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Hadronic Higgs decays (at future lepton colliders)



Hadronic Higgs decays
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= "“Redo” and extend work for hadronic Higgs decays with focus on global event shapes


https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG
https://inspirehep.net/literature/302861
https://inspirehep.net/literature/769010
https://inspirehep.net/literature/858620

Why (global) event shapes?

@ can be regarded as a class of “good observables”

o directly access geometrical event properties (non-identified particles)

@ can be calculated reliably order-by-order in perturbative QCD

Studied extensively at LEP in Z/~v* decays for QCD precision measurements
e.g. Ca,Cp determination [Kluth hep-ex/0309070]

e.g. ag extraction [Dissertori et al. 0906.3436]
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Classical set of 3-jet observables:

T, C, Br, By, My, y2
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Additional set of 4-jet observables:
Tinor: D, A, Buin, ML, y34


https://inspirehep.net/literature/823560
https://inspirehep.net/literature/628943

Event shapes in hadronic Higgs decays



Hadronic Higgs decays

Hadronic Higgs decays assumed to proceed in two categories*:

o

o Decays to b-quark pair mediated by Hbb

H------ H----- Yukawa coupling: H — bb

o Decays to two gluons mediated by Hgg

effective coupling: H — gg

b g
H — bb type H — gg type
Event shapes vanish in 2-jet limit. LO H = bbg H - gag tree-level
LO contribution from H — 3j decays. H—gaq tree-level
At NLO in QCD, include NLO ~ H - bbg H— ggg one-loop
virtual contributions from quark- and gluon loops; H — gqa one-loop
real contributions from gluon emissions and gluon H — bbgg H — gggg tree-level
splittings. H — bbqgq H — ggqq tree-level
H — bbbb H — qad'q tree-level

Can event shapes help to discriminate between Higgs decay channels?

*Decay H — cC in principle trivial to include, but omitted here.



Computational setup

Implemented in (publicly-available’) parton-level NNLO MC EERAD3
[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 1402.4140].

@ On-shell Higgs decays with /s = My = 125.0 GeV
o vanishing kinematical b-mass

o large t-mass (HEFT)
— straightforward extension to NNLO

Calculate observable-weighted distributions of the form

Br"H*)X(sv /J'R) dr(S, MR, O)
Mo x(s, ur) do

with branching ratios defined as

rnH*)X(S7 NR)

Brf)_x(s, ir) =
- T (5 hR) + T g (5. 1)

T Extension to Higgs decays not public yet.


https://inspirehep.net/literature/1281692

Results — total jet broadening
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Results — heavy-hemisphere mass

MZ_ 1
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s ie{1,2} | EZ;

p — 0: 2-jet event
p< % for 3-particle events

Almost constant ratio in multi-jet limit.
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Conclusions

3-jet event shapes can be classified into two classes

Hgg/HbE ratio has plateau in multijet limit vs. maximum in transition region
o first class (“bad discriminators”): C, Bw, Mg
e second class (“good discriminators”): T, Br, yg

... but should be enhanced by well-placed cuts!

Generally:
@ event-shape distributions peaked more towards multi-jet region for H — gg
@ larger corrections in H — gg channel (unsurprisingly!)
@ sizeable renormalisation-scale uncertainties

= inclusion of higher-order effects mandatory (stay tuned!)



Sneak peek: four-jet event shapes
[Gehrmann-De Ridder, Geissbiihler, CTP, Williams in preparation]

Similar size of NLO corrections for four-jet event shapes.
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... but difficult to model peak structure at NLO, so logarithmic and non-perturbative corrections
likely to be more prominent than in three-jet case


https://inspirehep.net/authors/1784008

Towards fully-differential NNLO+PS matching



Towards fully-differential* NNLO+PS matching

* fully-differential = no auxiliary scales



Status of (N)NLO+PS matching

NLO+PS: two general approaches
@ MCQNLO [Frixione, Webber hep-ph/0204244]
modified subtraction with shower kernels
@ POWHEG [Nason hep-ph/0409146]
Born-local NLO weight + MEC in shower

@ refinements KRKINLO [Jadach et al. 1503.06849]
and MAcCNLOPs [Nason, Salam 2111.03553]

