P-adic Numbers and Partial Fractions Ansätze for Amplitudes

Ben Page
CERN, Theoretical Physics Department

HP2 Newcastle $21^{\text {st }}$ September 2022

In collaboration with Giuseppe De Laurentis
based on [2203.04269]

Large Progress in Multi-Scale NNLO Calculations

- See talks by [Bayu, Giuseppe, Jakub, Rene, Ryan].
- Collection of $2 \rightarrow 3$ calculations facilitated by appropriate techniques.

What About More Scales?

- Many important processes involve multiple massive particles.

- Integrals are becoming elliptic (or worse).
- Rational functions are becoming exponentially more complicated.

This talk: Focus on rational functions.

Analytic Reconstruction as it Stands

- Paradigm-shift insight: use finite-field evaluations to determine \mathcal{C}_{k}.

$$
\left\{\mathcal{C}_{k}\left(p_{1}^{(1)}, \ldots, p_{n}^{(1)}\right), \ldots, \mathcal{C}_{k}\left(p_{1}^{(N)}, \ldots, p_{n}^{(N)}\right)\right\} \xrightarrow{\text { reconstruct }} \mathcal{C}_{k} .
$$

[von Manteuffel, Schabinger '14; Peraro '16],
FiniteFlow [Peraro '19], Firefly [Klappert, Lange, Yannick '19, '20]

- Reconstruction complexity dominated by sampling.
- Evaluation count for (selected) recent two-loop five-point amplitudes:

Process	Three-jet	Three-photon	W + two-jets*
\# Samples	$\sim 10^{5}$	$\sim 10^{5}$	$\sim 10^{6}$.

* After simplification via [Badger et al '20]

Simplifications from Partial Fractions

- Common observation: partial fractions simplifies \mathcal{C}_{k}. Toy example:

$$
\frac{\mathcal{N}}{\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}} \rightarrow \frac{\Delta}{\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3}}+\frac{\Delta_{1}}{\mathcal{D}_{2} \mathcal{D}_{3}}+\frac{\Delta_{2}}{\mathcal{D}_{1} \mathcal{D}_{3}}+\frac{\Delta_{3}}{\mathcal{D}_{1} \mathcal{D}_{2}}+\frac{\Delta_{23}}{\mathcal{D}_{1}}+\frac{\Delta_{13}}{D_{2}}+\frac{\Delta_{12}}{\mathcal{D}_{3}}
$$

- Comes in multiple flavours:

Approach	Analytic Algorithm?	Reconstruction compatible?	Avoids spurious singularities?
Univariate	\checkmark^{*}	\checkmark^{\dagger}	X
Multivariate	\checkmark^{*}	X	X

$*[P a k$ '11; Abreu, Dormans, Febres Cordero, Ita, BP, Sotnikov '19]
implementations: $[$ Boehm, Wittmann, Wu, Xu, Zhang '20; Heller, von Manteuffel '21]
\dagger
$[$ Badger, Hartanto, Zoia '21]

Can we avoid spurious singularities and simplify reconstruction?

The Approach of [De Laurentis, BP '22]

- Work in spinor space* to manifest gauge-theory simplifications.

$$
\mathcal{C}_{k}\left(p_{1}, \ldots, p_{n}\right) \quad \rightarrow \quad \mathcal{C}_{k}(\lambda, \tilde{\lambda})
$$

*Algorithmic toolkit provided.

- Numerically study \mathcal{C}_{k} to understand partial-fractions structure.

$$
\frac{\mathcal{N}}{\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{\text {rest }}}=\frac{\Delta}{\mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{\text {rest }}}+\frac{\Delta_{1}}{\mathcal{D}_{2} \mathcal{D}_{\text {rest }}}+\frac{\Delta_{2}}{\mathcal{D}_{1} \mathcal{D}_{\text {rest }}} ?
$$

See also [De Laurentis, Maître '19].

