Some developments in higher order Renormalisation

HP2- Newcastle 2022

Franz Herzog

State-of-the-art methods for multi-loop MS counterterms

R^{*} (local\&global) 5-loop QCD,...
Massive tadpoles 5-loop QCD,...
Graphical functions $\quad \varphi^{4}$ up to 7 loops

This talk: focus on R^{*} approach

Formalism

, Hopf algebra

Automation

- Tensor reduction

Applications
Scalar EFT

What is R^{*} ?

A generalisation of BPHZ to Euclidean IR divergences [1982 Chetyrkin, Tkachov; Smirnov]

an offshell Feynman diagram
By adding counter-terms associated to UV- or IR- divergent subdiagrams

2-loop example

$$
R^{*}\left(-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}+Z\left(-\frac{1}{2}-2\right)\right.
$$

2-loop example

$$
\begin{aligned}
R^{*}\left(\frac{n^{2}}{3}\right) & =\left(\sigma^{2}\right)+z\left(-\frac{1}{3}\right) \\
& +Z\left(-\sigma^{2}\right) *
\end{aligned}
$$

2-loop example

$$
\begin{aligned}
& +\tilde{Z}\left(\oint_{1}\right) * Z\left(-{ }_{3}^{2}-\right) * 1
\end{aligned}
$$

General structure at L loops

$$
R^{*}(\Gamma)=\sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap \tilde{S}=\emptyset}} \tilde{Z}(\tilde{S}) * Z(S) * \Gamma / S \backslash \tilde{S}
$$

General structure at L loops

$$
R^{*}(\Gamma)=\sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap \tilde{S}=\emptyset}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma / S \backslash \tilde{S}
$$

UV counterterm

$$
Z(\Gamma)=-K\left(\sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap S=\emptyset}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma / S \backslash \tilde{S}\right)
$$

General structure at L loops

$$
R^{*}(\Gamma)=\sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap \tilde{S}=\emptyset}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma / S \backslash \tilde{S}
$$

UV counterterm

$$
Z(\Gamma)=-K\left(\sum_{\substack{S \subsetneq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap=\tilde{S}=\tilde{\emptyset}}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma / S \backslash \tilde{S}\right)
$$

IR counterterm

$$
\tilde{Z}\left(\Gamma_{0}\right)=-K\left(\sum_{\substack{S \subseteq \Gamma_{0}, \tilde{S} \subseteq \Gamma_{0} \\ S \cap S=\emptyset}} \tilde{Z}(\tilde{S}) * Z(S) * \Gamma_{0} / S \backslash \tilde{S}\right)
$$

Hopf algebraic formulation of R^{*}

with M Borinsky and R Beekveldt

Hopf algebraic formulation of R*

with M Borinsky and R Beekveldt

Introduce IR and UV coactions for IR and UV divergent graphs:

$$
\Delta_{\mathcal{M}}^{\mathrm{UV}}(\Gamma)=\sum_{\gamma_{\mathrm{UV}} \subseteq \Gamma} \gamma_{\mathrm{UV}} \otimes \Gamma / \gamma_{\mathrm{UV}} \quad \Delta_{\mathcal{M}}^{\mathrm{IR}}(\Gamma)=\sum_{\gamma_{\mathrm{mm}} \subseteq \Gamma} \gamma_{\mathrm{mm}} \otimes \underbrace{\Gamma / \gamma_{\mathrm{mm}}}_{\gamma_{\mathrm{IR}}}
$$

Hopf algebraic formulation of R^{*}

Introduce IR and UV coactions for IR and UV divergent graphs:

$$
\Delta_{\mathcal{M}}^{\mathrm{UV}}(\Gamma)=\sum_{\gamma_{\mathrm{UV}} \subseteq \Gamma} \gamma_{\mathrm{UV}} \otimes \Gamma / \gamma_{\mathrm{UV}} \quad \Delta_{\mathcal{M}}^{\mathrm{IR}}(\Gamma)=\sum_{\gamma_{\mathrm{mm}} \subseteq \Gamma} \gamma_{\mathrm{mm}} \otimes \underbrace{\Gamma / \gamma_{\mathrm{mm}}}_{\gamma_{\mathrm{IR}}}
$$

The coactions are co-associative:

$$
\left(\Delta_{\mathrm{UV}} \otimes \mathrm{id}\right) \circ \Delta_{\mathrm{IR}}=\left(\mathrm{id} \otimes \Delta_{\mathrm{IR}}\right) \circ \Delta_{\mathrm{UV}}
$$

