Workshop on High Precision for Hard Processes at the LHC (HP2 2022) Newcastle - 21st September 2022

WZ production at NNLO QCD and NLO EW matched to parton showers with MiNNLO_{PS}

Silvia Zanoli Max-Planck-Institut für Physik

[2208.12660] in collaboration with J. Lindert, D. Lombardi, M. Wiesemann and G. Zanderighi

- No clear hints of new physics at the LHC so far —> precision physics is a promising path for the observation of effects beyond the Standard Model.
- NNLO computations are crucial for an accurate description of data.

[ATLAS EPJC 79 (2019) 535]

- No clear hints of new physics at the LHC so far —> precision physics is a promising path for the observation of effects beyond the Standard Model.
- NNLO computations are crucial for an accurate description of data.
- The matching of a fixed-order calculation with parton showers is needed for a realistic description of an event at a collider.

- No clear hints of new physics at the LHC so far —> precision physics is a promising path for the observation of effects beyond the Standard Model.
- NNLO computations are crucial for an accurate description of data.
- The matching of a fixed-order calculation with parton showers is needed for a realistic description of an event at a collider.

High Precision for Hard Processes at the LHC - Newcastle

- No clear hints of new physics at the LHC so far —> precision physics is a promising path for the observation of effects beyond the Standard Model.
- NNLO computations are crucial for an accurate description of data.
- The matching of a fixed-order calculation with parton showers is needed for a realistic description of an event at a collider.

WZ PRODUCTION : why?

- The production of a pair of vector bosons is highly relevant, as it provides access to trilinear gauge couplings and to the gauge symmetry structure of the EW sector.
- WZ production is particularly interesting both for the large cross section and the clean experimental signature (we consider the purely leptonic decay with one neutrino).

Introduction: WZ production

CURRENT STATE OF THE ART:

- NLO EW calculation
- **MNLO** QCD calculation NLO QCD + NLO EW matched to Parton Showers NNLO QCD + NLO EW combination [Grazzini, Kallweit, Lindert, Pozzorini, Wiesemann (2020)]

- [Bierweiler, Kasprzik, Kühn (2013), Baglio, Ninh, Weber (2013)] [Biedermann, Denner, Hofer (2017)]
 - [Grazzini, Kallweit, Rathlev, Wiesemann (2016), (2017)]
 - [Chiesa, Oleari, Re (2020)]

Introduction: WZ production

CURRENT STATE OF THE ART:

MNLO QCD calculation [Grazzini, Kallweit, Rathlev, Wiesemann (2016), (2017)] NLO QCD + NLO EW matched to Parton Showers NNLO QCD + NLO EW combination [Grazzini, Kallweit, Lindert, Pozzorini, Wiesemann (2020)]

THIS TALK:

NNLO+PS (QCD) calculation using MiNNLO_{PS} Combination of NNLO+PS (QCD) with NLO+PS (EW) computations

[Bierweiler, Kasprzik, Kühn (2013), Baglio, Ninh, Weber (2013)] [Biedermann, Denner, Hofer (2017)]

[Chiesa, Oleari, Re (2020)]

P(

$$d\sigma^{POW} = \bar{B}(\Phi_n) d\Phi_n \left\{ \Delta(\Phi_n, \Lambda) + \Delta(\Phi_n, p_T) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r \right\}$$

$$+ \int d\Phi_r \left[R(\Phi_{n+1}) - C(\Phi_{n+1}) \right] \qquad \Delta(\Phi_n, p_T) = exp \left\{ -\int d\Phi'_r \frac{R(\Phi_n, \Phi'_r)}{B(\Phi_n)} \Theta(p'_T - p_T) \right\}$$
[Nason (2)]

$$d\sigma^{POW} = \bar{B}(\Phi_n) d\Phi_n \left\{ \Delta(\Phi_n, \Lambda) + \Delta(\Phi_n, p_T) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r \right\}$$

$$\bar{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_r \left[R(\Phi_{n+1}) - C(\Phi_{n+1}) \right] \qquad \Delta(\Phi_n, p_T) = exp \left\{ -\int d\Phi_r' \frac{R(\Phi_n, \Phi_r')}{B(\Phi_n)} \Theta(p_T' - p_T) \right\}$$

$$\Delta(\Phi_n, p_T) = exp \left\{ -\int d\Phi_r' \frac{R(\Phi_n, \Phi_r')}{B(\Phi_n)} \Theta(p_T' - p_T) \right\}$$

