NNLO+PS event generator for photon pair production with MiNNLO_{PS}

Alessandro Gavardi

Università degli Studi di Milano-Bicocca

High Precision for Hard Processes – 21^{st} September 2022

based on AG, C. Oleari, E. Re JHEP 09 (2022) 061

Alessandro Gavardi

NNLO+PS event generator for photon pair production with MiNNLOPS

Università degli Studi di Milano-Bicocca

The Powheg differential cross section for $\gamma \gamma j$ production	The MiNNLO _{PS} differential cross section	

1 Photon pair production

- **2** The Powheg differential cross section for $\gamma\gamma j$ production
- 3 The MiNNLO_{PS} differential cross section
- 4 Phenomenological results

Photon pair production	The Powheg differential cross section for $\gamma\gamma j$ production	The MiNNLO _{PS} differential cross section	
•00			

1 Photon pair production

2 The Powheg differential cross section for $\gamma\gamma j$ production

3 The MiNNLO_{PS} differential cross section

4 Phenomenological results

Photon pair production

We study proton-proton scattering processes with two isolated on-shell photons in the final state at the LHC ($\sqrt{S} = 13 \text{ TeV}$)

$$p p \rightarrow \gamma \gamma + X$$

with the aim of generating events accurate up to NNLO QCD within the $\rm Powheg~Box + MiNNLO_{PS}$ framework and combining them with the $\rm PythiA8$ parton shower

- The MINNLO_{PS} method to resum the transverse momentum of the first QCD emission (Monni, Nason, Re, Wiesemann, Zanderighi JHEP 05 (2020) 143)
- The POWHEG method to resum the transverse momentum of the second QCD emission (Frixione, Nason, Oleari JHEP 11 (2007) 070)
- Amplitudes for configurations with 1 and 2 final-state partons from OPENLOOPS2 (Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller Eur.Phys.J.C 79 (2019) 10, 866)
- Analytic two-loop amplitudes (Anastasiou, Glover, Tejeda-Yeomans Nucl.Phys.B 629 (2002) 255-289)

Phase space cuts and photon isolation criterion

In order to make the **cross section well defined** both from the theoretical and experimental point of view, the analysis has to select the events where the two photons are produced in the hard scattering

Three phase space cuts on the momenta of the two photons

$$p_{{}_{
m T}\gamma_1}>25~{
m GeV}$$
 $p_{{}_{
m T}\gamma_2}>22~{
m GeV}$ $m_{\gamma\gamma}>25~{
m GeV}$

• Frixione isolation algorithm (Frixione Phys.Lett. B 429 (1998) 369-374): any configuration with n_{part} final-state partons is discarded unless, for every photon γ and every angular distance R

$$\sum_{i=1}^{n_{\text{part}}} p_{\text{T}i} \, \theta(R-R_{i\gamma}) < 4 \, \operatorname{GeV}\left(\frac{1-\cos R}{1-\cos 0.4}\right)$$

where

$$R_{i\gamma} = \sqrt{(\eta_i - \eta_\gamma)^2 + (\phi_i - \phi_\gamma)^2}$$

Alessandro Gavardi

The Powheg differential cross section for $\gamma \gamma j$ production	The MiNNLO _{PS} differential cross section	
●00000		

1 Photon pair production

2 The Powheg differential cross section for $\gamma\gamma j$ production

3 The MiNNLO_{PS} differential cross section

4 Phenomenological results

Alessandro Gavardi

The Powheg differential cross section for $\gamma\gamma j$ production

The POWHEG differential cross section for the production of **two photons** accompanied by **one jet** is given by

$$egin{aligned} &d\sigma^{ ext{PWG}}_{\gamma\gamma j} = ar{B}ig(\Phi_{\gamma\gamma j} ig) igg| \Delta(\Phi_{\gamma\gamma j}, k_{ ext{r}}^{ ext{min}} ig) \, d\Phi_{\gamma\gamma j} \ &+ heta(k_{ ext{r}} - k_{ ext{r}}^{ ext{min}} ig) \, rac{R(\Phi_{\gamma\gamma jj})}{B(\Phi_{\gamma\gamma j})} \, \Delta(\Phi_{\gamma\gamma j}, k_{ ext{r}}) \, d\Phi_{\gamma\gamma jj} igg] \end{aligned}$$

