Some developments in higher order Renormalisation

HP2- Newcastle 2022

Franz Herzog

State-of-the-art methods for multi-loop MS counterterms

R*(local&global)	5-loop QCD,			
Massive tadpoles	5-loop QCD,			
Graphical functions	φ ⁴ up to 7 loops			

This talk: focus on R* approach

What is R*?

A generalisation of BPHZ to Euclidean IR divergences [1982 Chetyrkin, Tkachov; Smirnov]

By adding counter-terms associated to UV- or IR- divergent subdiagrams

2-loop example

2-loop example

2-loop example

$$+ \tilde{Z}(4) * Z(4) + 2(4) + 3 + 1$$

7

General structure at L loops

$$R^*(\Gamma) = \sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap \tilde{S} = \emptyset}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma/S \setminus \tilde{S}$$

General structure at L loops

$$R^*(\Gamma) = \sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap \tilde{S} = \emptyset}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma/S \setminus \tilde{S}$$

UV counterterm

$$Z(\Gamma) = -K \Big(\sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ \tilde{S} \cap \tilde{S} = \emptyset}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma/S \setminus \tilde{S} \Big)$$

General structure at L loops

$$R^*(\Gamma) = \sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap \tilde{S} = \emptyset}} \widetilde{Z}(\tilde{S}) * Z(S) * \Gamma/S \setminus \tilde{S}$$

UV counterterm

$$Z(\Gamma) = -K \Big(\sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma \\ S \cap \tilde{S} = \emptyset}} \tilde{Z}(\tilde{S}) * Z(S) * \Gamma/S \setminus \tilde{S} \Big)$$

IR counterterm

$$\tilde{Z}(\Gamma_0) = -K \Big(\sum_{\substack{S \subseteq \Gamma_0, \tilde{S} \subsetneq \Gamma_0 \\ S \cap \tilde{S} = \emptyset}} \tilde{Z}(\tilde{S}) * Z(S) * \Gamma_0 / S \setminus \tilde{S} \Big)$$

with M Borinsky and R Beekveldt

with M Borinsky and R Beekveldt

Introduce IR and UV coactions for IR and UV divergent graphs:

$$\Delta_{\mathcal{M}}^{\mathrm{UV}}(\Gamma) = \sum_{\gamma_{\mathrm{UV}} \subseteq \Gamma} \gamma_{\mathrm{UV}} \otimes \Gamma / \gamma_{\mathrm{UV}} \qquad \Delta_{\mathcal{M}}^{\mathrm{IR}}(\Gamma) = \sum_{\gamma_{\mathrm{mm}} \subseteq \Gamma} \gamma_{\mathrm{mm}} \otimes \Gamma / \gamma_{\mathrm{mm}}$$

12

—

ΎIR.

with M Borinsky and R Beekveldt

Introduce IR and UV coactions for IR and UV divergent graphs:

$$\Delta_{\mathcal{M}}^{\mathrm{UV}}(\Gamma) = \sum_{\gamma_{\mathrm{UV}} \subseteq \Gamma} \gamma_{\mathrm{UV}} \otimes \Gamma / \gamma_{\mathrm{UV}} \qquad \Delta_{\mathcal{M}}^{\mathrm{IR}}(\Gamma) = \sum_{\gamma_{\mathrm{mm}} \subseteq \Gamma} \gamma_{\mathrm{mm}} \otimes \Gamma / \gamma_{\mathrm{mm}}$$

The coactions are *co-associative*:

$$(\Delta_{\rm UV} \otimes {\rm id}) \circ \Delta_{\rm IR} = ({\rm id} \otimes \Delta_{\rm IR}) \circ \Delta_{\rm UV}$$

