The pT distribution of Higgs production at next-to-leading order in α_s

Vittorio Del Duca

ETH Zürich & U. Zürich & INFN

in collaboration with R. Bonciani, H. Frellesvig, M. Hidding, V. Hirschi, F. Moriello, G. Salvatori, G. Somogyi, F. Tramontano J. Henn, L. Maestri, V. Smirnov

HP2 20 September 2022

Higgs p_T distribution at LHC

- high-p_T tail of the Higgs p_T distribution is sensitive to the structure of the loop-mediated Higgs-gluon coupling New Physics particles circulating in the loop would modify it
- QCD NLO corrections to the top- and *b*-quark loop contributions to the Higgs p_T distribution, in the on-shell and MSbar mass renormalisation schemes

Higgs production at LHC

In proton collisions, the Higgs boson is produced mostly via gluon fusion The gluons do not couple directly to the Higgs boson For matter, the coupling is mediated by a heavy quark loop The largest contribution comes from the top-quark loop The production mode is (roughly) proportional to the top Yukawa coupling yt²

QCD NLO corrections (for any heavy quark mass)

Djouadi Graudenz Spira Zerwas 1991-1995

QCD NLO corrections are about 100% larger than leading order

QCD NNLO corrections are known for the top-quark loop only

Czakon Harlander Klappert Niggetiedt 2021

QCD NLO corrections

K. Ellis Hinchliffe Soldate van der Bij 1988

virtual corrections

Djouadi Graudenz Spira Zerwas 1993 Anastasiou Beerli Bucherer Daleo Kunszt 2006 Aglietti Bonciani Degrassi Vicini 2006

in terms of Harmonic Polylogarithms (HPL)

QCD NLO corrections

all amplitudes are reduced by one loop

 $\sigma_{t+b} = -1$

σ^{LO}_{EFT}	$15.05~\rm{pb}$	$\left {^{NLO}} } ight $	$34.66~\rm{pb}$		σ_t
$R_{LO}\sigma^{LO}_{EFT}$	$16.00~\rm{pb}$	$R_{LO}\sigma_{EFT}^{NLO}$	$36.84~\rm{pb}$	LO O(α_s^2)	- 6.6 %
$\sigma^{LO}_{ex;t}$	$16.00 \mathrm{\ pb}$	$\sigma^{NLO}_{ex;t}$	$36.60 \mathrm{\ pb}$	$N = O(\alpha^2) + O(\alpha^3)$	159/
$\sigma^{LO}_{ex;t+b}$	14.94 pb	$\sigma_{ex;t+b}^{NLO}$	34.96 pb	$NLOO(\mathfrak{a}_{s}^{2}) + O(\mathfrak{a}_{s}^{3})$	- 1 .J ⁄o
$\sigma^{LO}_{ex;t+b+c}$	$14.83~\rm{pb}$	$\sigma_{ex;t+b+c}^{NLO}$	$34.77~\rm{pb}$	NLO O(α_s^3)	- 2.8 %

Anastasiou Duhr Dulat Furlan Gehrmann Herzog Lazopoulos Mistlberger 2016

$$R_{LO} = \frac{\sigma_{ex:t}^{LO}}{\sigma_{EFT}^{LO}} = 1.063$$

rescaled HEFT (rHEFT) does a good job (< 1%) in approximating the exact (only top) NLO σ but misses the *t*-*b* interference