where

$$ar{B}(\Phi_{\gamma\gamma j}) = B(\Phi_{\gamma\gamma j}) + V(\Phi_{\gamma\gamma j}) + \int d\Phi_{
m rad}^\prime \, R(\Phi_{\gamma\gamma j},\Phi_{
m rad}^\prime)$$

and the PowheG Sudakov form factor is given by

$$\Delta(\Phi_{\gamma\gamma j},k_{\rm \scriptscriptstyle T}) = \exp\!\left(-\int d\Phi_{\rm \scriptscriptstyle rad}'\,\frac{R(\Phi_{\gamma\gamma j},\Phi_{\rm \scriptscriptstyle rad}')}{B(\Phi_{\gamma\gamma j})}\,\theta(k_{\rm \scriptscriptstyle T}'-k_{\rm \scriptscriptstyle T})\right)$$

Alessandro Gavardi

The Powheg differential cross section for $\gamma \gamma j$ production	The MiNNLO _{PS} differential cross section	
00000		

The damping function

By mean of a **damping function** *F*, the real amplitudes are divided into **two terms**, containing respectively only **QCD** and **QED singularities**

$$R_{ ext{QCD}} = F R$$
 $R_{ ext{QED}} = (1 - F) R$

~

In the region $\alpha_r = [p_1, p_2]$ where the two closest partons are p_1 and p_2

$$F = \frac{\left(\frac{1}{d_{\alpha_r}}\right)^2}{\left(\frac{1}{d_{\alpha_r}}\right)^2 + \sum_{i=1}^{n_{\text{quarks}}} \sum_{j=1}^{n_{\text{photons}}} \left(\frac{1}{d_{[q_i,\gamma_j]}}\right)^2}$$
$$d_{[i,j]} = \begin{cases} p_{\text{T}j}^2 & \text{if } i \text{ is an IS particle} \\ 2\min\left(E_i^2, E_j^2\right)\left(1 - \cos\theta_{ij}\right) & \text{if } i \text{ and } j \text{ are FS particles} \end{cases}$$

The Powheg differential cross section for $\gamma\gamma j$ production

After making use of the damping function

$$egin{aligned} d\sigma_{\gamma\gamma j} &= ar{B}_{_{ extsf{QCD}}}(\Phi_{\gamma\gamma j})iggl[\Delta_{_{ extsf{QCD}}}(\Phi_{\gamma\gamma j},k_{_{ extsf{T}}}^{\min})\,d\Phi_{\gamma\gamma j}\ &+ heta(k_{_{ extsf{T}}}-k_{_{ extsf{T}}}^{\min})\,rac{R_{_{ extsf{QCD}}}(\Phi_{\gamma\gamma jj})}{B(\Phi_{\gamma\gamma j})}\,\Delta_{_{ extsf{QCD}}}(\Phi_{\gamma\gamma j},k_{_{ extsf{T}}})\,d\Phi_{\gamma\gamma jj}iggr] \end{aligned}$$

$$+ R_{ ext{QED}}(\Phi_{\gamma\gamma jj}) d\Phi_{\gamma\gamma jj}$$

where

$$ar{B}_{_{
m QCD}}(\Phi_{\gamma\gamma j}) = B(\Phi_{\gamma\gamma j}) + V(\Phi_{\gamma\gamma j}) + \int d\Phi_{_{
m rad}}' R_{_{
m QCD}}(\Phi_{\gamma\gamma j},\Phi_{_{
m rad}}')$$

and the PowHEG Sudakov form factor is given by

$$\Delta_{\rm \scriptscriptstyle QCD}(\Phi_{\gamma\gamma j},k_{\rm \scriptscriptstyle T}) = \exp\!\left(-\int d\Phi_{\rm \scriptscriptstyle rad}' \, \frac{R_{\rm \scriptscriptstyle QCD}(\Phi_{\gamma\gamma j},\Phi_{\rm \scriptscriptstyle rad}')}{B(\Phi_{\gamma\gamma j})} \, \theta(k_{\rm \scriptscriptstyle T}'-k_{\rm \scriptscriptstyle T})\right)$$

Alessandro Gavardi

The Powheg differential cross section for $\gamma \gamma j$ production	The MiNNLO _{PS} differential cross section	
000000		

