour.
(t) $q \rightarrow q_{1} \bar{q}_{2} q_{3}$
(t) $q \rightarrow q_{1}^{\prime} \bar{q}_{2}^{\prime} q_{3}$

- Summing over flavour, we find two different structures:

$$
\sum_{f}\left\langle\hat{P}_{q_{1}^{f} \bar{q}_{2}^{f} q_{3}}\right\rangle=n_{f}\left\langle\hat{P}_{q_{1}^{\prime} \bar{q}_{2}^{\prime} q_{3}}\right\rangle+\left\langle\hat{P}_{q_{1} \bar{q}_{2} q_{3}}^{(\mathrm{idd})}\right\rangle
$$

Triple-collinear splitting functions

- The two structures have distinct properties (as well as colour factors)

$$
\begin{aligned}
\left\langle\hat{P}_{q_{1}^{\prime} \bar{\sigma}_{2}^{\prime} q_{3}}\right\rangle= & \frac{1}{2} C_{F} T_{R} \frac{s_{123}}{s_{12}}\left[-\frac{t_{12,3}^{2}}{s_{12} s_{123}}+\frac{4 z_{3}+\left(z_{1}-z_{2}\right)^{2}}{z_{1}+z_{2}}+(1-2 \epsilon)\left(z_{1}+z_{2}-\frac{s_{12}}{s_{123}}\right)\right] \\
\left\langle\hat{P}_{q_{1} q_{2} q_{3}}^{(i d)}\right\rangle= & C_{F}\left(C_{F}-\frac{1}{2} C_{A}\right)\left\{(1-\epsilon)\left(\frac{2 s_{23}}{s_{12}}-\epsilon\right)+\frac{s_{123}}{s_{12}}\left[\frac{1+z_{1}^{2}}{1-z_{2}}-\frac{2 z_{2}}{1-z_{3}}\right.\right. \\
& \left.-\epsilon\left(\frac{\left(1-z_{3}\right)^{2}}{1-z_{2}}+1+z_{1}-\frac{2 z_{2}}{1-z_{3}}\right)-\epsilon^{2}\left(1-z_{3}\right)\right] \\
& \left.-\frac{s_{123}^{2}}{s_{12} s_{13}} \frac{z_{1}}{2}\left[\frac{1+z_{1}^{2}}{\left(1-z_{2}\right)\left(1-z_{3}\right)}-\epsilon\left(1+2 \frac{1-z_{2}}{1-z_{3}}\right)-\epsilon^{2}\right]\right\}+(2 \leftrightarrow 3)
\end{aligned}
$$

- The "non-identical" functions has a pole as θ_{12} goes to zero, while the "identical" function is fully finite.

Road map

- What variables do we fix?
- The goal is to retain differential information over "a chosen angle" and "a suitable energy".
- These choices must be IRC safe.
(Gluon decay

* Gluon emission

Gluon decay: web variables

- It is essential to perform an analytic computation to uncover the scale of the coupling. This could be achieved by parameterising the triple-collinear phase space in terms of the "web variables".

$$
\mathrm{d} \Phi_{1 \rightarrow 3}^{\text {web }}=\frac{(4 \pi)^{2 \epsilon}}{256 \pi^{4}} \frac{2 z^{1-2 \epsilon} d z}{1-z} \frac{1}{\Gamma(1-\epsilon)} \frac{d^{2-2 \epsilon} k_{\perp}}{\Omega_{2-2 \epsilon}} \frac{d s_{12}}{\left(s_{12}\right)^{\epsilon}} \frac{d z_{p}}{\left(z_{p}\left(1-z_{p}\right)\right)^{\epsilon}} \frac{1}{\Gamma(1-\epsilon)} \frac{d \Omega_{2-2 \epsilon}}{\Omega_{2-2 \epsilon}}
$$

- The meaning of the different variables is as follows:

- The invariants, $s_{13} \& s_{23}$, are written in terms of these variables.

The θ_{g} distribution: $C_{F} T_{R} n_{f}$

- Using the web variables, we get:

$$
\begin{aligned}
&\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} z^{-3 \epsilon}\left((1-z)^{2} \theta_{g}^{2}\right)^{-2 \epsilon} \\
&\left(-\frac{2}{3 \epsilon} p_{q q}(z, \epsilon)-\frac{10}{9} p_{q q}(z)-\frac{2}{3}(1-z)\right)
\end{aligned}
$$

- Due to the angular ordering property of the splitting function:

$$
\max .\left\{s_{12}\right\} \rightarrow \infty
$$

- The last ingredient is the one-loop virtual corrections to the $1 \rightarrow 2$ splitting function

$$
\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma_{\text {virt. }}^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} z^{-2 \epsilon}(1-z)^{-2 \epsilon}\left(\theta_{g}^{2}\right)^{-\epsilon}\left(\frac{2}{3 \epsilon} p_{q q}(z, \epsilon)\right)
$$