΄)/IR

with M Borinsky and R Beekveldt

Allows to rewrite the original R*-operation:

$$R^{*}(\Gamma) = m_{\mathcal{A}}^{(2)} \circ (Z \otimes \phi \otimes \widetilde{Z}) \circ (\mathrm{id} \otimes \Delta_{\mathcal{M}}^{IR}) \circ \Delta_{\mathcal{M}}^{UV}(\Gamma)$$
$$= \sum_{\gamma_{\mathrm{UV}} \subseteq \Gamma} \sum_{\gamma_{mm} \subseteq \Gamma/\gamma_{\mathrm{UV}}} Z(\gamma_{\mathrm{UV}}) \phi(\gamma_{\mathrm{mm}}) \widetilde{Z}(\Gamma/\gamma_{\mathrm{UV}}/\gamma_{\mathrm{mm}})$$

with M Borinsky and R Beekveldt

> UV and IR counterterms are related via the *antipode*

with M Borinsky and R Beekveldt

> UV and IR counterterms are related via the *antipode*

> Example:

 $\widetilde{Z}\left(\begin{array}{c} \longleftrightarrow \end{array}\right) = Z \circ S\left(\begin{array}{c} \longleftrightarrow \end{array}\right) = -Z\left(\begin{array}{c} \longleftrightarrow \end{array}\right) + Z\left(\begin{array}{c} \bullet \end{array}\right)^2 + Z\left(\begin{array}{c} \bullet \end{array}\right) Z\left(\begin{array}{c} \bullet \end{array}\right)$ \uparrow $S\left(\begin{array}{c} \bullet \end{array}\right) = -\begin{array}{c} \bullet \end{array} + \left(\begin{array}{c} \bullet \end{array}\right)^2 + \begin{array}{c} \bullet \end{array}$

Its mostly just recursion and basic graph theory algorithms

$$Z(\Gamma) = -K\Big(\sum_{\substack{S \subseteq \Gamma, \tilde{S} \subseteq \Gamma\\ \tilde{S} \cap \tilde{S} = \emptyset}} \tilde{Z}(\tilde{S}) * Z(S) * \Gamma/S \setminus \tilde{S}\Big)$$

And Taylor expansion $Z(\Gamma) = \frac{1}{n!} \sum_{i} \left(\prod_{j=1}^{\omega} Q_{i(j)}^{\mu_j}\right) Z(\prod_{j=1}^{\omega} \partial_{i(j)}^{\mu_j} \Gamma)$

And Taylor expansion

ros:
$$Z(\Gamma) = \frac{1}{n!} \sum_{i} \left(\prod_{j=1}^{\omega} Q_{i(j)}^{\mu_j}\right) Z(\prod_{j=1}^{\omega} \partial_{i(j)}^{\mu_j} \Gamma)$$

- Reduce higher degree divergences to logarithmic ones
- log counterterms are independent of external kinematics, allows for arbitrary IRR

And Taylor expansion

Cons:
$$Z(\Gamma) = \frac{1}{n!} \sum_{i} \left(\prod_{j=1}^{\omega} Q_{i(j)}^{\mu_j} \right) Z(\prod_{j=1}^{\omega} \partial_{i(j)}^{\mu_j} \Gamma)$$

- Many terms+and many indices are created in the process.
- > Tough tensor reductions of vacuum integrals!
- For the 5-loop beta function required up to rank ~18

Tensor Reduction: basic problem

$$I^{\mu_1\dots\mu_n} = \sum_{\sigma \in S_2^n} g^{\mu_{\sigma(1)}\mu_{\sigma(2)}} \dots g^{\mu_{\sigma(n-1)}\mu_{\sigma(n)}} I_{\sigma(1)\dots\sigma(n)}$$

Number of scalar coefficients:

$$|S_2^n| = \frac{n!}{(n/2)!2^{n/2}} = (n-1)!!$$

Tensor Reduction: basic problem

$$I^{\mu_1...\mu_n} = \sum_{\sigma \in S_2^n} g^{\mu_{\sigma(1)}\mu_{\sigma(2)}}..g^{\mu_{\sigma(n-1)}\mu_{\sigma(n)}}I_{\sigma(1)...\sigma(n)}$$

> Number of scalar coefficients: $|S_2^n| = \frac{n!}{(n/2)!2^{n/2}} = (n-1)!!$

n	2	4	6	8	10	12	14	16	18	20
$ S_2^n $	1	3	15	105	945	$10,\!395$	$135,\!135$	$2,\!027,\!025$	$34,\!459,\!425$	$654,\!729,\!075$

i.e. Passarino-Veltman reduction would lead to solving a dense 135,135x135,135 linear system at rank 14!