QCD NNLO corrections

General Top-quark mass corrections are known at NNLO

Czakon Harlander Klappert Niggetiedt 2021

channel	$\sigma^{ ext{NNLO}}_{ ext{HEFT}} ext{ [pb]} \ \mathcal{O}(lpha_s^2) + \mathcal{O}(lpha_s^3) + \mathcal{O}(lpha_s^4)$	$egin{array}{l} (\sigma^{ m NNLO}_{ m exact} & \cdot \ \mathcal{O}(lpha_s^3) \end{array}$	$-\sigma^{ m NNLO}_{ m HEFT})[{ m pb}] \ {\cal O}(lpha_s^4)$	$(\sigma_{ m exact}^{ m NNLO}/\sigma_{ m HEFT}^{ m NNLO}-1)~[\%]$
		$\sqrt{s} = 8$	TeV	
gg	7.39 + 8.58 + 3.88	+0.0353	$+0.0879\pm0.0005$	+0.62
qg	0.55 + 0.26	-0.1397	-0.0021 ± 0.0005	-18
qq	0.01 + 0.04	+0.0171	-0.0191 ± 0.0002	-4
total	7.39 + 9.15 + 4.18	-0.0873	$+0.0667\pm0.0007$	-0.10
		$\sqrt{s} = 13$	TeV	
gg	16.30 + 19.64 + 8.76	+0.0345	$+0.2431\pm 0.0020$	+0.62
qg	1.49 + 0.84	-0.3696	-0.0115 ± 0.0010	-16
qq	0.02 + 0.10	+0.0322	-0.0501 ± 0.0006	-15
total	16.30 + 21.15 + 9.79	-0.3029	$+0.1815\pm 0.0023$	-0.26

- HEFT not so good for qg and qq channels
- for top-quark mass, used $m_t^2/m_{H^2} = 23/12$ (on-shell scheme)

The main obstacle when calculating the total cross section with full top-mass dependence are the two-loop single-emission amplitudes. Czakon Harlander Klappert Niggetiedt 2021 **QCD NNLO** corrections

two scales: one top loop + b-quark loop

Higgs *p*^T distribution at LHC

K. Ellis Hinchliffe Soldate van der Bij 1988

- high-p_T tail of the Higgs p_T distribution is sensitive to the structure of the loop-mediated Higgs-gluon coupling New Physics particles circulating in the loop would modify it
- \bigcirc in high-p_T regime, clean signature of decay products ($H \rightarrow b b$)
- QCD NLO corrections
 - for the top-quark, with on-shell scheme
 Jones Kerner Luisoni 2018
 Chen Huss Jones Kerner Lang Lindert Zhang 2021
 - for the top-quark, with on-shell and MSbar schemes for top- and b-quarks (for any heavy quark mass), with MSbar scheme

Bonciani VDD Frellesvig Moriello Hidding Hirschi Salvatori Somogyi Tramontano 2022

 \bigcirc HEFT $m_H << 2m_t$ and $p_T << m_t$ Baur Glover 1990QCD corrections are known at NNLO in HEFT, and yield a 15% increase wrt NLOBoughezal Caola Melnikov Petriello Schulze 2015
Boughezal Focke Giele Liu Petriello 2015
Chen Cruz-Martinez Gehrmann Glover Jaquier 2016

Higgs p_T distribution at NLO

top-quark loop

Jones Kerner Luisoni 2018 Czakon Harlander Klappert Niggetiedt 2021

any heavy quark in the loop

Bonciani VDD Frellesvig Henn Moriello V. Smirnov 2016 all above + Hidding Maestri Salvatori 2019

Bonciani VDD Frellesvig Moriello Hidding Hirschi Salvatori Somogyi Tramontano 2022

multi-scale problem with complicated analytic structure elliptic iterated integrals appear

real corrections

VDD Kilgore Oleari Schmidt Zeppenfeld 2001 Budge Campbell De Laurentis K. Ellis Seth 2020

leading order: up to $O(\varepsilon^2)$

analytic: up to $O(\varepsilon^0)$ numeric: up to $O(\varepsilon^2)$

K. Ellis Hinchliffe Soldate van der Bij 1988

(numeric) derivative for mass renormalisation

one-loop amplitudes for Higgs + 4-partons

NLO real corrections: up to $O(\varepsilon^0)$

analytic: unitarity-cut methods (taken from MCFM-9.1) Budge Campbell De Laurentis K. Ellis Seth 2020

numeric: GoSam & MG5_aMC

run time analytic: few ms/pt numeric: O(100) times slower than analytic

two-loop amplitudes for Higgs + 3-partons

NLO virtual corrections

amplitude → form factors → scalar integrals → Master Integrals IBP run time: 5 — 60 min/pt FIRE-KIRA

4 scales, s, t, m_H , $m_t \rightarrow 3$ external parameters

7 seven-propagator integral families

Elliptic iterated integrals

2-loop sunrise graph

Sabry 1962: ...;Broadhurst 1989; ...; Bloch Vanhove 2013; ... Brödel Duhr Dulat Penante Tancredi 2017-2019

