Higher-order QCD corrections and matching at future lepton colliders

Christian T Preuss (ETH Zürich)

High Precision for Hard Processes Newcastle upon Tyne 21/09/2022

ETH zürich

Outline

1) Hadronic Higgs decays (at future lepton colliders)

2) Event shapes in hadronic Higgs decays [Gehrmann-De Ridder, Coloretti, CTP 2202.07333] [Gehrmann-De Ridder, Geissbühler, CTP, Williams 22??.????]

3) Towards fully-differential NNLO+PS matching [Campbell, Höche, Li, CTP, Skands 2108.07133] + WIP

Hadronic Higgs decays (at future lepton colliders)

Hadronic Higgs decays

Clean Higgs production will be one of the **striking features** at a future lepton collider.

- sub-dominant Higgs couplings and decay channels will remain elusive at the LHC (e.g., $H \rightarrow gg$ decay)
- hadronic Higgs decays offer great potential for **precision QCD studies** (quark vs. gluon jets, C_F vs. C_A , ...)

[LHC Higgs WG]

 \Rightarrow "Redo" and extend work for hadronic Higgs decays with focus on global event shapes

Why (global) event shapes?

- can be regarded as a class of "good observables"
- directly access geometrical event properties (non-identified particles)
- can be calculated reliably order-by-order in perturbative QCD

Studied extensively at LEP in Z/γ^* decays for QCD precision measurements

e.g. α_s extraction [Dissertori et al. 0906.3436]

e.g. C_A, C_F determination [Kluth hep-ex/0309070]

Classical set of 3-jet observables: T, C, $B_{\rm T}$, $B_{\rm W}$, $M_{\rm H}$, y_{23}

Additional set of 4-jet observables: T_{Minor} , D, A, B_{Min} , M_{L} , y_{34}

Event shapes in hadronic Higgs decays

Hadronic Higgs decays

Hadronic Higgs decays assumed to proceed in two categories*:

- Decays to *b*-quark pair mediated by $Hb\bar{b}$ Yukawa coupling: $H \rightarrow b\bar{b}$
- Decays to two gluons mediated by Hggeffective coupling: $H \rightarrow gg$

		${ m H} ightarrow { m b} {ar b}$ type	${\rm H} \rightarrow {\rm gg ~type}$	
Event shapes vanish in 2-jet limit.	LO	$\mathrm{H} \to \mathrm{b}\bar{\mathrm{b}}\mathrm{g}$	${\rm H} \to {\rm ggg}$	tree-level
LO contribution from $H \rightarrow 3j$ decays.			$H \to g q \bar q$	tree-level
At NLO in QCD, include virtual contributions from quark- and gluon loops; real contributions from gluon emissions and gluon splittings.	NLO	$\mathrm{H} \rightarrow \mathrm{bbg}$	$\rm H \to ggg$	one-loop
			$H \to g q \bar q$	one-loop
		$\rm H \rightarrow b \bar{b} gg$	${\rm H} \to {\rm gggg}$	tree-level
		$H \to b \bar b q \bar q$	$H \to g g q \bar{q}$	tree-level
		$\rm H \rightarrow b \bar{b} b \bar{b}$	$H\to q\bar q q'\bar q'$	tree-level

Can event shapes help to discriminate between Higgs decay channels?

^{*}Decay $H \rightarrow c\bar{c}$ in principle trivial to include, but omitted here.

Computational setup

Implemented in (publicly-available[†]) **parton-level NNLO MC** EERAD3 [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 1402.4140].

- On-shell Higgs decays with $\sqrt{s}=M_{H}\equiv 125.0~{
 m GeV}$
- vanishing kinematical b-mass
- large t-mass (HEFT)
- \rightarrow straightforward extension to NNLO

Calculate observable-weighted distributions of the form

$$\frac{\mathsf{Br}^n_{H\to X}(s,\mu_{\mathrm{R}})}{\mathsf{\Gamma}^n_{H\to X}(s,\mu_{\mathrm{R}})}O\frac{\mathsf{d}\mathsf{\Gamma}(s,\mu_{\mathrm{R}},O)}{\mathsf{d}O}$$

with branching ratios defined as

$$\mathsf{Br}^n_{H\to X}(s,\mu_{\mathrm{R}}) = \frac{\Gamma^n_{H\to X}(s,\mu_{\mathrm{R}})}{\Gamma^n_{H\to b\bar{b}}(s,\mu_{\mathrm{R}}) + \Gamma^n_{H\to gg}(s,\mu_{\mathrm{R}})}$$

[†]Extension to Higgs decays not public yet.

