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• Differential equations are a powerful approach to computing master integrals. 

• The effectiveness of differential equation methods is especially striking when applied to 

polylogarithmic integral families that (often) admit an 𝜖-factorized (canonical) basis.

• Numerical approaches to solving differential equations can be efficient, precise, and 

may extend to cases beyond multiple polylogarithms or elliptic generalizations thereof.

• In this talk, I will review the iterative series expansion method for solving differential 

equations and present some recent developments.

Introduction

e.g.: [Lee, Smirnov, Smirnov, ’18], [Mandal, Zhao, ’19], [Moriello, ’19], 
[Bonciani, Del Duca, Frellesvig, Henn, MH, Maestri, Moriello, Salvatori, Smirnov, ’19],

[MH ’20], [Abreu, Ita, Moriello, Page, Tschernow, Zeng ’20], [Liu, Ma, ’21]

[Henn, 2013]

[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]
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• We consider a family of scalar Feynman integrals:

and a basis of master integrals Ԧ𝐼. Taking derivatives on kinematic invariants and 

masses, denoted 𝑥𝑗 , and performing IBP reductions, we obtain:

• We aim to solve these differential equations. Since they are of Fuchsian type, they admit 

convergent (generalized) power series solutions

Differential equations

[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]

(See e.g. [1212.4389], [1411.0911]
[1702.04279])
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• In many cases the differential equations can be brought into a canonical form:

• Consider a line:

• Then order-by-order we have:

Canonical differential equations

[Henn, 2013]
See also:

[Lee, 1411.0911]
[Prausa, 1701.00725]

[Gituliar, Magerya, 1701.04269]
[Meyer, 1705.06252]

[Dlapa, Henn, Yan, 2002.02340]

The boundary conditions must 
still be determined in some way.
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Series expansion methods
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• Let us expand the matrix as a power series:

• Using integration-by-parts, we can write:

• Thus, all the integrations can be performed in terms of (generalized) series expansions:

• We may similarly integrate non-canonical systems in terms of series expansions (but we leave 

out the details here.)

Series expansions (canonical basis)
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Series expansion method

• Set up a linear system of differential equations.

• Reduce multi-scale problems to single-scale by integrating along a one-dimensional 

contour.

• Split up the contour into multiple segments such that series expansions converge on 

each segment.

• Find series solutions of the integrals along each segment, and fix boundary conditions 

by matching neighboring segments.

• Cross thresholds by assigning ±𝑖𝛿 to logarithms and algebraic roots in the solutions.
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• This strategy was demonstrated in [F. Moriello, 1907.13234] for the computation 

of planar integrals relevant to H+j production in QCD at NLO

• Simultaneously, in a larger collaboration, we applied these methods to the 

computation of non-planar H+j integrals:

(History) Series expansions

[Bonciani et al, 1907.13156] [Frellesvig et al, 1911.06308]

[R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, MH, L. 
Maestri, F. Moriello, G. Salvatori, V. A. Smirnov]
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Example: H+j integrals (family F)

Elliptic sectors
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Plots for family F The real part of the integrals is in blue, the imaginary part is orange.
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DiffExp
• A general implementation of these methods is implemented in the Mathematica package 

DiffExp, introduced in arXiv:2006.05510, (available at https://gitlab.com/hiddingm/diffexp )

• DiffExp accepts a system of differential equations of the form

for which the matrix entries are combinations of rational and algebraic functions

• It enables one to numerically integrate various multi-scale Feynman integrals at arbitrary points 

in phase-space, and at precisions of tens of digits (or higher)

• Various new packages are also showing up, e.g. SeaSyde and AMFlow, implementing new ideas

and techniques.
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https://gitlab.com/hiddingm/diffexp


• Let us see how we can use DiffExp for evaluating MPLs. Note that:

• For which the boundary conditions are (0,0,1)at 𝑧 = 0.

• After building a wrapper function, we can evaluate any MPL:

Special functions
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• Under normal circumstances, the timing lacks behind GiNaC. 