2-loop 3-pt functions

electroweak form factor

Aglietti Bonciani Grassi Remiddi 2007

t-tbar

von Manteuffel Tancredi 2017

2-loop 4-pt function for Higgs + 1 jet

Bonciani VDD Frellesvig Henn Moriello Smirnov 2016

first instance of elliptic iterated integrals in a genuine 4-pt topology

Family F: 73 MIs (65 in the polylogarithmic sector, 8 in the elliptic sector)alphabet: 69 independent letters, with 12 independent square roots

Differential Equations

Differential Equation method to solve the MIs

 $\partial_i f(x_n;\varepsilon) = A_i(x_n;\varepsilon) f(x_n;\varepsilon)$

G

G

f: N-vector of MIs, A_i : NxN matrix, i=1,...,n external parameters

but in some cases ϵ -independent form

 $\partial_i f(x_n;\varepsilon) = \varepsilon A_i(x_n) f(x_n;\varepsilon)$

Henn 2013

solution in terms of iterated integrals

mass values are floating \rightarrow DEs solved with 3 (top) or 4 (top and b) external parameters

DEs: Series Expansion Method

Take two points $(a_1, ..., a_n)$ and $(b_1, ..., b_n)$ in the *n*-dim parameter space, and parametrise the contour $\gamma(t)$ that connects the two points

 $\gamma(t): t \to \{x_1(t), \dots, x_n(t)\}$ $\vec{x}(0) = \vec{a}, \quad \vec{x}(1) = \vec{b}$

and write the differential equation with respect to t. Then find a solution about a point τ by series expanding the coefficient matrix A and then iteratively integrating it. The procedure works for both polylogarithmic and elliptic sectors

Moriello 2019

- numerical solution of DEs through DiffExp: Mathematica implementation of Moriello's series expansion method Hidding 2021
- checked with AMFlow Liu Ma Wang 2018

two-loop amplitudes for Higgs + 3-partons: Renormalisation

Bonciani VDD Frellesvig Moriello Hidding Hirschi Salvatori Somogyi Tramontano 2022

- Second coupling constant: 5-flavour running in MSbar
- renormalisation:
 - top Yukawa coupling and top mass in OS scheme (massless b)
 - top Yukawa coupling and top mass in MSbar scheme (massless b)
 - top Yukawa coupling and top and b masses in MSbar scheme

massive *b* in Higgs-*b* loop massless *b* in *b* loop

alternative: massive b everywhere, but requires 4-flavour running and including $gg \rightarrow Hbb$ two-loop amplitudes for Higgs + 3-partons: validation checks

💡 🛛 IR poles

 $\mathcal{M}_{ij,IR}^{(2)} \propto I_{ij}^{(1)}(\{p\},\epsilon)\mathcal{M}_{ij}^{(1)}$

with insertion operators

$$\begin{split} I_{gg}^{(1)}(\{p\},\epsilon) &= -\frac{\alpha_S}{\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\frac{N_c}{\epsilon^2} + \frac{\beta_0}{\epsilon}\right) \left[\left(\frac{\mu^2}{-s}\right)^{\epsilon} + \left(\frac{\mu^2}{-t}\right)^{\epsilon} + \left(\frac{\mu^2}{-u}\right)^{\epsilon} \right] \\ I_{q\bar{q}}^{(1)}(\{p\},\epsilon) &= -\frac{\alpha_S}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left\{ -\left(\frac{N_c}{\epsilon^2} + \frac{3N_c}{4\epsilon} + \frac{\beta_0}{2\epsilon}\right) \left[\left(\frac{\mu^2}{-t}\right)^{\epsilon} + \left(\frac{\mu^2}{-u}\right)^{\epsilon} \right] + \frac{1}{N_c} \left(\frac{1}{\epsilon^2} + \frac{3}{2\epsilon}\right) \left(\frac{\mu^2}{-s}\right)^{\epsilon} \right\} \end{split}$$

agreement with HEFT limit

 $\mathcal{M} = \mathcal{M}_{HEFT} + \mathcal{O}\left(\frac{1}{M_t}\right)$

two-loop amplitudes for Higgs + 3-partons: validation checks

soft and collinear limits

(these are checks on real-virtual parts of NNLO cross section, however they are feasible on our two-loop amplitudes)