- Construct Ansatz \mathfrak{a}_{l} from study. Constrain $c_{k l}$ by finite field sampling.

$$
\mathcal{C}_{k}(\lambda, \tilde{\lambda})=\sum_{l=1}^{N} c_{k l} \mathfrak{a}_{l}(\lambda, \tilde{\lambda}), \quad c_{k l} \in \mathbb{Q}
$$

A First Attempt at Numerical Partial Fractions

- Consider tree-level six-point one-quark line amplitude $\mathcal{A}_{q^{+} g^{+} g^{+} \bar{q}^{-} g^{-} g^{-}}$

$$
\mathcal{A}=\frac{\mathcal{N}^{*}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle[45][56][61] \varsigma_{345}} .
$$

${ }^{*} \mathcal{N}$ is a degree 6 polynomial in spinor brackets.

- Can we rewrite without both $\langle 12\rangle$ and $\langle 23\rangle$ poles?

$$
\mathcal{A}=\frac{\Delta_{12}}{\langle 23\rangle\langle 34\rangle[45][56][61] s_{345}}+\frac{\Delta_{23}}{\langle 12\rangle\langle 34\rangle[45][56][61] s_{345}} ?
$$

- [De Laurentis, Maître '19]: Probe \mathcal{A} on points where $\langle 12\rangle,\langle 23\rangle$ are small.

$$
\begin{aligned}
\lambda_{2}^{\alpha} \sim \epsilon & \Rightarrow & \mathcal{A} \sim \epsilon^{-2} \\
\langle 12\rangle \sim\langle 23\rangle \sim\langle 13\rangle \sim \epsilon & \Rightarrow & \mathcal{A} \sim \epsilon^{-1} .
\end{aligned}
$$

Thinking in Terms of Polynomials

- Let's ask an equivalent question:

$$
\mathcal{N}=\Delta_{12}\langle 12\rangle+\Delta_{23}\langle 23\rangle ?
$$

- Mathematically, we can ask if \mathcal{N} belongs to an "ideal":

$$
\mathcal{N} \in\langle\langle 12\rangle,\langle 23\rangle\rangle ?
$$

- Ideal is infinite set of polynomial combinations of generators:
$\langle\langle 12\rangle,\langle 23\rangle\rangle=\left\{a_{1}\langle 12\rangle+a_{2}\langle 23\rangle \quad \mid \quad a_{i}\right.$ are any spinor polynomials $\}$.

Zariski Nagata Theorem

If \mathcal{N} vanishes everywhere where $\langle 12\rangle=\langle 23\rangle=0^{*}$ then $\mathcal{N} \in\langle\langle 12\rangle,\langle 23\rangle\rangle$.

* and $\langle\langle 12\rangle,\langle 23\rangle\rangle$ is radical. ${ }^{* *}$ Higher order vanishing also handled.

Branching of Surfaces Defined by Polynomials

- When we intersect surfaces, we may have multiple branches.

$$
x y^{2}+y^{3}-z^{2}=0
$$

$$
x^{3}+y^{3}-z^{2}=0, \quad x y^{2}+y^{3}-z^{2}=x^{3}+y^{3}-z^{2}=0
$$

- Our double denominator zero surface has two branches:

$$
\langle 12\rangle=\langle 23\rangle=0 \quad \Leftrightarrow \quad\langle 12\rangle=\langle 23\rangle=\langle 13\rangle=0 \quad \text { or } \quad \lambda_{2}^{\alpha}=0 .
$$

- We compute branchings with primary decomposition techniques.
[De Laurentis, BP '22], see also [Zhang '12].