MiNLO':

$$\bar{B}(\Phi_n) = e^{-\tilde{S}(p_T)} \left(B(\Phi_n)(1 + \alpha_s(p_T)[\tilde{S}]^{(1)}) + V(\Phi_n) + \int d\Phi_r \left[R(\Phi_{n+1}) - C(\Phi_{n+1}) \right] \right)$$

$$\tilde{S}(p_T) = \int_{p_T^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + B(\alpha_s(q^2)) \right] \qquad A = \sum_{k=1}^2 \left(\frac{\alpha_s}{2\pi} \right)^k A^{(k)}, \quad B = \sum_{k=1}^2 \left(\frac{\alpha_s}{2\pi} \right)^k B^{(k)}$$
inite result for F+J production when
he jet is unresolved.
rescription for the choice of the scales FJ@MiNLO' NLO NLO LO

- Finite the **je**
- Presc lacksquare μ_R and $\mu_F (\mu_R = \mu_F \sim p_T)$.

[Hamilton, Nason, Oleari, Zanderighi (2012)]

MiNNLO_{PS}:

F (inclusiv

NNLO FJ@MiNNLOPS

High Precision for Hard Processes at the LHC - Newcastle

[Monni, Nason, Re, Wiesemann, Zanderighi (2019)]

ve)	F+J (inclusive)	F+JJ (inclusive)
	NLO	LO

80

MiNNLO_{PS}:

F (inclusiv

NNLO FJ@MiNNLOPS

$$\frac{d\sigma}{d\Phi_{F}dp_{T}} = \frac{d}{dp_{T}} \left\{ e^{-\tilde{S}(p_{T})} \mathscr{L}(p_{T}) \right\} + R_{f}(p_{T}) = e^{-\tilde{S}(p_{T})} \left[D(p_{T}) + \frac{R_{f}(p_{T})}{e^{-\tilde{S}(p_{T})}} \right] = \dots = \int \frac{d\sigma_{FJ}}{d\Phi_{FJ}dp_{T}} \left[\tilde{S}^{(1)} \right] \left[\tilde{S}^{(1)} \right] + \left(\frac{\alpha_{s}(p_{T})}{2\pi} \right)^{2} \left[\frac{d\sigma_{FJ}}{d\Phi_{FJ}dp_{T}} \right]^{(2)} + D(p_{T}) - D(p_{T})^{(1)} - D(p_{T})^{(2)} + D(p_{T})^{(1)} - D(p_$$

[Monni, Nason, Re, Wiesemann, Zanderighi (2019)]

ve)	F+J (inclusive)	F+JJ (inclusive)
	NLO	LO

MiNNLO_{PS}:

F (inclusiv

NNLO

FJ@MiNNLOPS

$$\begin{aligned} \frac{d\sigma}{d\Phi_{F}dp_{T}} &= \frac{d}{dp_{T}} \left\{ e^{-\tilde{S}(p_{T})} \mathscr{L}(p_{T}) \right\} + R_{f}(p_{T}) = e^{-\tilde{S}(p_{T})} \left[D(p_{T}) + \frac{R_{f}(p_{T})}{e^{-\tilde{S}(p_{T})}} \right] = \dots = \\ &\int \frac{dp_{T}}{d\Phi_{F} dp_{T}} \frac{d\sigma_{FJ}}{d\Phi_{FJ} dp_{T}} \left[\frac{d\sigma_{FJ}}{d\Phi_{FJ} dp_{T}} \right]^{(1)} \left(1 + \frac{\alpha_{s}(p_{T})}{2\pi} [\tilde{S}]^{(1)} \right) + \left(\frac{\alpha_{s}(p_{T})}{2\pi} \right)^{2} \left[\frac{d\sigma_{FJ}}{d\Phi_{FJ} dp_{T}} \right]^{(2)} + D(p_{T}) - D(p_{T})^{(1)} - D(p_{T})^{(2)} + D(p_{T})^{(2)} + D(p_{T})^{(1)} - D(p_{T})^{(2)} + D(p_{T})$$

MiNLO'

High Precision for Hard Processes at the LHC - Newcastle

[Monni, Nason, Re, Wiesemann, Zanderighi (2019)]

ve)	F+J (inclusive)	F+JJ (inclusive)
	NLO	LO

MINNLO_{PS}

WZ production

 $pp \rightarrow l$

NNLO+PS (QCD) calculation using MiNNLO_{PS} ($\mathcal{O}(\alpha^4 \alpha_s^2)$)