Aglietti Bonciani Degrassi Vicini 2006

one-loop 2-parton splitting functions

Bern Dixon Dunbar Kosower 1994 Bern Kilgore Schmidt VDD 1998-99 Kosower Uwer 1999

one-loop I-soft-gluon factor

Bern Kilgore Schmidt VDD 1998-99 Catani Grazzini 2000

checked also "two-loop photon correction"

Higgs p_T distribution at **NLO**: checks with previous results

inclusive p_T distribution (p_{T,j} > 30 GeV) with OS mass renormalisation

our result $\sigma_{NLO} = 14.37 \pm 0.05 \,\mathrm{pb}$

Chen Huss Jones Kerner Lang Lindert Zhang 2021 (Jones Kerner Luisoni 2018-2021)

 $\sigma_{NLO} = 14.15 \pm 0.07 \,\mathrm{pb}$

\mathbf{Q} high p_T tail of distribution

checked with approximate high- p_T distribution Lindert Melnikov Kudashkin Wever 2018 based on approximate high- p_T two-loop amplitudes Melnikov Kudashkin Wever 2018

Higgs *p*^T distribution at LHC

QCD NLO corrections for the top-quark (on-shell mass renormalisation)

G

QCD NLO corrections to top-b interference, using top-quark loop in HEFT and b-quark loop in small m_b limit Lindert Melnikov Tancredi Wever 2017

Higgs p_T distribution at **NLO**

- p_T distribution computed with
 CoLorFulNLO
 dual subtraction
 Prisco Tramontano 2020
 - evaluated on: 3x10⁴ pt for OS top (1.4x10⁴ pt on basic grid, 1.6x10⁴ pt on biased grid) 9x10⁴ pt for MSbar top 1.8x10⁵ pt for MSbar top and *b*

set-up $\sqrt{s} = 13 \text{ TeV}$ $m_H = 125.25 \text{ GeV}$ $m_t^{OS} = 172.5 \text{ GeV}$ $m_t^{\overline{MS}}(m_t^{\overline{MS}}) = 163.4 \text{ GeV}$ $m_b^{\overline{MS}}(m_b^{\overline{MS}}) = 4.18 \text{ GeV}$ $G_F = 1.16639 \cdot 10^{-5} \text{ GeV}^{-2}$ NNPDF40_nlo_as_01180

 $p_{T,j_1} > 20 \,\mathrm{GeV}$

anti-kt algorithm with R = 0.4

7-pt scale variation about:

$$\mu_R^0 = \mu_F^0 = \frac{H_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_T^2} + \sum_i |p_{T,i}| \right)$$

inclusive Higgs p_T distribution

QCD NLO corrections Bonciani VDD Frellesvig Moriello Hidding Hirschi Salvatori Somogyi Tramontano 2022

for the top-quark, with on-shell and MSbar schemes for top- and *b*-quarks with MSbar scheme

renormalisation of internal masses	$\sigma_{ m LO}~[m pb]$	$\sigma_{ m NLO}~[m pb]$
$top+bottom-(\overline{MS})$	$12.318\substack{+4.711\\-3.117}$	$19.89(8)^{+2.84}_{-3.19}$
$\mathrm{top-}(\overline{\mathrm{MS}})$	$12.538\substack{+4.822\\-3.183}$	$19.90(8)^{+2.66}_{-2.85}$
$ ext{top-(OS)}$	$12.551\substack{+4.933\\-3.244}$	$20.22(8)^{+3.06}_{-3.09}$

- from LO to NLO large *k* factor and reduction of scale uncertainty
- \bigcirc top-*b* interference is a negative correction at O(α_s^3) but positive at O(α_s^4)
- effect of top mass renormalisation utterly negligible at LO
 but 15 times bigger at NLO

 $\frac{\sigma_{t(\mathrm{OS})}}{\sigma_{t(\overline{\mathrm{MS}})}} - 1 = \begin{cases} 0.1\% \text{ at LO} \\ 1.6\% \text{ at NLO} \end{cases}$

Higgs p_T distribution at low-intermediate p_T

20-40 GeV bin 260⁺¹⁶-83 fb/GeV 249⁺²¹-65 fb/GeV 238⁺²⁷-98 fb/GeV

- at LO no events below 20 GeV since $p_{T,j} > 20$ GeV
- at LO no appreciable difference between *t*(OS) and *t*(MSbar)
- at NLO sizeable shape distortion in the lowest bins
- at NLO agreement (not shown) between exact and rHEFT in the low-middle p_T range HEFT $m_H << 2m_t$ and $m_b << p_T << m_t$
- scale uncertainty bands (not shown) are much larger than differences