Hopf algebraic formulation of R*

with M Borinsky and R Beekveldt

Allows to rewrite the original R^{*}-operation:

$$
\begin{aligned}
R^{*}(\Gamma) & =m_{\mathcal{A}}^{(2)} \circ(Z \otimes \phi \otimes \widetilde{Z}) \circ\left(\mathrm{id} \otimes \Delta_{\mathcal{M}}^{I R}\right) \circ \Delta_{\mathcal{M}}^{U V}(\Gamma) \\
& =\sum_{\gamma_{\mathrm{UV}} \subseteq \Gamma} \sum_{\gamma_{m} \subseteq \Gamma / \gamma_{\mathrm{UV}}} Z\left(\gamma_{\mathrm{UV}}\right) \phi\left(\gamma_{\mathrm{mm}}\right) \widetilde{Z}\left(\Gamma / \gamma_{\mathrm{UV}} / \gamma_{\mathrm{mm}}\right)
\end{aligned}
$$

Hopf algebraic formulation of R*

with M Borinsky and R Beekveldt
> UV and IR counterterms are related via the antipode

$$
\tilde{Z}=Z \circ S
$$

Hopf algebraic formulation of R*

with M Borinsky and R Beekveldt
> UV and IR counterterms are related via the antipode

$$
\tilde{Z}=Z \circ S
$$

- Example:
$\tilde{Z}(\circlearrowright)=Z \circ S(\circlearrowright)=-Z(\circlearrowright)+Z(\circlearrowright)^{2}+Z($ • $) Z(\circlearrowright)$

$$
s(\stackrel{\dagger}{\bullet})=-\ddots+(\ddots)^{2}+\ddots
$$

R* Automation

Its mostly just recursion and basic graph theory algorithms

R* Automation

And Taylor expansion

$$
Z(\Gamma)=\frac{1}{n!} \sum_{i}\left(\prod_{j=1}^{\omega} Q_{i(j)}^{\mu_{j}}\right) Z\left(\prod_{j=1}^{\omega} \partial_{i(j)}^{\mu_{j}} \Gamma\right)
$$

R^{*} Automation

And Taylor expansion

Pros:

$$
Z(\Gamma)=\frac{1}{n!} \sum_{i}\left(\prod_{j=1}^{\omega} Q_{i(j)}^{\mu_{j}}\right) Z\left(\prod_{j=1}^{\omega} \partial_{i(j)}^{\mu_{j}} \Gamma\right)
$$

- Reduce higher degree divergences to logarithmic ones
> log counterterms are independent of external kinematics, allows for arbitrary IRR

R* Automation

And Taylor expansion

Cons:

$$
Z(\Gamma)=\frac{1}{n!} \sum_{i}\left(\prod_{j=1}^{\omega} Q_{i(j)}^{\mu_{j}}\right) Z\left(\prod_{j=1}^{\omega} \partial_{i(j)}^{\mu_{j}} \Gamma\right)
$$

. Many terms+and many indices are created in the process.
, Tough tensor reductions of vacuum integrals!
, For the 5-loop beta function required up to rank ~18

Tensor Reduction: basic problem

$$
I^{\mu_{1} \ldots \mu_{n}}=\sum_{\sigma \in S_{2}^{n}} g^{\mu_{\sigma(1)} \mu_{\sigma(2)}} . . g^{\mu_{\sigma(n-1)} \mu_{\sigma(n)}} I_{\sigma(1) \ldots \sigma(n)}
$$

, Number of scalar coefficients: $\quad\left|S_{2}^{n}\right|=\frac{n!}{(n / 2)!2^{n / 2}}=(n-1)!!$

Tensor Reduction: basic problem

$$
I^{\mu_{1} \ldots \mu_{n}}=\sum_{\sigma \in S_{2}^{n}} g^{\mu_{\sigma(1)} \mu_{\sigma(2)}} . . g^{\mu_{\sigma(n-1)} \mu_{\sigma(n)}} I_{\sigma(1) \ldots \sigma(n)}
$$

- Number of scalar coefficients: $\left|S_{2}^{n}\right|=\frac{n!}{(n / 2)!2^{n / 2}}=(n-1)!!$

n	2	4	6	8	10	12	14	16	18	20
$\left\|S_{2}^{n}\right\|$	1	3	15	105	945	10,395	135,135	$2,027,025$	$34,459,425$	$654,729,075$

, i.e. Passarino-Veltman reduction would lead to solving a dense $135,135 \times 135,135$ linear system at rank 14!