Ansatz Construction Algorithm, Sketched

(1) Construct branches of surfaces where two denominators vanish.

$$
\mathcal{D}_{i}=\mathcal{D}_{j}=0 \quad \longrightarrow \quad \mathcal{V}=\left\{U_{1}, U_{2}, \ldots\right\}
$$

(2) Sample near surface to determine degree of divergence.

$$
U: \quad \mathcal{D}_{i} \sim \mathcal{D}_{j} \sim \epsilon \quad \Rightarrow \quad \mathcal{C}_{k} \sim \frac{1}{\epsilon^{\kappa U}}
$$

(3) Ansatz is basis of intersection of associated ideals of vanishing polynomials. Ansatz constructed using Gröbner basis techniques.

$$
\mathcal{N}_{k} \in \bigcap_{U \in \mathcal{V}} I(U)^{\langle\kappa U\rangle}
$$

How To Perform Numerical Investigations?

- Need to find phase-space points $\left(\lambda^{\epsilon}, \tilde{\lambda}^{\epsilon}\right)$ where \mathcal{D}_{i} are small.

$$
\mathcal{D}_{i}\left(\lambda^{\epsilon}, \tilde{\lambda}^{\epsilon}\right) \sim \mathcal{D}_{j}\left(\lambda^{\epsilon}, \tilde{\lambda}^{\epsilon}\right) \sim \epsilon .
$$

- Conflict with modern techniques: no small elements in a finite field.

$$
|0|_{\mathbb{F}_{p}}=0, \quad \text { and } \quad a \neq 0 \Rightarrow|a|_{\mathbb{F}_{p}}=1
$$

- Approaching with complex numbers would be plagued by instabilities.

Enter the p-adic numbers - a middle ground between finite fields and \mathbb{C}.

Introduction to the p-adic Numbers

- The p-adic numbers roughly correspond to Laurent series in p.

$$
x=\sum_{i=\nu}^{\infty} a_{i} p^{i}=a_{\nu} p^{\nu}+a_{\nu+1} p^{\nu+1}+\cdots, \quad\binom{a_{i} \in[0, p-1],}{a_{\nu} \neq 0 .}
$$

- The p-adic numbers form a field. $x, y \in \mathbb{Q}_{p} \Rightarrow$

$$
x+y \in \mathbb{Q}_{p}, \quad-x \in \mathbb{Q}_{p}, \quad x \times y \in \mathbb{Q}_{p}, \quad \frac{1}{x} \in \mathbb{Q}_{p}(\text { if } x \neq 0)
$$

- The p-adic absolute value allows for small numbers $(p \sim \epsilon)$.

$$
|x|_{p}=p^{-\nu}, \quad \Rightarrow \quad|p|_{p}<|1|_{p}
$$

Computing with p-adic Numbers

- For computing purposes* we truncate to finite order.

$$
x=p^{\nu(x)}(\underbrace{\tilde{x}}_{\text {mantissa }}+\mathcal{O}\left(p^{k}\right)) .
$$

*Try [https://github.com/GDeLaurentis/pyadic] to investigate yourselves.

- Truncation reduces to finite field case for $\nu=0, k=1$.
- Arithmetic $(+-/ *)$ is essentially performed modulo p^{k}, e.g.

$$
x \times y=p^{\nu(x)+\nu(y)}\left(\tilde{x} \tilde{y}+\mathcal{O}\left(p^{k}\right)\right)
$$

- Mantissa inverse computed with extended euclidean algorithm.

Studying the Six-Point Tree

$$
\mathcal{A}=\frac{\mathcal{N}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle[45][56][61] s_{345}} .
$$

- Probe 108 surfaces where pairs of $\langle i j\rangle,[i j], s_{i j k}$ are p-adically small.

$$
\begin{array}{ll}
\text { e.g. } & {[12] \sim[13] \sim[23] \sim \mathcal{O}(p) \quad \Rightarrow \quad \mathcal{A} \sim \mathcal{O}\left(p^{2}\right) .}
\end{array}
$$