Higgs p_T distribution at LHC

- scale uncertainty bands = ratio of bands at NLO over central value at LO
- *k* factor almost always larger than 2 for MSbar, and about 2 for OS

Ratios of Higgs p_T distributions

- from LO to NLO, reduction of scale uncertainty and of mass renormalisation scheme dependence
- except in the lowest bins, no appreciable difference between t+b(MSbar) and t(MSbar) The *b* quark, and thus top-*b* interference, is negligible, except at low end of p_T range
- $\oint p_T$ distribution for t(MSbar) falls off faster than same for t(OS) as p_T increases because μ_R increases with p_T and so $m_t^{\overline{MS}}(\mu_R)$ decreases
- mass renormalisation scheme difference between t(MSbar) and t(OS) is same size as scale uncertainty at high end of p_T range, both at LO and NLO

Conclusions

- we computed the Higgs p_T distribution at NLO in QCD including for the first time top and b quarks and the MSbar mass scheme
- computation has excellent numerical stability
- \bigcirc b quark, and thus top-b interference, is negligible, except at low end of p_T range, where it affects the shape of the distribution
- in the intermediate to high p_T range, use of top quark only is warranted, but sizeable dependence on mass renormalisation scheme

Back-up slides

Series Expansion Method: patching the contour

F. Moriello at Amplitudes 2020

- Local series solution converges up to the closest singular point: need multiple series to patch the contour
- Truncated series: to ensure fast convergence, radius set to half distance between the expansion point and closest singularity

The series depend on boundary constants fixed by using boundary point and continuity at the contact points.

By setting each series to zero outside its radius:

 $\mathbf{I}^{(i)}(t) = \mathbf{I}_0^{(i)}(t) + \mathbf{I}_1^{(i)}(t) + \mathbf{I}_2^{(i)}(t) + \mathbf{I}_3^{(i)}(t), \quad t \in [0, 1]$

Higgs *p*^T distribution due to **QCD-EW** interference

Becchetti Bonciani VDD Hirschi Moriello Schweitzer 2020

gg-initiated QCD-EW p_T spectrum harder than HEFT

QCD-EW Higgs+3-parton master integrals at two loops

4 scales, s, t, m_H , $m_V \rightarrow 3$ external parameters

7 seven-propagator integral families

48 MIs (planar), 61 MIs (non-planar)

alphabet: square roots are present, but an MPL representation is possible

Becchetti Bonciani Casconi VDD Moriello 2018 (planar MIs) Becchetti Moriello Schweitzer 2021 (non-planar MIs)

solved through generalised power series expansion Moriello 2019

Higgs production

QCD corrections have been computed at N³LO in HEFT

Anastasiou Duhr Dulat Herzog Mistlberger 2015 Mistlberger 2018 (in terms of MPLs and elliptic integrals)

including quark-mass effects and QCD-EW interference the cross section is

 $\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-6.72\%)}^{+2.22 \,\mathrm{pb} \,(+4.56\%)} \,(\mathrm{theory}) \pm 1.56 \,\mathrm{pb} \,(3.20\%) \,(\mathrm{PDF} + \alpha_s)$

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
	+ 0.34 pb	(+0.2%)	$(NNLO, 1/m_t)$
	+ 2.40 pb	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

Anastasiou Duhr Dulat Furlan Gehrmann Herzog Lazopoulos Mistlberger 2016 Handbook 4 of LHC Higgs Cross Sections 2016 Higgs production

Handbook 4 of LHC Higgs Cross Sections 2016

 6 sources of uncertainties due to: higher orders truncation of the threshold expansion PDFs
 NLO corrections to QCD-EW interference quark mass effects (2: top mass and top-b interference) at NNLO

$\delta(\text{scale})$	δ (trunc)	δ (PDF-TH)	$\delta(\text{EW})$	$\delta(t, b, c)$	$\delta(1/m_t)$
+0.10 pb -1.15 pb	±0.18 pb	±0.56 pb	±0.49 pb	±0.40 pb	±0.49 pb
+0.21% -2.37%	20.37%	$\pm 1.16\%$	±1%	$\pm 0.83\%$	±1%