The θ_{g} distribution: $C_{F} T_{R} n_{f}$

- The double-differential distribution then reads:

$$
\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(\frac{1+z^{2}}{1-z}\left(\frac{2}{3} \ln \left(z(1-z)^{2} \theta_{g}^{2}\right)-\frac{10}{9}\right)-\frac{2}{3}(1-z)\right)
$$

- To glean the physics, we compute the jet mass distribution $\rho=s_{123} / E^{2}$:

$$
\left(\frac{\rho}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \rho d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(\frac{1+z^{2}}{1-z}\left(\frac{2}{3} \ln ((1-z) \rho)-\frac{10}{9}\right)-\frac{2}{3}(1-z)\right)
$$

- We can move between different distributions using the LO relation \rightarrow scale of the coupling

$$
\rho=z(1-z) \theta_{g}^{2}
$$

Extracting $\mathscr{B}_{2}^{q}(z): C_{F} T_{R} n_{f}$

- To extract the NNLL structure, we subtract the LL and NLL (soft-enhanced) pieces:

$$
C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left[\frac{2}{1-z}\left(\frac{2}{3} \ln \left((1-z)^{2} \theta_{g}^{2}\right)-\frac{10}{9}\right)-\frac{2}{3}(1+z) \ln \theta_{g}^{2}\right]
$$

- This defines a purely collinear object (no singularity as $z \rightarrow 1$):

$$
\mathcal{B}_{2}^{q, n_{f}}\left(z ; \theta_{g}^{2}\right)=\left(\frac{1+z^{2}}{1-z} \frac{2}{3} \ln z-(1+z)\left(\frac{2}{3} \ln (1-z)^{2}-\frac{10}{9}\right)-\frac{2}{3}(1-z)\right)
$$

- The integral over $z \in(0,1)$ yields the resummation coefficient:

$$
B_{2}^{q, \theta_{g}^{2}, n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int_{0}^{1} d z \mathcal{B}_{2}^{q_{,}, n_{f}}\left(z ; \theta_{g}^{2}\right)=-\gamma_{q}^{\left(2, n_{f}\right)}+C_{F} b_{0}^{\left(n_{f}\right)} X_{\theta_{g}^{2}}
$$

(大) $x_{\rho}=\frac{\pi^{2}}{3}-\frac{7}{2}$
(2) $X_{\theta_{8}^{2}}=\frac{2 \pi^{2}}{3}-\frac{13}{2}$

The θ_{g} distribution: $C_{F}\left(C_{F}-C_{A} / 2\right)$

- This colour structure is finite.

$$
\begin{aligned}
& \left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{(\text {id. })}=C_{F}\left(C_{F}-\frac{C_{A}}{2}\right)\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \\
& \quad\left[\left(4 z-\frac{7}{2}\right)+\frac{5 z^{2}-2}{2(1-z)} \ln z+\frac{1+z^{2}}{1-z}\left(\frac{\pi^{2}}{6}-\ln z \ln (1-z)-\operatorname{Li}_{2}(z)\right)\right]
\end{aligned}
$$

- This channel does not contribute to the LL or NLL structures.

$$
\mathcal{B}_{2}^{q,(\text { id. })}(z)=\left(4 z-\frac{7}{2}\right)+\frac{5 z^{2}-2}{2(1-z)} \ln z+\frac{1+z^{2}}{1-z}\left(\frac{\pi^{2}}{6}-\ln z \ln (1-z)-\mathrm{Li}_{2}(z)\right)
$$

- We have a contribution to the B_{2}^{q} in the $C_{F}^{2} \& C_{F} C_{A}$ colour factors.

$$
\int_{0}^{1} d z \mathcal{B}_{2}^{q,(i \mathrm{id})}(z)=\frac{13}{4}-\frac{\pi^{2}}{2}+2 \zeta_{3}
$$

The θ_{g} distribution: $C_{F} C_{A}$

- The web variables allows for an analytic computation:

$$
\begin{array}{r}
\left(\frac{\rho}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \rho d z}\right)^{\text {nab. }}=C_{F} C_{A}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left[(\frac { 1 + z ^ { 2 } } { 1 - z }) \left(-\frac{11}{6} \ln (\rho(1-z))+\frac{67}{18}-\frac{\pi^{2}}{6}\right.\right. \\
\left.\left.+\ln ^{2} z+\operatorname{Li}_{2}\left(\frac{z-1}{z}\right)+2 \operatorname{Li}_{2}(1-z)\right)+\frac{3}{2} \frac{z^{2} \ln z}{1-z}+\frac{1}{6}(8-5 z)\right]
\end{array}
$$