The suppression factors

We multiply the two terms of the cross section respectively by the **Born** suppression factor

$$S_{\scriptscriptstyle \mathrm{B}} = \prod_{i=1}^2 \left(rac{ p_{\scriptscriptstyle \mathrm{T}\gamma_i} }{ p_{\scriptscriptstyle \mathrm{T}\gamma_i} + 22 \; \mathrm{GeV} } imes rac{ R_{j_1\gamma_i} }{ R_{j_1\gamma_i} + 0.4 }
ight)$$

and the remnant suppression factor

$$S_{\rm \scriptscriptstyle R} = \prod_{i=1}^2 \left(\frac{p_{{\rm \scriptscriptstyle T}\gamma_i}}{p_{{\rm \scriptscriptstyle T}\gamma_i}+22~{\rm GeV}} \times \frac{R_{j_1\gamma_i}}{R_{j_1\gamma_i}+0.4} \times \frac{R_{j_2\gamma_i}}{R_{j_2\gamma_i}+0.4} \right)$$

The weights of the events generated using the Born and remnant suppression factors are then multiplied by $1/S_{\rm B}$ and $1/S_{\rm R}$ respectively

The Powheg differential cross section for $\gamma\gamma j$ production

After applying the Born suppression factor

$$\begin{split} d\sigma_{\gamma\gamma j}^{_{\mathrm{PWG}}} &= S_{_{\mathrm{B}}}(\Phi_{\gamma\gamma j}) \bar{B}_{_{\mathrm{QCD}}}(\Phi_{\gamma\gamma j}) \bigg[\Delta_{_{\mathrm{QCD}}}(\Phi_{\gamma\gamma j}, k_{_{\mathrm{T}}}^{_{\mathrm{min}}}) \, d\Phi_{\gamma\gamma j} \\ &+ \theta (k_{_{\mathrm{T}}} - k_{_{\mathrm{T}}}^{_{\mathrm{min}}}) \, \frac{R_{_{\mathrm{QCD}}}(\Phi_{\gamma\gamma jj})}{B(\Phi_{\gamma\gamma j})} \, \Delta_{_{\mathrm{QCD}}}(\Phi_{\gamma\gamma j}, k_{_{\mathrm{T}}}) \, d\Phi_{\gamma\gamma jj} \bigg] \\ &+ S_{_{\mathrm{R}}}(\Phi_{\gamma\gamma jj}) R_{_{\mathrm{QED}}}(\Phi_{\gamma\gamma jj}) \, d\Phi_{\gamma\gamma jj} \end{split}$$

NOTA BENE

The two suppression factors only modify the differential cross section **used for generating the events**: the weights given to such events compensate the presence of the suppression factors thus guaranteeing that **the physical distributions are unchanged**

Alessandro Gavardi

The Powheg differential cross section for $\gamma \gamma j$ production	The MiNNLO _{PS} differential cross section	
	•0000	

1 Photon pair production

2 The Powheg differential cross section for $\gamma\gamma j$ production

3 The MiNNLO_{PS} differential cross section

4 Phenomenological results

Alessandro Gavardi

The MiNNLO_{PS} differential cross section

In the MINNLO_{PS} formalism, the $p_{\rm T}$ spectrum of the differential cross section for the $p p \rightarrow \gamma \gamma$ process is written as

$$\frac{d\sigma_{\gamma\gamma}^{_{\rm MINNLO}}}{d\Phi_{\gamma\gamma}\,dp_{_{\rm T}}} = e^{-\tilde{S}}D + R_{f}$$

• The term $e^{-\tilde{S}}D$ provides the $p_{\rm T}$ resummation

• The term R_f contains non singular (i.e. integrable in the $p_T \rightarrow 0$ limit) contributions to the $p p \rightarrow \gamma \gamma j$ process

The exponent of the Sudakov form factor reads

$$\tilde{S} = \int_{\rho_{\mathrm{T}}^2}^{Q^2} \frac{dq^2}{q^2} \left[\sum_{i=1}^3 \left(\frac{\alpha_{\mathrm{s}}(q)}{2\pi} \right)^n A_n \log\left(\frac{Q^2}{q^2} \right) + \sum_{i=1}^2 \left(\frac{\alpha_{\mathrm{s}}(q)}{2\pi} \right)^n \tilde{B}_n \right]$$

The MiNNLO_{PS} differential cross section

The most straightforward choice would be to use

$$R_{f} = \left[\frac{d\sigma_{\gamma\gamma j}^{_{\rm NLO}}}{d\Phi_{\gamma\gamma} \, dp_{\rm T}} - \left[e^{-\tilde{S}}D\right]_{\alpha_{\rm S}^{2}}\right]_{\mu=Q}$$