 δ (trunc) = 0.11 pb Mistlberger 2018

 $\delta(1/m_t) = -0.26\%$ Czakon Harlander Klappert Niggetiedt 2021

Polylogarithms

Euler 1768 Spence 1809

G

G

$$H(a, \vec{w}; z) = \int_0^z dt \, f(a; t) \, H(\vec{w}; t) \qquad f(-1; t) = \frac{1}{1+t}, \quad f(0; t) = \frac{1}{t}, \quad f(1; t) = \frac{1}{1-t}$$

with $\{a, \vec{w}\} \in \{-1, 0, 1\}$
Remiddi Vermaseren 1999

classical polylogarithms are multiple polylogarithms with specific roots (0 and constant a)

$$G(\vec{0}_n; x) = \frac{1}{n!} \ln^n x \qquad G(\vec{a}_n; x) = \frac{1}{n!} \ln^n \left(1 - \frac{x}{a} \right) \qquad G(\vec{0}_{n-1}, a; x) = -\operatorname{Li}_n \left(\frac{x}{a} \right)$$

when the root equals +1,-1,0 multiple polylogarithms become HPLs

Multiple polylogarithms

$$G(a, \vec{w}; z) = \int_0^z \frac{dt}{t - a} G(\vec{w}; t), \qquad G(a; z) = \ln\left(1 - \frac{z}{a}\right)$$

multiple polylogarithms (MPL) form a shuffle algebra

$$a, \vec{w} \in \mathbb{C}$$

Goncharov 1998-2001

For *a* constant Poincaré Kummer Lappo-Danilevsky 1935

$$\begin{aligned} G(a;z) G(b;z) &= \int_0^z \frac{dt_1}{t_1 - a} \int_0^z \frac{dt_2}{t_2 - b} \\ &= \int_0^z \frac{dt_1}{t_1 - a} \int_0^{t_1} \frac{dt_2}{t_2 - b} + \int_0^z \frac{dt_2}{t_2 - a} \int_0^{t_2} \frac{dt_1}{t_1 - b} \\ &= G(a,b;z) + G(b,a;z) \end{aligned}$$

 $G_{\omega_1}(z)G_{\omega_2}(z) = \sum_{i} G_{\omega}(z)$ with ω the shuffle of ω_1 and ω_2

$$\lim_{z \to 0} C$$

G

$$G(a_1,\ldots,a_n;z)=0$$
 unless $\vec{a}=\vec{0}$

$$\frac{\partial}{\partial z}G(a_1,\ldots,a_k;z) = \frac{1}{z-a_1}G(a_2,\ldots,a_k;z)$$

MPLs can be represented as nested harmonic sums

$$\sum_{n_1=1}^{\infty} \frac{u_1^{n_1}}{n_1^{m_1}} \sum_{n_2=1}^{n_1-1} \dots \sum_{n_k=1}^{n_{k-1}-1} \frac{u_k^{n_k}}{n_k^{m_k}} = (-1)^k G\left(\underbrace{0,\dots,0}_{m_1-1}, \frac{1}{u_1},\dots,\underbrace{0,\dots,0}_{m_k-1}, \frac{1}{u_1\dots u_k}; 1\right)$$

virtual corrections

Harlander Prausa Usovitsch 2019

(one top & one light quark, in terms of HPLs)

Czakon Niggetiedt 2020

(one & two top)

Anastasiou Deutschmann Schweitzer 2020

real-virtual corrections

Jones Kerner Luisoni 2018 (top) Czakon Harlander Klappert Niggetiedt 2021

double-real radiation

VDD Kilgore Oleari Schmidt Zeppenfeld 2001 Budge Campbell De Laurentis K. Ellis Seth 2020

$$G(a, \vec{w}; z) = \int_0^z \frac{\mathrm{d}t}{t - a} G(\vec{w}; t), \qquad G(a; z) = \ln\left(1 - \frac{z}{a}\right) \qquad a, \vec{w} \in \mathbb{C}$$

iterated integrals on a torus ...