- We can easily move to the θ_{g} distribution using the LO relation, remove the LL and NLL and construct:

$$
\begin{array}{r}
\mathcal{B}_{2}^{q,(\text { nab. })}\left(z ; \theta_{g}^{2}\right)=-\frac{1+z^{2}}{1-z} \frac{11}{6} \ln z+(1+z)\left(\frac{11}{6} \ln (1-z)^{2}-\frac{67}{18}+\frac{\pi^{2}}{6}\right)+\frac{11}{6}(1-z) \\
+\frac{2 z-1}{2}+\frac{1+z^{2}}{1-z}\left(\ln ^{2} z+\operatorname{Li}_{2}\left(\frac{z-1}{z}\right)+2 \operatorname{Li}_{2}(1-z)\right)
\end{array}
$$

The θ_{g} distribution: $C_{F} C_{A}$

- To construct the $C_{F} C_{A}$ portion of B_{2}^{q}, we must include the interference term:

$$
\begin{aligned}
B_{2}^{q, \theta_{g}^{2}, C_{F} C_{A}} & =C_{F} C_{A}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int_{0}^{1} d z\left(\mathcal{B}_{2}^{q,(\text { nab.) })}\left(z ; \theta_{g}^{2}\right)-\frac{1}{2} \mathcal{B}_{2}^{q,(\text { id. })}\left(z ; \theta_{g}^{2}\right)\right) \\
& =-\gamma_{q}^{\left(2, C_{A}\right)}+C_{F} b_{0}^{\left(C_{A}\right)} X_{\theta_{g}^{2}}
\end{aligned}
$$

- The same story holds for the jet mass distribution $X_{\theta_{g}^{2}} \rightarrow X_{\rho}$

Take home 1: We can define a suitably differential version of the resummation coefficient B_{2}^{q}.
Take home 2: We can move from the "kinematic" distribution to any other observable using the LO relation.

Physical coupling beyond soft limit

- Let us combine the "gluon decay" results with the LO distribution:

$$
\begin{aligned}
& \left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d \theta_{g}^{2} d z}\right)^{\text {tot. }}=\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(1)}}{d \theta_{g}^{2} d z}+\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}+\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{\text {nab. }} \\
& =C_{F} p_{q q}(z)\left[\frac{\alpha_{s}\left(E^{2}\right)}{2 \pi}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(-b_{0} \ln \left((1-z)^{2} \theta_{g}^{2}\right)+K_{\text {CMW }}\right)-\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} b_{0} \ln z\right] \\
& \quad+C_{F} b_{0}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}(1-z)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} R^{\text {nab. }(z)}
\end{aligned}
$$

Red: the CMW coupling (multiplying the full $p_{q q}$).
Blue: scale of coupling is actually $z k_{t}^{2}$.
Orange: could be absorbed in a new "scheme" for the coupling.
Black: a remainder function, with $C_{F} C_{A}$ colour factor, that encodes the residual dynamics.

The abelian channel

- The physics of "gluon emission" is quite distinct from "gluon decay"

- All LL+NLL dynamics is encoded in the "strongly-ordered" in angle limit: $\theta_{23} \ll \theta_{13}$
- Collinear factorisation \rightarrow iterated LO splittings

$$
\mathscr{B}_{2}^{q,(a b .)}\left(z ; \theta^{2}\right)=\left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d z d \theta^{2}}\right)^{d-r}-\left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d z d \theta^{2}}\right)^{s-o}+\left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d z d \theta^{2}}\right)^{r-\eta}
$$

The abelian channel

- The phase space cut renders the computation non analytic: elliptic integrals.
- We can still cast the result as a 1-fold integral:

- We can also use the PSLQ algorithm to fit the integral: $\int_{0}^{1} \mathrm{~d} z \mathcal{B}_{2}^{q,(a b .)}\left(z ; \theta^{2}\right)=\pi^{2}-8 \zeta(3)-\frac{29}{8}$

Outlook

- One practical side of this work is the ability to provide resummed predictions for groomed observables ála ARES.
"Direct QCD resummation for groomed jet observables at NNLL+NLO" arXiv: 22xx.xxxxx
M. Dasgupta, BKE, J. Helliwell
- The collinear dynamics of gluon jets shows many interesting features.

To appear soon, M. Dasgupta, BKE, P. F. Monni

- The inclusion of the results in PS algorithm is the ultimate goal.

[^0]: Dissecting the collinear structure of quark splitting at NNLL

 Mrinal Dasgupta and Basem Kamal El-Menoufi