• But, in edge cases, we can beat GiNaC:

Special functions
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• We can also evaluate generalized hypergeometric functions, such as the Appell

functions. For example, we have with 

• This can be combined into:

Special functions
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• Using the boundary conditions (1,𝑎𝑏2/𝑐, 𝑎𝑏1/𝑐) at 𝑥 = 𝑦 = 0, we may use DiffExp to evaluate 

the Appell F1 for arbitrary (real) x, y.

• For example, 

• Although the timing is not quite competitive with Mathematica’s inbuilt function, this 

approach is straightforward to generalize to other hypergeometric functions.

Special functions
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Boundary conditions
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Boundary conditions
• In order to solve a system of differential equations, we need to provide boundary conditions at 

some appropriate kinematic point or limit.

• Various possibilities exist:

• Analytic results using expansion by regions [See works by Beneke and Smirnov], [Jantzen, Smirnov, Smirnov, 1206.0546]

• Determine boundary conditions by imposing the absence of pseudo-thresholds [See e.g. works by Henn]

• Numerical boundary conditions for a finite basis using pySecDec / FIESTA

• The auxiliary mass flow method and AMFlow [Liu, Ma, 2107.01864]

• The “iterative Feynman trick” method discussed in this talk! [MH, J. Usovitsch, 2206.14790]

• Note that asymptotic limits have to be taken carefully in order to get consistent results in 

dimensional regularization.
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Boundary conditions in asymptotic limits
• Typically, we consider a limit where most of the external scales vanish, such that 

the Feynman integrals simplify as much as possible. 

• However, we can not in general commute the limit and the integration.

• Let’s consider the example of the massive bubble:

• In the limit 𝑚2 = 𝑥, with 𝑥 ↓ 0, we obtain:
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Boundary conditions in asymptotic limits
• Suppose we took the limit inside the integrand. This yields:

• The kinematic singularity has been transformed into a dimensionally regulated pole, yielding 

a different result than before! 

• The situation becomes clearer if we consider the limit in closed form in 𝜖:

• We reproduce either result by taking only the Taylor series part, or also including the term 

proportional to 𝑥−𝜖!
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Boundary conditions
• The problem of finding boundary conditions numerically has been significantly 

advanced by the auxiliary mass flow method.

• The central idea is to deform integrals by a complex mass:

• The original topology is recovered by:

• And solved via:

Auxiliary mass flow:
[Xiao Liu, Yan-Qing Ma, 1801.10523]

[Xiao Liu, Yan-Qing Ma, Wei Tao, 
Peng Zhang, 2009.07987]

AMFlow package: 
[Xiao Liu, Yan-Qing Ma, 2201.11669]
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Direct integration
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“Direct” integration

• Consider a scalar Feynman integral:

• A formula by Feynman tells us that:

• This gives the well-known Feynman parametrization:

Where:
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Direct integration & differential equations

• Alternatively, we may apply the formula recursively to two propagators:

• And we define a collection of integral families:

See also: 
[MH, Moriello, 1712.04441], [Papadopoulos, Wever, 1910.06275]
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Direct integration & differential equations
• Example: 𝑛 = 4 propagators

• The orange terms may be added to maintain the same number of propagators / numerators 

for IBP reductions.

Introduction      Series expansion methods      Boundary conditions     Direct integration     Conclusion   



Direct integration & differential equations
• Upon integration we find

assuming that 𝜈1 and 𝜈2 are positive.

• For subsectors, it holds that:                                                          

• Thus, all integrals in step 𝜅 − 1 are determined from integrals in step 𝜅.

For example:
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Direct integration & differential equations
• Note that by iterating the integration formula, we find:

• The recursion ends at a “generalized tadpole” integral:

• Where ෨𝒰 and ෨𝐹 are rescaled versions 

of the standard Symanzik polynomials:
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Direct integration & differential equations
• The recursion allows us to obtain boundary conditions for all families (𝜅).

1. Set up a system of differential equations:

2. Transport boundary conditions to obtain a piecewise solution between 0 < 𝑥𝑘 < 1

3. Integrate the expansions according to the recursion formula:

• The first boundary condition is just:
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Regularization
• In general, there may be non-integrable singularities at the boundaries 𝑥𝜅 =

0, 1 as 𝜖 → 0!