Tensor reduction: Projectors

> Brute force approach is unfeasible for large n !

Use shorthand

$$
I=\sum_{\sigma \in S_{2}^{n}} g(\sigma) I(\sigma)
$$

Tensor reduction: Projectors

> Brute force approach is unfeasible for large n !
(where !=exclamation mark not factorial)
Use shorthand

$$
I=\sum_{\sigma \in S_{2}^{n}} g(\sigma) I(\sigma)
$$

Define projector $P(\sigma)=P^{\mu_{\sigma(1)} \cdots \mu_{\sigma(n)}}$ such that $P(\sigma) \cdot g\left(\sigma^{\prime}\right)=\delta_{\sigma \sigma^{\prime}}$
then

$$
I(\sigma)=P(\sigma) \cdot I
$$

Tensor reduction: Projectors

General Ansatz $\quad P(\sigma)=\sum_{\sigma^{\prime}} c\left(\sigma, \sigma^{\prime}\right) g\left(\sigma^{\prime}\right)$

Tensor reduction: Projectors

General Ansatz $\quad P(\sigma)=\sum_{\sigma^{\prime}} c\left(\sigma, \sigma^{\prime}\right) g\left(\sigma^{\prime}\right)$
We constrain the coefficients using symmetry (stabilizer) group of $g(\sigma)$:

$$
\begin{aligned}
& S_{2} \times \cdots \times S_{2} \times \stackrel{S_{n / 2}}{\curvearrowleft} \stackrel{g_{\mu_{1} \mu_{2}}}{g_{\mu_{3} \mu_{4}} \ldots g_{\mu_{n-1} \mu_{n}}^{\curvearrowleft}}
\end{aligned}
$$

Tensor reduction: Projectors

The orbit partition formula:

$$
P(\sigma)=\sum_{k} c_{k} \sum_{\tau \in C_{k}(\sigma)} g(\tau)
$$

k sums over orbits:
C_{k} : sets of permutations
which are related by internal symmetry group.

Tensor reduction: Projectors

The orbit partition formula:

$$
P(\sigma)=\sum_{k} c_{k} \sum_{\tau \in C_{k}(\sigma)} g(\tau)
$$

k sums over orbits:
C_{k} : sets of permutations
which are related by internal symmetry group.

Example: Projector of $g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{4}}(\mathrm{G}: 1 \leftrightarrow 2,3 \leftrightarrow 4,12 \leftrightarrow 34)$

$$
P_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=c_{1,1} g_{\mu_{1} \mu_{2}} g_{\mu_{3} \mu_{4}}+c_{2}\left(g_{\mu_{1} \mu_{3}} g_{\mu_{2} \mu_{4}}+g_{\mu_{1} \mu_{4}} g_{\mu_{2} \mu_{3}}\right)
$$

Tensor reduction: Projectors

 in preparation with J. Vermaseren, J Goode and Sam Teale- Can label orbits (independent $\mathrm{c}_{\mathrm{k}} \mathrm{s}$) by integer partitions of n/2
, Integer partitions \leftrightarrow cycle structure of bi-chord graphs

Tensor reduction: Projectors

 in preparation with J. Vermaseren, J Goode and Sam Teale- Can label orbits (independent $\mathrm{c}_{\mathrm{k}} \mathrm{s}$) by integer partitions of $\mathrm{n} / 2$
, Integer partitions \leftrightarrow cycle structure of bi-chord graphs
. Orbit partition tames growth of system size:

n	2	4	6	8	10	12	14	16	18	20
$\left\|S_{2}^{n}\right\|$	1	3	15	105	945	10,395	135,135	$2,027,025$	$34,459,425$	$654,729,075$
$p\left(\frac{n}{2}\right)$	1	2	3	5	7	11	15	22	30	42

Extension to spinors in progress

Application: Scalar EFT

Compute higher orders both in loop and EFT expansion with R^{*} :
, Great testing ground for method
> Investigate nonrenormalisation theorems

Scalar EFT Basics

- Lagrangian

$$
\mathcal{L}=\mathcal{L}^{(4)}\left(\phi, \partial_{\mu} \phi\right)+\sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{i} \tilde{c}_{i}^{b(n)} \tilde{\mathcal{O}}_{i}^{b(n)}
$$