Results - total jet broadening

$$B_{\mathrm{T}} = B_1 + B_2$$
 with $B_i = rac{\sum_{j \in H_i} |ec{p}_j imes ec{n}_{\mathcal{T}}|}{2\sum_i |ec{p}_j|}$

 $B_{\rm T} \rightarrow$ 0: 2-jet event $B_{\rm T} \leq \frac{1}{2\sqrt{3}}$ for 3-particle events

Broad but peaked ratio between decay channels.

Results - heavy-hemisphere mass

$$\rho \equiv \frac{M_{\rm H}^2}{s} = \max_{i \in \{1,2\}} \left\{ \frac{1}{E_{\rm vis}^2} \left(\sum_{j \in H_i} p_j \right)^2 \right\}$$

 $\rho \rightarrow$ 0: 2-jet event $\rho \leq \frac{1}{3}$ for 3-particle events

Almost constant ratio in multi-jet limit.

Conclusions

3-jet event shapes can be classified into two classes

Hgg/Hbb ratio has plateau in multijet limit vs. maximum in transition region

- first class ("bad discriminators"): C, $B_{\rm W}$, $M_{\rm H}$
- second class ("good discriminators"): T, $B_{\rm T}$, $y_{23}^{\rm D}$

... but should be enhanced by well-placed cuts!

Generally:

- event-shape distributions peaked more towards multi-jet region for $H \rightarrow gg$
- larger corrections in $H \rightarrow gg$ channel (unsurprisingly!)
- sizeable renormalisation-scale uncertainties
- ⇒ inclusion of higher-order effects mandatory (stay tuned!)

Sneak peek: four-jet event shapes [Gehrmann-De Ridder, Geissbühler, CTP, Williams in preparation]

Similar size of NLO corrections for four-jet event shapes.

... but difficult to model **peak structure** at NLO, so **logarithmic** and **non-perturbative** corrections likely to be more prominent than in three-jet case

Towards fully-differential NNLO+PS matching

Towards fully-differential* NNLO+PS matching * fully-differential \equiv no auxiliary scales

Status of (N)NLO+PS matching

NLO+PS: two general approaches

- MC@NLO [Frixione, Webber hep-ph/0204244] modified subtraction with shower kernels
- POWHEG [Nason hep-ph/0409146] Born-local NLO weight + MEC in shower
- refinements KRKNLO [Jadach et al. 1503.06849] and MACNLOPS [Nason, Salam 2111.03553]
- + shower matches fixed-order singularity structure

NNLO+PS: first approaches, for some processes

- UN2LOPS [Höche et al. 1405.3607] inclusive NNLO + unitary merging
- NNLOPS/MiNNLO_{PS} [Hamilton et al. 1212.4504]/[Monni et al. 1908.06987] regulated NLO POWHEG 1j + NNLO
- GENEVA [Alioli et al. 1211.7049] NNLO matched resummation + truncated shower
- shower does not match fixed-order singularity structure

Towards NNLO+PS [Campbell, Höche, Li, CTP, Skands 2108.07133]

Idea: "POWHEG at NNLO" (focus here on colour singlet $\rightarrow 2j$)

$$\langle O \rangle_{\rm NNLO+PS}^{\rm VinCIA} = \int d\Phi_2 \, {\rm B}(\Phi_2) \underbrace{k_{\rm NNLO}(\Phi_2)}_{\rm local K-factor} \underbrace{\mathcal{S}_2(t_0, O)}_{\rm shower operator}$$

Need:

- (Born-local) NNLO K-factors
- Shower filling ordered and unordered regions of 1- and 2-emission phase space
- Itree-level MECs in ordered and unordered shower paths
- ILO MECs in the first emission

... implemented in VINCIA sector antenna shower in PYTHIA 8.3 [Brooks, CTP, Skands 2003.00702]

NNLO+PS with sector showers

Key aspect

up to matched order, include process-specific NLO corrections into shower evolution:

() correct first branching to exclusive (< t') NLO rate:

$$\Delta^{\mathrm{NLO}}_{2\mapsto3}(t_0,t') = \exp\left\{-\int_{t'}^{t_0} d\Phi_{+1} \operatorname{A}_{2\mapsto3}(\Phi_{+1}) w^{\mathrm{NLO}}_{2\mapsto3}(\Phi_2,\Phi_{+1})\right\}$$

e correct second branching to LO ME:

$$\Delta_{3\mapsto4}^{\mathrm{LO}}(t',t) = \exp\left\{-\int_{t}^{t'} \mathrm{d}\Phi_{+1}' \mathrm{A}_{3\mapsto4}(\Phi_{+1}') w_{3\mapsto4}^{\mathrm{LO}}(\Phi_{3},\Phi_{+1}')\right\}$$

③ add direct $2 \mapsto 4$ branching and correct it to LO ME:

$$\Delta_{2\mapsto4}^{\mathrm{LO}}(t_0,t) = \exp\left\{-\int_t^{t_0} \mathrm{d}\Phi_{+2}^{>} \mathrm{A}_{2\mapsto4}(\Phi_{+2}) w_{2\mapsto4}^{\mathrm{LO}}(\Phi_2,\Phi_{+2})\right\}$$

- $\Rightarrow\,$ entirely based on MECs and sectorisation
- \Rightarrow by construction, expansion of extended shower matches NNLO singularity structure But shower kernels do not define NNLO subtraction terms^{*} (!)

^{*}This would be required in an "MC@NNLO" scheme, but difficult to realise in antenna showers.

Interleaved single and double branchings

A priori, direct $2 \mapsto 4$ and iterated $2 \mapsto 3$ branchings overlap in ordered region. In sector showers, iterated $2 \mapsto 3$ branchings are always strictly ordered.

Restriction on double-branching phase space enforced by additional veto:

$$\mathrm{d}\Phi_{+2}^{>} = \sum_{j} \theta \left(p_{\perp,+2}^2 - \hat{p}_{\perp,+1}^2 \right) \Theta_{ijk}^{\mathrm{sct}} \, \mathrm{d}\Phi_{+2}$$

Real and double-real corrections

Direct 2 \mapsto 4 shower component fills **unordered region** of phase space $p_{\perp 4}^2 > p_{\perp 3}^2$.

Sectorisation enforces strict cutoff at $p_{\perp,4}^2 = p_{\perp,3}^2$ in iterated $2 \mapsto 3$ shower. (No recoil effects!)

Real-virtual corrections

Real-virtual correction factor

$$w_{2\mapsto3}^{\mathrm{NLO}} = w_{2\mapsto3}^{\mathrm{LO}} \left(1 + w_{2\mapsto3}^{\mathrm{V}}\right)$$

studied analytically in detail for $Z \rightarrow q\bar{q}$ in [Hartgring, Laenen, Skands 1303.4974]:

 \Rightarrow now: generalisation & (semi-)automation in VINCIA in form of NLO MECs

NNLO+PS matching in hadronic Higgs decays

NNLO accuracy in $H \rightarrow 2j$ implies NLO correction in first emission and LO correction in second emission.

20/28

$\rm VINCIANNLO$ vs other NNLO+PS schemes

A (rough) comparison between VINCIA's NNLO+PS matching and...

UN2LOPS: (not applied to hadronic Higgs decays)

- \checkmark amend inclusive NNLO calculation by fully-differential NLO 1*j* calculation
- $\pmb{\mathsf{X}}$ unitary NLO shower evolution vs unitary NLO merging
- **X** POWHEG 1j vs UNLOPS 1j

$\rm NNLOPS/MiNNLO_{PS}$: [Bizoń et al. 1912.09982]

- ✓ regulate POWHEG 1*j* calculation in 0*j* limit
- × regulation via shower Sudakovs vs analytic Sudakovs
- X exponentiation of POWHEG 1j calculation

GENEVA: [Alioli et al. 2009.13533]

X shower resummation vs analytic resummation

Generalisations and limitations

The method is in principle general.

Addition of **colour singlets** trivial, due to **automation** on the level of **process classes**. E.g., if $e^+e^- \rightarrow 2j$ implemented, also $e^+e^- \rightarrow 2j + X$ with any set of colour singlets X.

