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@ Collection of 2 — 3 calculations facilitated by appropriate techniques.

@ See talks by [Bayu, Giuseppe, Jakub, Rene, Ryan].
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What About More Scales?

@ Many important processes involve multiple massive particles.
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@ Integrals are becoming elliptic (or worse).

@ Rational functions are becoming exponentially more complicated.

This talk: Focus on rational functions. [
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Analytic Reconstruction as it Stands

@ Paradigm-shift insight: use finite-field evaluations to determine Cy.

{ck(p1 v PO (M gN>)} reconstruct &

[von Manteuffel, Schabinger '14; Peraro '16],
FiniteFlow [Peraro '19], Firefly [Klappert, Lange, Yannick '19, '20]

@ Reconstruction complexity dominated by sampling.

e Evaluation count for (selected) recent two-loop five-point amplitudes:

Three-jet

Process

Three-photon

W + two-jets*

# Samples ~ 10°

Ben Page

~ 106,

* After simplification via [Badger et al '20]
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Simplifications from Partial Fractions

@ Common observation: partial fractions simplifies Cx. Toy example:

N A~ A B A/ A23 Y Alz
DD,Ds  DiD,Ds  DyDs | DiDs /D/Dg /252

@ Comes in multiple flavours:

. Avoids
Approach Analytic Reconstruction| ¢\ rious
Algorithm? compatible? . "
: singularities?

Univariate v Vi X

Multivariate Ve X X
>k[F’ak '11; Abreu, Dormans, Febres Cordero, Ita, BP, Sotnikov "19]
implementations: [Boehm, Wittmann, Wu, Xu, Zhang '20; Heller, von Manteuffel '21]
T[Badger, Hartanto, Zoia '21]

Can we avoid spurious singularities and simplify reconstruction? J
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The Approach of [De Laurentis, BP '22]

@ Work in spinor space® to manifest gauge-theory simplifications.

Ck(pla---;pn) — Ck(A,S\)

*Algorithmic toolkit provided.

@ Numerically study Cx to understand partial-fractions structure.

N AT A D
D1D2Drest MDrest D2Drest DIDrest .

See also [De Laurentis, Maftre '19].

@ Construct Ansatz a; from study. Constrain ¢y by finite field sampling.
N
Cr(MA) = Z car(A, A), cu € Q.
I=1
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A First Attempt at Numerical Partial Fractions

o Consider tree-level six-point one-quark line amplitude Aq+g+g+afg7g7

N*

A = 112)(23)(34) [45][56] 6]

*N is a degree 6 polynomial in spinor brackets.

o Can we rewrite without both (12) and (23) poles?

JANDS A23

A= + ?
(23)(34)[45][56][61]s345  (12)(34)[45][56][61]5345

@ [De Laurentis, Maitre '19]: Probe A on points where (12), (23) are small.

Ay ~e = A~e?
(12) ~ (23) ~ (13) ~ e = A~el,
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Thinking in Terms of Polynomials

o Let's ask an equivalent question:
N = A15(12) + Ap3(23)?
e Mathematically, we can ask if A/ belongs to an “ideal”:
N e <<12>, (23>>?
o lIdeal is infinite set of polynomial combinations of generators:

<<12), <23)> = {31<12> + a»(23) | aj are any spinor ponnomiaIs}.

Zariski Nagata Theorem

If A/ vanishes everywhere where (12) = (23) = 0* then N € <<12), (23)>.

* and <(12>7 (23)> is radical. " *Higher order vanishing also handled.
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Branching of Surfaces Defined by Polynomials

@ When we intersect surfaces, we may have multiple branches.

xy2+y3fz2:0 X3+y3*Z2:0, xy2+y3fz2:x3+y3722:0.
@ Our double denominator zero surface has two branches:
(12) =(23) =0 < (12)=(23)=(13)=0 or A5 =

@ We compute branchings with primary decomposition techniques.
[De Laurentis, BP '22], see also [Zhang '12].
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Ansatz Construction Algorithm, Sketched

@ Construct branches of surfaces where two denominators vanish.

D;:Djzo — VZ{Ul,UQ,...}.

@ Sample near surface to determine degree of divergence.

1
U D,'NDJ'NE = Cp ~ —

eru’

© Ansatz is basis of intersection of associated ideals of vanishing
polynomials. Ansatz constructed using Grobner basis techniques.

N e () 1)t

uey
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How To Perform Numerical Investigations?

o Need to find phase-space points (\€, 5\6) where D; are small.

DA, X)) ~ Di(AGA) ~ e

@ Conflict with modern techniques: no small elements in a finite field.

|0|r,= O, and a#0 = |ap,=1.
@ Approaching with complex numbers would be plagued by instabilities.

Enter the p-adic numbers — a middle ground between finite fields and C. )

Ben Page
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Introduction to the p-adic Numbers

@ The p-adic numbers roughly correspond to Laurent series in p.

oo
X = Z alpl = a[/py + aV—‘,—lpVJrl + SKI (3,’ Eal[jo;yépo_l]’) .

i=v

@ The p-adic numbers form a field. x,y € Q, =

1 .
x+yeQ, —x€Qp xxyeQy, ;GQp(lfx;éO).