> Basis of operators not unique
, Redundancies IBP and Field redefinitions

- Couplings mix under renormalisation

$$
\mu \frac{d}{d \mu} c_{i}^{(n)}=\sum_{j} \gamma_{i j}^{(n)} c_{j}^{(n)}
$$

Complex scalar operators at mass dimension 8

$$
\begin{aligned}
& \mathcal{O}_{8}^{(8)}=\frac{1}{4!4!} \quad \therefore \stackrel{\circ}{\circ}=\frac{1}{4!4!}\left(\phi^{*} \phi\right)^{4} \\
& \mathcal{O}_{6, i}^{(8)}=-\frac{1}{4}!\stackrel{\circ}{\circ},-\frac{1}{12}!\stackrel{\circ}{\circ},-\frac{1}{12}:! \\
& \mathcal{O}_{4, i}^{(8)}=: \infty, \frac{1}{4} \boldsymbol{Q}_{\circ}^{\circ}, \frac{1}{4}: 8 \\
& \because 0,: i, \frac{1}{2}: \circ \text {, } \\
& \frac{1}{2} \because, \frac{1}{4}!\&, \frac{1}{2} \because \\
& \mathcal{O}_{2}^{(8)}=-\infty^{0}=-\left(\partial^{\alpha} \partial^{\beta} \partial^{\gamma} \phi^{\phi}\right)\left(\partial_{\alpha} \partial_{\beta} \partial_{\gamma} \phi\right)
\end{aligned}
$$

ح dots = complex fields

- Circles= complex conjugate fields
> Lines= contracted pair of derivatives
, Conformal Primaries:

$$
\begin{aligned}
\mathcal{O}_{8}^{(8) c}= & \mathcal{O}_{8}^{(8)} \\
\mathcal{O}_{6}^{(8) c}= & -\frac{2}{3} \mathcal{O}_{6,1}^{(8)}+\left(\mathcal{O}_{6,2}^{(8)}+\mathcal{O}_{6,3}^{(8)}\right) \\
\mathcal{O}_{4}^{(8) c}(x, y)= & (5 x-y) \mathcal{O}_{4,1}^{(8)}+2 x \mathcal{O}_{4,2}^{(8)}+2 x \mathcal{O}_{4,3}^{(8)}-4 x \mathcal{O}_{4,4}^{(8)}-4 x \mathcal{O}_{4,5}^{(8)} \\
& +(4 y-16 x) \mathcal{O}_{4,6}^{(8)}+(4 y-16 x) \mathcal{O}_{4,7}^{(8)}+4 y \mathcal{O}_{4,8}^{(8)}+(36 x-8 y) \mathcal{O}_{4,9}^{(8)}
\end{aligned}
$$

Anomalous dimension matrix

 at mass dimension 8> Most zeroes were expected by a selection rule by Bern et al.
> Two unexpected zeroes were found!

which multiplies the couplings of

$$
\left\{\mathcal{O}_{8}^{(8) c}, \mathcal{O}_{6}^{(8) c}, \mathcal{O}_{4}^{(8) c}(1,0), \mathcal{O}_{4}^{(8) c}(0,1)\right\}
$$

Similar at mass dimension 6

$$
\gamma_{c}^{(6)}=\left(\begin{array}{cc}
g^{2} \mathcal{O}_{6}^{(6) c} & g \mathcal{O}_{4}^{(6) c} \\
14 g-\frac{297 g^{2}}{2}+\left(816 \zeta_{3}+\frac{14981}{8}\right) g^{3} & 0 g-\frac{45 g^{2}}{2}+\left(216 \zeta_{3}+\frac{6153}{16}\right) g^{3} \\
-\left(\frac{32087 \zeta_{3}}{2}-2892 \zeta_{4}+23320 \zeta_{5}+\frac{88983}{32}\right) g^{4} & -\left(783 \zeta_{3}+8100 \zeta_{5}+\frac{74799}{16}\right) g^{4} \\
& -g+\frac{13 g^{2}}{2}-\left(36 \zeta_{3}+\frac{383}{12}\right) g^{3} \\
0 g+0 g^{2} \sqrt{+0 g^{3}}+\frac{5 g^{4}}{6} & +\left(\frac{769 \zeta_{3}}{2}-123 \zeta_{4}+560 \zeta_{5}+\frac{7893}{32}\right) g^{4}
\end{array}\right)
$$