Addition of final-state partons straightforward. In practice, some pitfalls:

- Born-local NNLO weight not available in general
- Quark-gluon double-branching antenna functions develop spurious singularities, but
 - No exact knowledge of double-branching kernels required
 - Sector-antenna functions can effectively be replaced by matrix-element ratios

For hadronic initial states, the technique remains structurally the same. However:

- Interplay of NLO parton evolution and NLO shower evolution needs clarification
- Choice of shower starting scale potentially problematic ("power showers" needed to fill full phase space?)

What about higher orders?

 $H \to b\bar{b}$ calculated fully-differentially at N3LO [Mondini, Schiavi, Williams 1904.08960], so what about N3LO+PS?

TOMTE (somewhat similar in spirit to UN2LOPS) [Prestel, 2106.03206] & [Bertone, Prestel, 2202.01082]

 Starts from NNLO+PS matched cross section for X + jet ~ UN2LOPS

 Allow jet to become unresolved, regulated by shower Sudakov

 Remove unwanted NNLO terms and subtract projected 1-jet bin from 0-jet bin

 Include N3LO jet-vetoed zero-jet cross section

 Some challenges:

Large amount of book-keeping \Rightarrow complex code & computational bottlenecks? Many counter-events, counter-counter-events, etc \Rightarrow many weight sign flips.

⇒ Huge computing resources for relatively slow convergence?

N3LO MECs? (hypothetical extension of VINCIA NNLO MECs)

Method in principle generalises.

Add direct-triple (2 \rightarrow 5) branchings to cover all of phase space: in principle **simple**. **Challenging**: need local NNLO subtractions for Born + 1.

• • •

Backup

Sector showers [Brooks, CTP, Skands 2003.00702; Lopez-Villarejo, Skands 1109.3608]

Idea: combine antenna shower with deterministic jet-clustering algorithm

• let shower only generate emissions that would be clustered by a $(3 \mapsto 2)$ jet algorithm (~ ARCLUS [Lönnblad Z.Phys.C 58 (1993)])

⇒ softest gluon always regarded as the emitted one

 \Rightarrow only **one** (most singular) splitting kernel contributes per phase space point

Since Pythia 8.304: full-fledged* implementation of sector showers in VINCIA

^{*}including FSR, ISR, resonance-decay showers

Double-branching kinematics

Iterate $2 \mapsto 3$ kinematics (~ tripole map):

Can be used for shower kinematics and as forward-branching phase-space generator (FBPS).

For shower kinematics:

• First, generate second scale $p_{\perp,+2}^2$ via " P_{imp} " factor

$$rac{1}{\hat{
ho}_{\perp,+1}^2}rac{\hat{
ho}_{\perp,+1}^2}{\hat{
ho}_{\perp,+1}^2+{
ho}_{\perp,+2}^2}rac{1}{{
ho}_{\perp,+2}^2}$$

• Then, sample intermediate scale $\hat{p}_{\perp,+1}^2 \leq p_{\perp,+2}^2$ As phase-space generator:

- Sample $\{\hat{s}_{ij}, \hat{s}_{j\ell}, \hat{\phi}\}$ and $\{s_{ij}, s_{jk}, \phi\}$
- Particularly convenient to generate angularly correlated points

Tree-level MECs

Separation of double-real integral defines tree-level MECs:

$$\begin{split} &\int_{t}^{t_{0}} d\Phi_{+2} \, \frac{\operatorname{RR}(\Phi_{2}, \Phi_{+2})}{\operatorname{B}(\Phi_{2})} = \int_{t}^{t_{0}} d\Phi_{+2}^{>} \, \frac{\operatorname{RR}(\Phi_{2}, \Phi_{+2})}{\operatorname{B}(\Phi_{2})} + \int_{t}^{t_{0}} d\Phi_{+2}^{<} \, \frac{\operatorname{RR}(\Phi_{2}, \Phi_{+2})}{\operatorname{B}(\Phi_{2})} \\ &= \int_{t}^{t_{0}} d\Phi_{+2}^{>} \operatorname{A}_{2\mapsto 4}(\Phi_{+2}) w_{2\mapsto 4}^{\mathrm{LO}}(\Phi_{2}, \Phi_{+2}) \\ &+ \int_{t'}^{t_{0}} d\Phi_{+1} \operatorname{A}_{2\mapsto 3}(\Phi_{+1}) w_{2\mapsto 3}^{\mathrm{LO}}(\Phi_{2}, \Phi_{+1}) \int_{t}^{t'} d\Phi_{+1}' \operatorname{A}_{3\mapsto 4}(\Phi_{+1}') w_{3\mapsto 4}^{\mathrm{LO}}(\Phi_{3}, \Phi_{+1}') \\ \end{split}$$