+ shower matches fixed-order singularity structure

NNLO+PS: first approaches, for some processes
@ UN2LOPS [Hoche et al. 1405.3607]
inclusive NNLO + unitary merging
o NNLOPS/MiNNLOpg
[Hamilton et al. 1212.4504] / [Monni et al. 1908.06987]

regulated NLO PowHEG 1j + NNLO

@ GENEVA [Alioli et al. 1211.7049]
NNLO matched resummation + truncated shower

— shower does not match fixed-order singularity structure


https://inspirehep.net/literature/585687
https://inspirehep.net/literature/659055
https://inspirehep.net/literature/1355366
https://inspirehep.net/literature/1961568
https://inspirehep.net/literature/1296100
https://inspirehep.net/literature/1208117
https://inspirehep.net/literature/1750311
https://inspirehep.net/literature/1204791

Towards NNLO-+PS [Campbell, Hoche, Li, CTP, Skands 2108.07133]
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Idea: “POwWHEG at NNLO" (focus here on colour singlet — 2j)

(OXNEo ps = / dod, B(¢2)‘ knnro(®2) ‘ Sa(to, O)
local K-factor shower operator
Need:
O (Born-local) NNLO K-factors
@ shower filling ordered and unordered regions of 1- and 2-emission phase space
@ tree-level MECs in ordered and unordered shower paths
@ NLO MEGCs in the first emission

...implemented in VINCIA sector antenna shower in PYTHIA 8.3 [Brooks, CTP, Skands 2003.00702]


https://inspirehep.net/literature/1905669
https://inspirehep.net/literature/1783225

NNLO-PS with sector showers

Key aspect
up to matched order, include process-specific NLO corrections into shower evolution:

@ correct first branching to exclusive (< t’) NLO rate:

to
AN (to, ') = eXp{ —/ dd1 Aoy (Dr1)whSS (¢27¢+1)}
t/

@ correct second branching to LO ME:

’

t
AMOL (1) = exp{ —/ do’,, A3._>4(¢/+1)W§‘:_O)4(¢3,¢/+1)}
t

© add direct 2 — 4 branching and correct it to LO ME:

to
ALO, (b, t) = exp{ —/ A7, Aoa(2)wh Sy (02, d>+2)}
t

= entirely based on MECs and sectorisation
= by construction, expansion of extended shower matches NNLO singularity structure

But shower kernels do not define NNLO subtraction terms* (!)

*This would be required in an “Mc@NNLO" scheme, but difficult to realise in antenna showers.



Interleaved single and double branchings

A priori, direct 2 — 4 and iterated 2 — 3 branchings overlap in ordered region.

In sector showers, iterated 2 — 3 branchings are always strictly ordered.

oA
4 Divide double-emission phase space into
Qaf--- strongly-ordered and unordered region:
[Li, Skands 1611.00013]
Q _ > <
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https://inspirehep.net/literature/1495435

Real and double-real corrections

Direct 2 — 4 shower component fills unordered region of phase space pi 4> pi 3

ete” — 45 @ /s = 240 GeV

o Emissions ete” = 4j @ /5 = 240 GeV o Splittings
Vincia default
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Sectorisation enforces strict cutoff at p2 , = p? , in iterated 2 — 3 shower. (No recoil effects!)



Real-virtual corrections

Real-virtual correction factor

NLO _
wpks = wiQs (1 + W2»—>3)

studied analytically in detail for Z — qq in [Hartgring, Laenen, Skands 1303.4974]:
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= now: generalisation & (semi-)automation in VINCIA in form of NLO MECs
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https://inspirehep.net/literature/1224557

NNLO—+PS matching in hadronic Higgs decays

NNLO accuracy in H — 2j implies NLO correction in first
emission and LO correction in second emission.
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VINCIANNLO vs other NNLO+4-PS schemes

A (rough) comparison between VINCIA's NNLO+PS matching and...
UN2LOPS: (not applied to hadronic Higgs decays)
v/ amend inclusive NNLO calculation by fully-differential NLO 1; calculation

X unitary NLO shower evolution vs unitary NLO merging
X PowHEG 1j vs UNLOPS 1j

NNLOPS/MiINNLOps: [Bizoh et al. 1912.09982]
v regulate POWHEG 1j calculation in 0j limit
X regulation via shower Sudakovs vs analytic Sudakovs

X exponentiation of POWHEG 1j calculation

GENEVA: [Alioli et al. 2009.13533]

X shower resummation vs analytic resummation


https://inspirehep.net/literature/1772134
https://inspirehep.net/literature/1820097

Generalisations and limitations

The method is in principle general.