- No loop-induced gluon-fusion contributions.
- Important NNLO corrections (10-15%), due to radiation zero effect at LO (= vanishing of the leading helicity amplitudes in some kinematic regions).

$${}^{'\pm}\nu_{l'}l^+l^- + X$$

WZ production

 $pp \rightarrow l$

NNLO+PS (QCD) calculation using MiNNLO_{PS} ($\mathcal{O}(\alpha^4 \alpha_s^2)$)

- No loop-induced gluon-fusion contributions.
- Important NNLO corrections (10-15%), due to radiation zero effect at LO (= vanishing of the leading helicity amplitudes in some kinematic regions).

NLO+PS (EW) calculation using POWHEG ($\mathcal{O}(\alpha^5)$)

- Real radiation corresponds to photon radiation.
- No photon-photon contribution at this order.
- Photon-quark contributions are not considered (formally, they are $\mathcal{O}(\alpha^6 L)$

$${}^{'\pm}\nu_{l'}l^+l^- + X$$

NNLO_{QCD}+PS and NLO_{EW}+PS combinations

ADDITIVE vs MULTIPLICATIVE SCHEMES

NNLO_{QCD} + NLO_{EW} – LO $\mathcal{O}(\alpha^4), \mathcal{O}(\alpha^4 \alpha_s), \mathcal{O}(\alpha^4 \alpha_s^2), \mathcal{O}(\alpha^5)$

- topologies, with a soft second vector boson).
- The average of the two schemes can give a pragmatic estimate in these regions.

$NNLO_{QCD} \times NLO_{EW}/LO$ $\mathcal{O}(\alpha^4), \mathcal{O}(\alpha^4 \alpha_s), \mathcal{O}(\alpha^4 \alpha_s^2), \mathcal{O}(\alpha^5), \mathcal{O}(\alpha^5 \alpha_s), \mathcal{O}(\alpha^5 \alpha_s^2)$

• The multiplicative scheme is preferable in the high energy limit, where EW Sudakov-logs are dominant and dominant QCD effects arise at scales below the hard scale. —> QCD factorizes.

• This assumption is violated when giant K-factors are present (= hard vector-boson+jet

NNLO_{QCD}+PS and NLO_{EW}+PS combinations

QCD vs QED SHOWERS

1. The **formal accuracy** of the calculation **must not be spoilt**. 2. We must **avoid double counting**.

We let the QCD and/or QED showers radiate in whole the phase space and then we apply the following veto procedure:

- QED shower is unconstrained.
- NLO_{EW}+PS :
- QCD shower is unconstrained.

NNLO_{OCD}+PS: • QCD shower is restricted by the transverse momentum of the hardest QCD emission generated at Les Houches level (as commonly done in POWHEG).

> • QED shower is restricted by the transverse momentum of the hardest QED emission generated at Les Houches level. We use the multiple-radiation scheme in POWHEG, which allows us to define three different starting scales for the shower in the three different singular regions (ISR, FSR form W decay, FSR from Z decay).

> > Silvia Zanoli

14

NNLO_{QCD}+PS and NLO_{EW}+PS combinations

- 1. $NNLO_{QCD}^{(QCD, QED)_{PS}} + NLO_{EW}^{(QCD, QED)_{PS}} LO^{(QCD, QED)_{PS}} = NNLO_{QCD+EW}^{(QCD, QED)_{PS}}$ **ADDITIVE:**
 - 2. $NNLO_{OCD}^{(QCD, QED)_{PS}} + NLO_{EW}^{(QED)_{PS}} LO^{(QED)_{PS}}$
 - 3. $NNLO_{OCD}^{(QCD)_{PS}} + NLO_{EW}^{(QCD, QED)_{PS}} LO^{(QCD)_{PS}}$

MULTIPLICATIVE:

- 5. $NNLO_{QCD}^{(QCD, QED)_{PS}} \times NLO_{EW}^{(QED)_{PS}}/LO^{(QED)_{PS}}$
- 6. $NLO_{EW}^{(QCD, QED)_{PS}} \times NNLO_{QCD}^{(QCD)_{PS}}/LO^{(QCD)_{PS}}$