Instead of doing that, the $\rm MINNLO_{PS}$ prescription is to use

$$R_{f} = e^{-\tilde{S}} \left[\frac{d\sigma_{\gamma\gamma j}^{\rm \scriptscriptstyle NLO}}{d\Phi_{\gamma\gamma} \, dp_{\rm \scriptscriptstyle T}} - \left[e^{-\tilde{S}} D \right]_{\alpha_{\rm \scriptscriptstyle S}^{2}} + \tilde{S}^{(1)} \left(\frac{d\sigma_{\gamma\gamma j}^{\rm \scriptscriptstyle LO}}{d\Phi_{\gamma\gamma} \, dp_{\rm \scriptscriptstyle T}} - D^{(1)} \right) \right]_{\mu = p_{\rm \scriptscriptstyle T}}$$

- In the small-p_T region we suppress the non-singular contributions, thus making the numerical integration more stable
- In the large-p_T region, up to terms beyond the claimed accuracy, we recover

$$R_{f} = \left[\frac{d\sigma_{\gamma\gamma j}^{^{\mathrm{NLO}}}}{d\Phi_{\gamma\gamma} dp_{^{\mathrm{T}}}} - \left[e^{-\tilde{s}}D\right]_{\alpha_{\mathrm{S}}^{2}}\right]_{\mu=Q} + \mathcal{O}\left(\alpha_{^{\mathrm{S}}}^{3}\right)$$

Modifications to the original MiNNLO_{PS} method

We introduce a simplified version of the Sudakov form factor

$$\bar{\mathbf{5}} = \int_{\boldsymbol{\rho}_{\mathrm{T}}^2}^{\boldsymbol{Q}^2} \frac{dq^2}{q^2} \frac{\alpha_{\mathrm{s}}(\boldsymbol{q})}{2\pi} \left(\boldsymbol{A}_1 \log \left(\frac{\boldsymbol{Q}^2}{q^2} \right) + \boldsymbol{B}_1 \right)$$

and set the factorization and renormalization scales in the non-singular contributions to $\mu_{\rm R}=\mu_{\rm F}={\it Q}$

$$R_f = e^{-ar{S}} \left[rac{d\sigma_{\gamma\gamma j}^{_{
m NLO}}}{d\Phi_{\gamma\gamma} \, dp_{_{
m T}}} - \left[e^{-ar{S}} D
ight]_{lpha_{_{
m S}}^2} + ar{S}^{(1)} \left(rac{d\sigma_{\gamma\gamma j}^{_{
m LO}}}{d\Phi_{\gamma\gamma} \, dp_{_{
m T}}} - D^{(1)}
ight)
ight]_{\mu = Q}$$

This limits the presence of spurious $\mathcal{O}(\alpha_s^3)$ terms in the definition of the differential cross section and allows to better reproduce the distributions obtained from a fixed-order calculation

Alessandro Gavardi

Modifications to the original MiNNLO_{PS} method

Comparison between the distributions obtained with the original (no FOatQ) and modified (FOatQ) $MINNLO_{PS}$ methods for the rapidity of the color singlet in Drell-Yan and Higgs-boson production

The Powheg differential cross section for $\gamma \gamma j$ production	The MiNNLO _{PS} differential cross section	Phenomenological resul
		00000

1 Photon pair production

2 The Powheg differential cross section for $\gamma\gamma j$ production

3 The MiNNLO_{PS} differential cross section

4 Phenomenological results

Alessandro Gavardi

Comparison with a fixed-order calculation

Comparison of our results against the fixed-order NNLO calculation implemented in $\rm MATRIX$ (Grazzini, Kallweit, Wiesemann Eur.Phys.J.C 78 (2018) 7, 537)

Alessandro Gavardi

Università degli Studi di Milano-Bicocca

Distributions of the Powheg partonic events

Comparison between the $\rm MINNLO_{PS}$ distributions and those obtained from the $\rm Powheg$ partonic events

Alessandro Gavardi

Università degli Studi di Milano-Bicocca

Distributions of the events after the shower

Comparison between the distributions obtained from the POWHEG events before and after passing them through the PYTHIA8 parton shower

Alessandro Gavardi

Università degli Studi di Milano-Bicocca

Comparison with the ATLAS data

Alessandro Gavardi

The Powheg differential cross section for $\gamma\gamma j$ production	The MiNNLO _{PS} differential cross section	Phenomenological results
		00000

Thanks for your attention!