Addition of colour singlets trivial, due to automation on the level of process classes.
E.g., if ete™ — 2j implemented, also ete™ — 2j + X with any set of colour singlets X.

Addition of final-state partons straightforward. In practice, some pitfalls:

o Born-local NNLO weight not available in general
@ Quark-gluon double-branching antenna functions develop spurious singularities, but

> No exact knowledge of double-branching kernels required
> Sector-antenna functions can effectively be replaced by matrix-element ratios

For hadronic initial states, the technique remains structurally the same. However:
@ Interplay of NLO parton evolution and NLO shower evolution needs clarification

@ Choice of shower starting scale potentially problematic
(“power showers” needed to fill full phase space?)



What about higher orders?

H — bb calculated fully-differentially at N3LO [Mondini, Schiavi, Williams 1904.08960], so what
about N3LO+PS?

TOMTE (somewhat similar in spirit to UN2LOPS)  [Prestel, 2106.03206] & [Bertone, Prestel, 2202.01082]
Starts from NNLO+PS matched cross section for X + jet ~ UN2LOPS
Allow jet to become unresolved, regulated by shower Sudakov
Remove unwanted NNLO terms and subtract projected 1-jet bin from 0-jet bin
Include N3LO jet-vetoed zero-jet cross section
Some challenges:
Large amount of book-keeping < complex code & computational bottlenecks?
Many counter-events, counter-counter-events, etc = many weight sign flips.
= Huge computing resources for relatively slow convergence?

N3LO MECs? (hypothetical extension of VINCIA NNLO MECs)
Method in principle generalises.

Add direct-triple (2 — 5) branchings to cover all of phase space: in principle simple.
Challenging: need local NNLO subtractions for Born + 1.

(Adapted from P. Skands)


https://inspirehep.net/literature/1730411

Backup



SeCtor showers [Brooks, CTP, Skands 2003.00702; Lopez-Villarejo, Skands 1109.3608]

Idea: combine antenna shower with deterministic jet-clustering algorithm

@ let shower only generate emissions that would be clustered by a (3 — 2) jet algorithm
(~ ARCLUS [Lénnblad Z.Phys.C 58 (1993)])
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= softest gluon always regarded as the emitted one

= only one (most singular) splitting kernel contributes per phase space point

Since PyTHIA 8.304: full-fledged* implementation of sector showers in VINCIA

*including FSR, ISR, resonance-decay showers


https://inspirehep.net/literature/1783225
https://inspirehep.net/literature/927670
https://inspirehep.net/literature/342082

Double-branching kinematics

Iterate 2 — 3 kinematics (~ tripole map):

iijk j=i !
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Can be used for shower kinematics and as forward-branching phase-space generator (FBPS).

For shower kinematics:
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Tree-level MECs

Separation of double-real integral defines tree-level MECs:

t to fo
4o, RR(®2, ®,2) _ 4>, RR(®2, ®,2) n 4o, RR(®2, P,2)
) B(®2) - TR TRy - TR TRy

to
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t
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Iterated tree-level MECs in ordered region:
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NLO MECs

Rewrite NLO MEC as product of LO MEC and “Born”-local K-factor 1+ wV
("POWHEG in the exponent”):

WD (P2, 1) = wyQs(2, P41) X (L + ol 5(P2, 941))
Local correction given by three terms:

RV(d,, d INLO (¢, &
Wy 5(P2, P 41) = (®2.941) (®2.941)
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0

t RR
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2 to

ag H

+ | — 5=logho ( ;’2 > +/ A,y A3 (V1) w5 03(P2, Py)
2w Kop .

o First and term from NLO shower evolution, second from NNLO matching

o Calculation can be (semi-)automated, given a suitable NLO subtraction scheme