• (These are exactly the kinds of singularities that are resolved in the sector decomposition 

method.)

• Decompose the integrand as follows near 𝑥 = 𝑥𝜅 = 0

• Then we use the following regularization formula:
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Regularization
• Singularities at the boundaries are also a problem for the limit formulas:

• The resolution is to keep only the Taylor series part

and evaluate the limit of 𝑔0(𝑥, 𝜖) at 𝑥 = 0.
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5-point 2-loop example:
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5-point 2-loop example:

• We combine the propagators in the following way:

• The choices are motivated by first combining propagators which have the 

same internal momentum. This leads to simplifications of the graph.
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5-point 2-loop example:

• Note that:
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5-point 2-loop example:
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5-point 2-loop example:
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• Combining two propagators leads to integral families with less master integrals than 

the deformations from auxiliary mass flow, and in turn faster IBP reductions:

• We found that the IBP reductions were 66 times faster compared to auxiliary mass 

flow for the 5p family. (However, our current implementation is slower on the 

series solution side.)

Computational complexity (IBP):
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Conclusion

• Series expansion methods allow for obtaining high-precision numerical results for 

multiloop Feynman integrals with multiple scales.

• The Mathematica package DiffExp can be used for computing user-provided 

systems of differential equations. 

• The “iterative Feynman trick” technique allows us to integrate one Feynman 

parameter at a time numerically from differential equations.

• The resulting IBP reductions are less complicated than for the initial topology!

• The approach can be fully automated.
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Thank you for listening!
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Backup slides

Introduction      Series expansion methods      Boundary conditions      Direct integration     Conclusion   



• First, we consider the equal-mass case:

• The differential equations are in precanonical form and given by:

• With 

3-loop banana graph
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• We use the method of expansions by regions and asy.m to obtain boundary 

conditions in the limit t = 𝑥 → −∞. They are given by:

• Next, we show how to obtain results for any values of 𝑝2 using DiffExp

3-loop banana graph
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• Load DiffExp:

• Set the configuration options and load the matrices

3-loop banana graph
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• Prepare the boundary conditions along an asymptotic limit:

3-loop banana graph
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• Next, we transport the boundary conditions:

3-loop banana graph
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• Lastly, we plot the result:

3-loop banana graph
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3-loop banana graph
• Computation time typically scales quadratically with expansion order:
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Expansion by regions

• Suppose we are interested in a kinematic limit 

• Then there exists a set of regions {𝑅𝑖},  where                                     is a vector 

of rational numbers.  

• For each region 𝑅𝑖 we rescale the Feynman parametrized integral in the 

following manner:

• The asymptotic limit is then given by summing over the contributions of each 

region, expanding on 𝑥, and integrating.

Kinematic invariants and masses

Each Feynman parameter scales 
according to the given region

In addition, we take our 
desired kinematic limit
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Expansion by regions
• Let’s have another look at the massive bubble. The Feynman parametrization is:

• We feed asy.m the 𝒰 and ℱ polynomials, and obtain the regions:

• Leading to:

• For the purpose of computing boundary conditions, we often only need the leading 

term of the expansion with respect to the line parameter
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Expansion by regions
• At leading order in x, we obtain:

• Although we have a sum of terms, each piece is simpler to integrate than the 

Feynman parametrization of the massive bubble. Performing the integrations 

yields:

• Which agrees with the result we found before!

• Note as well that the boundary conditions are just ratios of gamma functions
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DiffExp
• A general implementation of these methods was made into the Mathematica package DiffExp, 

introduced in arXiv:2006.05510, (available at https://gitlab.com/hiddingm/diffexp )

• DiffExp accepts (any) system of differential equations of the form

for which the matrix entries are combinations of rational and algebraic functions

• It enables one to numerically integrate various multi-scale Feynman integrals at arbitrary points 

in phase-space, and at precisions of tens of digits (or higher)

• The Feynman integrals do not have to be in canonical form and may also be of “elliptic”-type or 

associated with more complicated geometries.
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Series expansions
• Series expansions have been featured various times in the past literature.

• For single-scale problems, see e.g:

• For multi-scale problems, see for example:
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Additional literature
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Additional literature
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