7. $NNLO_{QCD}^{(QCD)_{PS}} \times NLO_{EW}^{f.o.}/LO^{f.o.}$

Silvia Zanoli

- 4. $NNLO_{QCD}^{(QCD, QED)_{PS}} \times NLO_{EW}^{(QCD, QED)_{PS}}/LO^{(QCD, QED)_{PS}} = NNLO_{OCD \times EW}^{(QCD, QED)_{PS}}$

X = QCD,EW calculation Y = QCD,QED showers (PY8)

15

[2208.12660]

Rapidity of the Z boson - inclusive setup

High Precision for Hard Processes at the LHC - Newcastle

LEGEND: NNLO^(QCD,QED)_{PS} QCD NNLO^(QCD,QED)_{PS} QCD+QED NNLO^(QCD,QED)_{PS} QCD×QED NNLO^(QCD)_{PS} QCD $NNLO_{QCD}^{(QCD)_{PS}} \times$

[2208.12660]

Rapidity of the Z boson - inclusive setup

- Almost no shape effect
- EW corrections are 2-3%
- Additive and multiplicative schemes are almost identical
- Fixed-order K-factor is in excellent agreement —> effects of secondary photon emission are negligible for this observable

LEGEND: NNLO^(QCD,QED)_{PS} QCD NNLO^(QCD,QED)_{PS} QCD+QED NNLO^(QCD,QED)_{PS} QCD×QED NNLO^(QCD)_{PS} QCD $NNLO_{QCD}^{(QCD)_{PS}} \times K_{EW}^{f.o.}$

LEGEND: NNLO^(QCD,QED)_{PS} QCD NNLO^(QCD,QED)_{PS} QCD+QED NNLO^(QCD,QED)_{PS} QCD×QED NNLO^(QCD)_{PS} QCD $NNLO_{QCD}^{(QCD)_{PS}} \times K_{EW}^{f.o.}$

LEGEND: NNLO^(QCD,QED)_{PS} QCD NNLO^(QCD,QED)_{PS} QCD+QED NNLO^(QCD,QED)_{PS} QCD×QED NNLO^(QCD)_{PS} QCD $NNLO_{QCD}^{(QCD)_{PS}} \times K_{EW}^{f.o.}$

LEGEND: $NNLO_{QCD}^{(QCD,QED)_{PS}}$ $NNLO_{QCD+QED}^{(QCD,QED)_{PS}}$ $NNLO_{QCD\timesQED}^{(QCD,QED)_{PS}}$ $NNLO_{QCD}^{(QCD)_{PS}}$ $NNLO_{QCD}^{(QCD)_{PS}} \times K_{EW}^{f.o.}$

[2208.12660]

High Precision for Hard Processes at the LHC - Newcastle

MAX PLANCK INSTITUTE FOR PHYSICS

High Precision for Hard Processes at the LHC - Newcastle

MAX PLANCK INSTITUTE FOR PHYSICS

[2208.12660]

High Precision for Hard Processes at the LHC - Newcastle

MAX PLANCK INSTITUTE FOR PHYSICS

[2208.12660]

In the inclusive case, Sudakov-logs are suppressed because not all the Mandelstam invariants are large in the very forward regime. These regions are removed when applying fiducial cuts.

High Precision for Hard Processes at the LHC - Newcastle

MAX PLANCK INSTITUTE FOR PHYSICS

Comparison against data

[2208.12660]

High Precision for Hard Processes at the LHC - Newcastle

ATLAS data from Eur. Phys. J. C 79 (2019)

Conclusions and Outlooks

- **NNLO+PS** predictions are strongly needed for a realistic description of LHC events.
- The **MiNNLO_{PS} method** is a powerful tool for reaching this accuracy.
- In the context of precision physics, the inclusion of NLO EW corrections on top of the NNLO calculations is particularly important.
- I showed and discuss results for WZ production at NNLO (QCD) and NLO (EW) accuracy matched to parton shower for 13TeV LHC collisions.
- The next step is the implementation of the combined generation of NNLO QCD and NLO EW accurate events, rather than an a posteriori recombination.

Thank you for your attention!

Conclusions and Outlooks

High Precision for Hard Processes at the LHC - Newcastle

Validation QCD

[2208.12660]

Validation EW

High Precision for Hard Processes at the LHC - Newcastle

[2208.12660]

Comparison against data

[2208.12660]

High Precision for Hard Processes at the LHC - Newcastle

ATLAS data from Eur. Phys. J. C 79 (2019)

Comparison against data

[2208.12660]

High Precision for Hard Processes at the LHC - Newcastle

ATLAS data from Eur. Phys. J. C 79 (2019)