- \mathcal{N} vanishes non-trivially on 28 surfaces. Many ideal memberships:

$$
\mathcal{N} \in\langle[12],[13],[23]\rangle^{2} \cap\langle\langle 12\rangle,\langle 34\rangle\rangle \cap\langle\langle 12\rangle,[16]\rangle \cap(25 \text { more }) .
$$

- Imposing that \mathcal{N} is a degree six polynomial gives one term Ansatz:

$$
\left.\left.\left.\mathcal{N}=c_{0}(\langle 12\rangle[21]\langle 45\rangle[54]\langle 4| 2+3 \mid 1]\right\rangle+[16]\langle 6| 1+2 \mid 3\right]\langle 34\rangle s_{123}\right), \quad c_{0} \in \mathbb{Q} .
$$

Proof-of-Concept Remainders for $q \bar{q} \rightarrow \gamma \gamma \gamma$

(Simulated evaluations using analytics from [Abreu, BP, Pascual, Sotnikov '20]).

- Analyze remainder, reconstruct pentagon function coefficients.
- Fitting Ansatz now requires at most $566 \mathbb{F}_{p}$ samples.

Amplitude	$R_{-++}^{(2,0)}$	$R_{-++}^{\left(2, N_{f}\right)}$	$R_{+++}^{(2,0)}$	$R_{+++}^{\left(2, N_{f}\right)}$
Ansatz Dim [Abreu et al '20]	41301	2821	7905	1045
Ansatz Dim [De Laurentis, BP '22]	566	20	18	6

Summary

- Rational functions in amplitudes have poorly understood structure.
- We study that structure with p-adic evaluations in singular limits. This behavior is interpreted in terms of ideals to build Ansätze.
- Approach shows great promise for amplitudes involving more scales.

Backup

Lorentz Invariance

- Coefficients are Lorentz invariant functions of spinor brackets.

$$
\mathcal{C}(\lambda, \tilde{\lambda})=\mathcal{C}(\langle \rangle,[]) .
$$

- Relevant ring is Lorentz invariant subring of S_{n}.

$$
\mathcal{S}_{n}=\mathbb{F}[\langle 12\rangle, \ldots,\langle(n-1) n\rangle,[12], \ldots[(n-1) n]] .
$$

- Variables are brackets, now have "Schouten identities".

$$
\mathcal{J}_{\Lambda_{n}}=\left\langle\sum_{j=1}^{n}\langle i j\rangle[j k],\langle i j\rangle\langle k I\rangle-\langle i k\rangle\langle j l\rangle-\langle i l\rangle\langle k j\rangle,\langle \rangle \leftrightarrow[]\right\rangle .
$$

- Physical spinor bracket functions also form a quotient ring.

$$
\mathcal{R}_{n}=\mathcal{S}_{n} / \mathcal{J}_{\Lambda_{n}}
$$

Bases of Spinor Space and Polynomial Reduction

- Numerators are \mathbb{Q}-linear combinations of spinor monomials.

$$
m_{\alpha}=\prod v_{i}^{\alpha_{i}} \quad \text { where } \quad \vec{v}=\{\langle 12\rangle,\langle 23\rangle, \ldots[12],[23], \ldots\} .
$$

- Polynomial reduction writes p in terms of generators g_{i}.

$$
p=\Delta_{\left\{g_{1}, \ldots, g_{k}\right\}}(p)+\sum_{i=1}^{k} c_{i} g_{i}
$$

- Polynomial in ideal if and only if Groebner remainder is 0 .

$$
\Delta_{\mathcal{G}(J)}(p)=0 \quad \Leftrightarrow \quad p \in J
$$

- Monomials irreducible by $\mathcal{G}\left(\mathcal{J}_{\Lambda_{n}}\right)$ form basis. Related [Zhang '12]

$$
\text { basis }=\left\{m_{\alpha} \text { such that } \Delta_{\mathcal{G}\left(\mathcal{J}_{\Lambda_{n}}\right)}\left(m_{\alpha}\right)=m_{\alpha}\right\}
$$