$$\tilde{\Gamma}\left(\begin{array}{c}n_1\dots n_k\\z_1\dots z_k\end{array};z,\tau\right) = \int_0^z dt\,g^{(n_1)}(t-z_1,\tau)\,\tilde{\Gamma}\left(\begin{array}{c}n_2\dots n_k\\z_2\dots z_k\end{array};t,\tau\right)$$

kernels $g^{(n)}$ have at most simple poles at $z = m + n\tau$

 $n_i \in \mathbb{N}, \quad z_i \in \mathbb{C}$ u_2 $u_3 = \omega_1 + \omega_2$ u_4 $\tau = \omega_2/\omega_1$ $m, n \in \mathbb{Z}$

Brown Levin 2011

Brown 2006

... are elliptic multiple polylogarithms (eMPL)

$$E_3\left(\begin{array}{cc}n_1\dots n_k\\z_1\dots z_k\end{array};z,\vec{a}\right) = \int_0^z dt\,\varphi_{n_1}(z_1,t,\vec{a})\,E_3\left(\begin{array}{cc}n_2\dots n_k\\z_2\dots z_k\end{array};t,\vec{a}\right) \qquad n_i\in\mathbb{Z}, \quad z_i\in\mathbb{C} \quad a_i\in\mathbb{R}$$

with $\vec{a} = (a_1,a_2,a_3)$ are the zeroes of the elliptic curve $y^2 = (x-a_1)(x-a_2)(x-a_3)$
and $E_3\left(;z,\vec{a}\right) = 1$

2-loop sunrise can be written in terms of eMPLs

Brödel Duhr Dulat Penante Tancredi 2017

QCD-EW interference

The Higgs boson may (indirectly) couple to gluons also via the gauge coupling i.e. through a double (electroweak boson + quark) loop

Aglietti Bonciani Degrassi Vicini 2004 (light fermion loop) Degrassi Maltoni 2004 Actis Passarino Sturm Uccirati 2008 (heavy fermion loop)

(in terms of MPLs) (numerically ... elliptic integrals appear)

 $O(\alpha_s^2 \alpha^2)$

the top loop yields a 2% correction to the 5 light fermion loops

- gg-initiated QCD NLO corrections (light fermion loop) computed in various approximations:
 - $--m_{w,z} \rightarrow \infty$ limit
 - soft approximation
 - $-m_{w,z} \rightarrow 0$ limit

Bonetti Melnikov Tancredi 2018

Anastasiou Boughezal Petriello 2009

Anastasiou VDD Furlan Mistlberger Moriello Schweitzer Specchia 2018

and found to be about 5% wrt NLO (HEFT) cross section

QCD-EW interference

gg-initiated QCD NLO corrections (light fermion loop): $O(\alpha_s^3\alpha^2)$

Bonetti Melnikov Tancredi 2016

Becchetti Bonciani VDD Hirschi Moriello Schweitzer 2020

IR local subtraction schemes

MadGraph MC@NLO

Frixione Kunszt Signer 1995 Frederix Frixione Maltoni Stelzer 2009

COLORFUL

VDD Somogyi Trocsanyi 2006 Somogyi 2009 VDD Deutschmann Lionetti 2019

Becchetti Bonciani Casconi VDD Moriello 2018 Bonetti Panzer V. Smirnov Tancredi 2020 Becchetti Moriello Schweitzer 2021

$$\begin{array}{ll} \mathsf{LO} & \sigma_{gg \rightarrow H+X}^{(\alpha_s^2 \alpha^2)} = 0.68739^{+23.4\%+2.0\%}_{-17.3\%-2.0\%} \ \mathrm{pb} \\ & \mathsf{NLO} & \sigma_{gg \rightarrow H+X}^{(\alpha_s^2 \alpha^2 + \alpha_s^3 \alpha^2)} = 1.467(2)^{+18.7\%+2.0\%}_{-14.6\%-2.0\%} \ \mathrm{pb} \\ & \text{i.e. NLO II0\% wrt LO} \\ & \text{gg-initiated NLO corrections in HEFT} & \sigma_{gg \rightarrow H+X}^{(\mathrm{HEFT},\alpha_s^2 \alpha + \alpha_s^3 \alpha)} = 30.484^{+19.8\%+1.9\%}_{-15.3\%-1.9\%} \ \mathrm{pb} \end{array}$$

thus our NLO result 4.8% wrt gg-initiated NLO HEFT