Brute force approach is unfeasible for large n!

(where !=exclamation mark not factorial)

Use shorthand

$I = \sum g(\sigma)I(\sigma)$ $\sigma \in S_2^n$

Brute force approach is unfeasible for large n!

(where !=exclamation mark not factorial)

Use shorthand

$$I = \sum_{\sigma \in S_2^n} g(\sigma) I(\sigma)$$

Define projector $P(\sigma) = P^{\mu_{\sigma(1)} \dots \mu_{\sigma(n)}}$ such that $P(\sigma) \cdot g(\sigma') = \delta_{\sigma\sigma'}$

then

$$I(\sigma) = P(\sigma) \cdot I$$

General Ansatz $P(\sigma) = \sum c(\sigma, \sigma') g(\sigma')$

General Ansatz
$$P(\sigma) = \sum_{\sigma'} c(\sigma, \sigma') g(\sigma')$$

We constrain the coefficients using symmetry (stabilizer) group of $g(\sigma)$: 4

$$S_2 \times \cdots \times S_2 \times S_{n/2}$$

The orbit partition formula:

 $P(\sigma) = \sum c_k \quad \sum \quad g(\tau)$ \overline{k} $\tau \in C_k(\sigma)$

k sums over orbits: C_k : sets of permutations which are related by internal symmetry group.

The orbit partition formula:

$$P(\sigma) = \sum_{k} c_k \sum_{\tau \in C_k(\sigma)} g(\tau)$$

k sums over orbits: C_k : sets of permutations which are related by internal symmetry group.

Example: Projector of $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ (G:1 \leftrightarrow 2,3 \leftrightarrow 4,12 \leftrightarrow 34) $P_{\mu_1\mu_2\mu_3\mu_4} = c_{1,1}g_{\mu_1\mu_2}g_{\mu_3\mu_4} + c_2\left(g_{\mu_1\mu_3}g_{\mu_2\mu_4} + g_{\mu_1\mu_4}g_{\mu_2\mu_3}\right)$

Tensor reduction: Projectors in preparation with J. Vermaseren, J Goode and Sam Teale

- Can label *orbits* (independent c_ks)
 by *integer partitions* of n/2
- > Integer partitions ↔ cycle structure of bi-chord graphs

Tensor reduction: Projectors in preparation with J. Vermaseren, J Goode and Sam Teale

- Can label *orbits* (independent c_ks) by *integer partitions* of n/2
- ▹ Integer partitions ↔ cycle structure of bi-chord graphs
- Orbit partition tames growth of system size:

n	2	4	6	8	10	12	14	16	18	20
$ S_2^n $	1	3	15	105	945	$10,\!395$	$135,\!135$	2,027,025	$34,\!459,\!425$	654,729,075
$p\left(\frac{n}{2}\right)$	1	2	3	5	7	11	15	22	30	42

Extension to spinors in progress

Application: Scalar EFT

arxiv:2105.12742 with W Cao, T Melia and J Nepveu

Compute higher orders both in loop and EFT expansion with R*:

- Great testing ground for method
- Investigate nonrenormalisation theorems

Scalar EFT Basics

Lagrangian

$$\mathcal{L} = \mathcal{L}^{(4)}(\phi, \partial_{\mu}\phi) + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{i} \tilde{c}_{i}^{b(n)} \tilde{\mathcal{O}}_{i}^{b(n)}$$