P-adic (Integer) Points Near an Irreducible Variety

- Want to find $\left(\lambda^{(\epsilon)}, \tilde{\lambda}^{(\epsilon)}\right)$ "close" to $U=V\left(\left\langle q_{1}, \ldots, q_{m}\right\rangle_{R_{n}}\right)$:

$$
q_{i}\left(\lambda^{(\epsilon)}, \tilde{\lambda}^{(\epsilon)}\right)=p c_{i}+\mathcal{O}\left(p^{k}\right), \quad \sum_{i=1}^{n} \lambda_{i \alpha}^{(\epsilon)} \tilde{\lambda}_{i \dot{\alpha}}^{(\epsilon)}=0+\mathcal{O}\left(p^{k}\right)
$$

- First, find finite field $x \in U$ by intersecting with random plane.

- Arbitrarily extend \mathbb{F}_{p} point $(\lambda, \tilde{\lambda})$ to k digits. Trivially near U.
- To satisfy momentum conservation, perturb by ($p \delta, p \tilde{\delta}$).

$$
\left(\lambda^{(\epsilon)}, \tilde{\lambda}^{(\epsilon)}\right)=(\lambda+p \delta, \tilde{\lambda}+p \tilde{\delta})
$$

Polynomials that Vanish on a Variety

- Polynomials that vanish on all points of U form an ideal

$$
I(U)=\left\{q \in S_{n} \quad \text { where } \quad q(x)=0 \quad \text { for all } x \in U\right\}
$$

- Consider if \mathcal{N}_{i} vanishes to order k_{U} on U,

$$
\mathcal{N}_{i}\left(x^{(\epsilon)}\right)=\mathcal{O}\left(\epsilon^{k U}\right), \quad \text { where } \quad\left|x-x^{(\epsilon)}\right| \leq \epsilon \quad \text { and } \quad x \in U .
$$

- It turns out that \mathcal{N}_{i} still belongs to an ideal!

Zariski-Nagata Theorem

Polynomials vanishing to $\mathcal{O}\left(k_{U}\right)$ on U belong to $I(U)^{\left\langle k_{U}\right\rangle}$ - the k_{U} th "symbolic power" of $I(U)$.

- Computed from primary decomposition of ideal power $I(U)^{k_{U}}$.

Examples of Symbolic Powers

- A function vanishing to fourth order at a point on the circle:

$$
\langle x-1\rangle_{\mathbb{F}[x, y] /\left\langle x^{2}+y^{2}-1\right\rangle}^{\langle 4\rangle} \sim
$$

- Often the symbolic power coincides with standard power, e.g.

$$
\langle\langle 12\rangle,[12]\rangle_{R_{5}}^{\langle 2\rangle}=\langle\langle 12\rangle,[12]\rangle_{R_{5}}^{2}=\left\langle\langle 12\rangle^{2},\langle 12\rangle[12],[12]^{2}\right\rangle_{R_{5}} .
$$

- Symbolic/standard power may not coincide. E.g. in $\mathbb{F}[x, y, z]$

$$
\langle x y, x z, y z\rangle^{\langle 2\rangle}=\left\langle x^{2} y^{2}, x^{2} z^{2}, y^{2} z^{2}, x y z\right\rangle \neq\langle x y, x z, y z\rangle^{2}
$$

The p-adic Logarithm

- Over the p-adic numbers, one can define converging power series.
- The power series for a logarithm converges for $|x|_{p}<1$.

$$
\log _{p}(1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}
$$

- To map to radius of convergence, use Fermat's little theorem.

$$
w^{p-1}=1 \quad \bmod \quad p \quad \Rightarrow \quad\left|w^{p-1}-1\right|_{p}<1
$$

- Logarithm relations then p-adically analytically continue $\log _{p}$.

$$
\log _{p}(w)=\frac{1}{p-1} \log \left(w^{p-1}\right)
$$