> The existence of upper right zero appears only in the conformal primary basis - we have little understanding why
, The lower one seems basis independent and we have no idea why it appears.

and mass dimension 10

	$g^{4} \mathcal{O}_{10}^{(10) c}$	$g^{3} \mathcal{O}_{8}^{(10) c}$	$g^{2} \mathcal{O}_{6}^{(10) c}{ }_{(1,0,0,0)}$	$g^{2} \mathcal{O}_{6}^{(10) c}{ }_{(0,1,0,0)}$	$g^{2} \mathcal{O}_{6}^{(10)}{ }_{(0,0,1,0)}$	$g^{2} \mathcal{O}_{6}^{(10) c}{ }_{(0,0,0, i)}$	$g \mathcal{O}_{4}^{(10) c}{ }_{(1,0)}$	$g \mathcal{O}_{4}^{(10) c}{ }_{(0,1)}$
$\gamma_{C}^{(10)}=$	$\left(50 g-\frac{1725 g^{2}}{2}\right.$	$\begin{array}{\|l\|} \hline 0 g-1125 g^{2} \\ \hline \end{array}$	$\frac{412500 g}{7}-\frac{61613665 g^{2}}{42}$	$\frac{3300 g}{7}-\frac{19655 g^{2}}{6}$	$\frac{141900 g}{7}-\frac{6734025 g^{2}}{14}$	0	$-\frac{500460 g}{7}+\frac{31376515 g^{2}}{21}$	$\left.-64740 g+\frac{16819700 g^{2}}{21}\right)$
	$0 g+0 g^{2}$	$15 g-\frac{385 g^{2}}{2}$	$-\frac{1474 g}{7}+\frac{83689 g^{2}}{45}$	$-\frac{234 g}{7}+\frac{386467 g^{2}}{315}$	$\frac{326 g}{7}-\frac{4577 g^{2}}{7}$	0	$-\frac{43732 g}{35}+\frac{5863532 g^{2}}{315}$	$\frac{14272 g}{5}-\frac{15354406 g^{2}}{315}$
	$0 g+0 g^{2}$	$0 g+0 g^{2}$	$\frac{35 g}{6}-\frac{678389 g^{2}}{15120}$	$-\frac{g}{6}+\frac{24379 g^{2}}{15120}$	$\frac{7 g}{6}-\frac{28265 g^{2}}{3024}$	0	$\frac{1006 \mathrm{~g}}{105}+\frac{1249571 \mathrm{~g}^{2}}{15120}$	$-\frac{967 g}{30}+\frac{1903001 g^{2}}{3780}$
	$0 g+0 g^{2}$	$0 g+0 g^{2}$	$\frac{4 g}{3}-\frac{331 g^{2}}{630}$	$-\frac{2 g}{3}-\frac{5401 g^{2}}{945}$	$2 g-\frac{14965 g^{2}}{756}$	0	$-\frac{4159 g}{105}+\frac{3146033 g^{2}}{7560}$	$\frac{914 g}{15}-\frac{103037 g^{2}}{315}$
	$0 g+0 g^{2}$	$0 g+0 g^{2}$	$\frac{15 g}{2}-\frac{247109 g^{2}}{5040}$	$-\frac{g}{2}-\frac{4127 g^{2}}{1680}$	$\frac{7 g}{2}-\frac{31333 g^{2}}{1008}$	0	$-\frac{1769 g}{35}+\frac{243011 g^{2}}{336}$	$\frac{573 g}{10}+\frac{37049 g^{2}}{1260}$
	0	0	0	0	0	$\frac{10 g}{3}-\frac{770 g^{2}}{27}$	0	0
	$0 g+0 g^{2}$	0	$-2 g+\frac{223 g^{2}}{24}$	$-g+\frac{7 g^{2}}{24}$				
	($0 g+0 g^{2}$	0	$-g+\frac{7 g^{2}}{12}$	$-3 g+\frac{251 g^{2}}{24}$				

Summary \& Outlook

> R* formalism

- Discussed Hopf algebra framework to streamline operations, e.g. IR counterterm via antipode relation
> Discussed high rank tensor problem with R^{*}
- Presented an orbit partition formula for the projector
- In progress: extend to spinor indices
> Finally discussed application in Scalar EFT
- Two new zeros were found in mixing matrix
- In progress: Extending non-renormalisation thms to multi-linear mixing