@ The p-adic absolute value allows for small numbers (p ~ €).

IxXlp=p7", = |p[p< |1]p.
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Computing with p-adic Numbers

@ For computing purposes™ we truncate to finite order.

x = p”(x)< X +0(pk))-
mantissa

*Try [https://github.com/GDelaurentis/pyadic| to investigate yourselves.

@ Truncation reduces to finite field case for v =0, k = 1.

o Arithmetic (4+ — /*) is essentially performed modulo p*, e.g.

o Mantissa inverse computed with extended euclidean algorithm.
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Studying the Six-Point Tree [De Laurentis, BP; 2207.10125]

N

A= .
(12)(23)(34)[45][56][61]s345
@ Probe 108 surfaces where pairs of (i), [if], sk are p-adically small.

eg  [12] ~[13] ~[23] ~ O(p) = A~ O(p?).
@ N vanishes non-trivially on 28 surfaces. Many ideal memberships:

N € <[12], [13], [23]>2 N <<12>, <34>> N <<12>, [16]> N (25 more).

@ Imposing that N\ is a degree six polynomial gives one term Ansatz:
N = co((12)[21](45)[54](4]2+3]1]) +[16](6/1-+2/3] (34)s123 ), 0 € Q.

Ben Page

P-adic Numbers and Partial Fractions Ansatze for Amplitudes



Proof-of-Concept Remainders for gg — vy

(Simulated evaluations using analytics from [Abreu, BP, Pascual, Sotnikov '20]).

@ Analyze remainder, reconstruct pentagon function coefficients.

e Fitting Ansatz now requires at most 566 F, samples.

Amplitude R(,zfl R(,zﬂrf) Rfﬁ)r R(fjﬁ[)
Ansatz Dim [Abreu et al '20] 41301 | 2821 7905 1045
Ansatz Dim [De Laurentis, BP '22] | 566 20 18 6
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@ Rational functions in amplitudes have poorly understood structure.

@ We study that structure with p-adic evaluations in singular limits.
This behavior is interpreted in terms of ideals to build Ansatze.

@ Approach shows great promise for amplitudes involving more scales.
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Lorentz Invariance

o Coefficients are Lorentz invariant functions of spinor brackets.
C(A ) = (). ).
@ Relevant ring is Lorentz invariant subring of S,,.
Sp= F[<12>, o (=1 [12],. . [(n— 1)n]].
@ Variables are brackets, now have “Schouten identities”.
n
In, = <Z(ij>[ik], (i) (kl) = Cik) Gl = (i) (Kj), ) <> []> -
j=1
@ Physical spinor bracket functions also form a quotient ring.
7zn — Sn/j/\,,-
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Bases of Spinor Space and Polynomial Reduction

@ Numerators are Q—linear combinations of spinor monomials.

mo =[] v"  where V={(12),(23),...[12],[23],...}.

i

@ Polynomial reduction writes p in terms of generators gi-

P=202%, P +Zcfg:

@ Polynomial in ideal if and only if Groebner remainder is 0.

Dgp(P)=0 =  ped

@ Monomials irreducible by G(Jp,) form basis. Related [Zhang '12]
basis = {m, such that Ag(z, y(Ma) = ma}.
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P-adic (Integer) Points Near an Irreducible Variety

o Want to find (M), X(9)) “close” to U= V((q1,...,qm)R,):
(2@ X)) = pe: k (30 _ k
gi (A9 X)) = pe; + O(p"), Z)\a/\ =0+ O(ph).

o First, find finite field x € U by intersecting with random plane.

NIy

\ /

o Arbitrarily extend F,, point (A, \) to k digits. Trivially near U.

@ To satisfy momentum conservation, perturb by (pd, pg)

(A MDY = (A + pé, X+ pd).
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Polynomials that Vanish on a Variety

@ Polynomials that vanish on all points of U form an ideal
I(U) = {q €S, where g(x)=0 forall xe U}.
o Consider if A; vanishes to order ky on U,
Ni(x)) = O(ev), where |x—x|< e and xe U.

@ It turns out that A/; still belongs to an ideal!

Zariski-Nagata Theorem

Polynomials vanishing to O(ky) on U belong to /(U){v) — the kyth
“symbolic power” of I(U).

o Computed from primary decomposition of ideal power /(U)v.
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Examples of Symbolic Powers

@ A function vanishing to fourth order at a point on the circle:

(4) ~
R |

L

@ Often the symbolic power coincides with standard power, e.g.
((12),12)g) = ((12), [12]), = ((12)%, (12)[12], 121} ,-

@ Symbolic/standard power may not coincide. E.g. in F[x, y, z]

(xy,xz,yz)® = (x2y? x?22,y22% xyz) # (xy, xz, yz)?
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The p-adic Logarithm

@ Over the p — adic numbers, one can define converging power series.

@ The power series for a logarithm converges for |x|,< 1.
o0 k+1, k
(1) x
log,(1 +x) = Z —
k=1
@ To map to radius of convergence, use Fermat's little theorem.

wPt=1 mod p = WPt —1],< 1

o Logarithm relations then p-adically analytically continue log,.

1 -1
log,,(w) = b1 log(wP™")
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