Iterated tree-level MECs in ordered region:

$$\begin{split} & w_{2\mapsto3}^{\rm LO}(\Phi_2,\Phi_{+1}) = \frac{{\rm R}(\Phi_2,\Phi_{+1})}{{\rm A}_{2\mapsto3}(\Phi_{+1}){\rm B}(\Phi_2)} \\ & w_{3\mapsto4}^{\rm LO}(\Phi_3,\Phi_{+1}') = \frac{{\rm RR}(\Phi_3,\Phi_{+1}')}{{\rm A}_{3\mapsto4}(\Phi_{+1}'){\rm R}(\Phi_3)} \end{split}$$

Tree-level MECs in unordered region:

$$w_{2\mapsto4}^{\mathrm{LO}}(\Phi_2,\Phi_{+2}) = \frac{\mathrm{RR}(\Phi_2,\Phi_{+2})}{\mathrm{A}_{2\mapsto4}(\Phi_{+2})\mathrm{B}(\Phi_2)}$$

NLO MECs

Rewrite NLO MEC as product of LO MEC and "Born"-local K-factor $1 + w^{V}$ ("POWHEG in the exponent"):

$$w_{2\mapsto3}^{\mathrm{NLO}}(\Phi_2,\Phi_{+1}) = w_{2\mapsto3}^{\mathrm{LO}}(\Phi_2,\Phi_{+1}) \times (1+w_{2\mapsto3}^{\mathrm{V}}(\Phi_2,\Phi_{+1}))$$

Local correction given by three terms:

$$\begin{split} w_{2\mapsto3}^{\rm V}(\Phi_2,\Phi_{+1}) &= \left(\frac{{\rm RV}(\Phi_2,\Phi_{+1})}{{\rm R}(\Phi_2,\Phi_{+1})} + \frac{{\rm I}^{\rm NLO}(\Phi_2,\Phi_{+1})}{{\rm R}(\Phi_2,\Phi_{+1})} \right. \\ \\ {\rm NLO~Born} + 1j &+ \int_0^t {\rm d}\Phi_{+1}' \left[\frac{{\rm RR}(\Phi_2,\Phi_{+1},\Phi_{+1}')}{{\rm R}(\Phi_2,\Phi_{+1})} - \frac{{\rm S}^{\rm NLO}(\Phi_2,\Phi_{+1},\Phi_{+1}')}{{\rm R}(\Phi_2,\Phi_{+1})}\right] \right) \\ {\rm NLO~Born} &- \left(\frac{{\rm V}(\Phi_2)}{{\rm B}(\Phi_2)} + \frac{{\rm I}^{\rm NLO}(\Phi_2)}{{\rm B}(\Phi_2)} + \int_0^{t_0} {\rm d}\Phi_{+1}' \left[\frac{{\rm R}(\Phi_2,\Phi_{+1}')}{{\rm B}(\Phi_2)} - \frac{{\rm S}^{\rm NLO}(\Phi_2,\Phi_{+1}')}{{\rm B}(\Phi_2)}\right] \right) \\ {\rm shower} &+ \left(-\frac{\alpha_{\rm S}}{2\pi}\log\beta_0\left(\frac{\mu_{\rm PS}^2}{\kappa^2\rho_{\perp}^2}\right) + \int_t^{t_0} {\rm d}\Phi_{+1}' \,{\rm A}_{2\mapsto3}(\Phi_{+1}')w_{2\mapsto3}^{\rm LO}(\Phi_2,\Phi_{+1}')\right) \end{split}$$

- First and third term from NLO shower evolution, second from NNLO matching
- Calculation can be (semi-)automated, given a suitable NLO subtraction scheme