- Basis of operators not unique
 - Redundancies IBP and Field redefinitions
- Couplings mix under renormalisation

$$\mu \frac{d}{d\mu} c_i^{(n)} = \sum_j \gamma_{ij}^{(n)} c_j^{(n)}$$

Complex scalar operators at mass dimension 8

$$\mathcal{O}_{8}^{(8)} = \frac{1}{4! \ 4!} \stackrel{\bullet \circ}{\stackrel{\bullet}{\stackrel{\circ}{\circ}}} = \frac{1}{4!4!} (\phi^{*}\phi)^{4}$$

$$\mathcal{O}_{6,i}^{(8)} = -\frac{1}{4} \stackrel{\bullet \circ}{\stackrel{\bullet}{\stackrel{\circ}{\circ}}}, -\frac{1}{12} \stackrel{\bullet \circ}{\stackrel{\bullet}{\stackrel{\circ}{\circ}}}, -\frac{1}{12} \stackrel{\bullet \circ}{\stackrel{\bullet}{\stackrel{\circ}{\circ}}}, -\frac{1}{12} \stackrel{\bullet \circ}{\stackrel{\bullet}{\stackrel{\circ}{\circ}}},$$

$$\mathcal{O}_{4,i}^{(8)} = \stackrel{\bullet \circ}{\stackrel{\bullet \circ}{\circ}}, \frac{1}{4} \stackrel{\bullet \circ}{\stackrel{\circ}{\circ}}, \frac{1}{4} \stackrel{\bullet \circ}{\stackrel{\bullet}{\circ}}, \frac{1}{4} \stackrel{\bullet \circ}{\stackrel{\bullet}{\circ}}, \frac{1}{2} \stackrel{\bullet \circ}{\circ}, \frac{1}{2} \stackrel{\bullet \circ}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ} , \frac{1}{2} \stackrel{\bullet}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ} , \frac{1}{2} \stackrel{\bullet}{\circ} , \frac{1}{2} \stackrel{\bullet}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ} , \frac{1}{2} \stackrel{\bullet}{\circ}, \frac{1}{2} \stackrel{\bullet}{\circ} , \frac{1}{2$$

- > dots = complex fields
- Circles= complex conjugate fields
- Lines= contracted pair of derivatives
- Conformal Primaries:

$$\begin{aligned} \mathcal{O}_{8}^{(8)c} &= \mathcal{O}_{8}^{(8)} \\ \mathcal{O}_{6}^{(8)c} &= -\frac{2}{3}\mathcal{O}_{6,1}^{(8)} + \left(\mathcal{O}_{6,2}^{(8)} + \mathcal{O}_{6,3}^{(8)}\right) \\ \mathcal{O}_{4}^{(8)c}(x,y) &= (5x-y)\mathcal{O}_{4,1}^{(8)} + 2x\mathcal{O}_{4,2}^{(8)} + 2x\mathcal{O}_{4,3}^{(8)} - 4x\mathcal{O}_{4,4}^{(8)} - 4x\mathcal{O}_{4,5}^{(8)} \\ &+ (4y-16x)\mathcal{O}_{4,6}^{(8)} + (4y-16x)\mathcal{O}_{4,7}^{(8)} + 4y\mathcal{O}_{4,8}^{(8)} + (36x-8y)\mathcal{O}_{4,9}^{(8)} \end{aligned}$$

Anomalous dimension matrix at mass dimension 8

- Most zeroes were expected by a selection rule by Bern et al.
- > Two unexpected zeroes were found!

which multiplies the couplings of

$$\left\{\mathcal{O}_{8}^{(8)c} , \mathcal{O}_{6}^{(8)c} , \mathcal{O}_{4}^{(8)c}(1,0) , \mathcal{O}_{4}^{(8)c}(0,1)\right\}$$

Similar at mass dimension 6

- The existence of upper right zero appears only in the conformal primary basis we have little understanding why
- The lower one seems basis independent and we have no idea why it appears.

and mass dimension 10

Summary & Outlook

- R* formalism
 - Discussed Hopf algebra framework to streamline operations, e.g. IR counterterm via antipode relation
- Discussed high rank tensor problem with R*
 - Presented an orbit partition formula for the projector
 - In progress: extend to spinor indices
- Finally discussed application in Scalar EFT
 - > Two new zeros were found in mixing matrix
 - In progress: Extending non-renormalisation thms to multi-linear mixing