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State-of-the-art methods for 
multi-loop MS counterterms 

R*(local&global) 5-loop QCD,...
Massive tadpoles 5-loop QCD,...
Graphical functions φ4 up to 7 loops
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This talk: focus on R* approach

Formalism
➢ Hopf algebra

Automation
➢ Tensor reduction

Applications
➢ Scalar EFT
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What is R*?

A generalisation of BPHZ to Euclidean IR divergences 
[1982 Chetyrkin, Tkachov; Smirnov]

   

an offshell Feynman diagram   By adding counter-terms associated 
to UV- or IR- divergent subdiagrams
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2-loop example
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UV counterterm

IR counterterm

General structure at L loops
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Hopf algebraic formulation of R*
with M Borinsky and R Beekveldt
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Hopf algebraic formulation of R*

Introduce IR and UV coactions for IR and UV divergent graphs: 

The coactions are co-associative:

with M Borinsky and R Beekveldt
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Hopf algebraic formulation of R*

Allows to rewrite the original R*-operation:

with M Borinsky and R Beekveldt
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➢ UV and IR counterterms are related via the antipode

➢ Example:

Hopf algebraic formulation of R*
with M Borinsky and R Beekveldt

IR

UV
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R* Automation
Its mostly just recursion and
basic graph theory algorithms 
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R* Automation

And Taylor expansion

Pros:
➢ Reduce higher degree divergences 

to logarithmic ones
➢ log counterterms are independent 

of external kinematics, allows for arbitrary IRR
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R* Automation

And Taylor expansion

Cons:
➢ Many terms+and many indices are created in the 

process.
➢ Tough tensor reductions of vacuum integrals!
➢ For the 5-loop beta function required up to rank ~18
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Tensor Reduction: basic problem

➢ Number of scalar coefficients:

➢ i.e. Passarino-Veltman reduction would lead to solving a 
dense 135,135x135,135 linear system at rank 14!
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Tensor reduction: Projectors

➢ Brute force approach is unfeasible for large n!
 (where !=exclamation mark not factorial)

Use shorthand

Define projector                                     such that
then 



24

Tensor reduction: Projectors

➢ Brute force approach is unfeasible for large n!
 (where !=exclamation mark not factorial)

Use shorthand

Define projector                                     such that
then 



25

Tensor reduction: Projectors

General Ansatz 

We constrain the coefficients using symmetry 
(stabilizer) group of         :
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Tensor reduction: Projectors

The orbit partition formula:

Example: Projector of                    (G:1↔2,3↔4)    

k sums over orbits:
Ck : sets of permutations 
which are related by internal 
symmetry group.
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Tensor reduction: Projectors

The orbit partition formula:

Example: Projector of                   (G:1↔2,3↔4,12↔34)  
  

k sums over orbits:
Ck : sets of permutations 
which are related by internal 
symmetry group.
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Tensor reduction: Projectors
in preparation with J. Vermaseren, J Goode and Sam Teale

➢ Can label orbits (independent cks) 
by integer partitions of n/2

➢ Integer partitions ↔ cycle structure 
of bi-chord graphs

➢ Orbit partition tames growth of system 
size:

Extension to spinors in progress
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Application: Scalar EFT
arxiv:2105.12742 with W Cao, T Melia and J Nepveu

Compute higher orders 
both in loop and EFT 
expansion with R*:
➢ Great testing ground 

for method
➢ Investigate non-

renormalisation 
theorems
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Scalar EFT Basics

➢ Lagrangian

➢ Basis of operators not unique
➢ Redundancies IBP and Field redefinitions

➢ Couplings mix under 
renormalisation
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Complex scalar operators
at mass dimension 8

➢ dots = complex fields
➢ Circles= complex conjugate 

fields 
➢ Lines= contracted pair of 

derivatives
➢ Conformal Primaries:
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Anomalous dimension matrix
at mass dimension 8

➢ Most zeroes were expected by a selection rule by Bern et al.
➢ Two unexpected zeroes were found!
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Similar at mass dimension 6

➢ The existence of upper right zero appears only in the 
conformal primary basis – we have little understanding why

➢ The lower one seems basis independent and we have no idea 
why it appears.



36

and mass dimension 10
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Summary & Outlook

➢ R* formalism
➢ Discussed Hopf algebra framework to streamline operations, 

e.g. IR counterterm via antipode relation
➢ Discussed high rank tensor problem with R*

➢ Presented an orbit partition formula for the projector
➢ In progress: extend to spinor indices

➢ Finally discussed application in Scalar EFT
➢ Two new zeros were found in mixing matrix
➢ In progress: Extending non-renormalisation thms to multi-linear mixing


