

ZH production in gluon fusion at NLO QCD

Matthias Kerner HP2, Newcastle, 21 Sep 2022

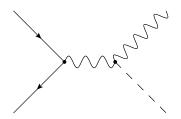
in collaboration with

L. Chen, J. Davies, G. Heinrich, S. Jones, G. Mishima, J. Schlenk, M. Steinhauser

JHEP 08 (2022) 056 (arXiv:2204.05225)

Introduction – ZH Production Mydes

ZH production modes



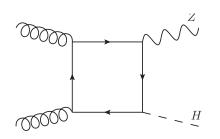
NNLO: Brein, Djou Min Holander 03 N³LO: Baglio, Mistlberger, Szafron 22

quark-initiated production known with high accuracy:

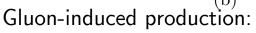
NNLO: Brein, Harlander, Wiesemann, Zirke; Ferrera, Grazzini, Somogyi, Tramontano; Campbell, Ellis, Williams; Gauld, Gehrmann-De Rideer,

Glover, Huss, Majer NLO EW(+QCD): Ciccolini, Denner, Dittmaier, Kallweit, Krämer, Mück; Granata, Lindert, Oleari, Pozzorini; Obul, Dulat, Hou, Tursun, $\mathcal{O}(\alpha_s^2)$: DY, GF

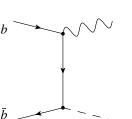
 N^3LO : Baglio, Mistlberger, Szafron 22 LO: $b\bar{b}$

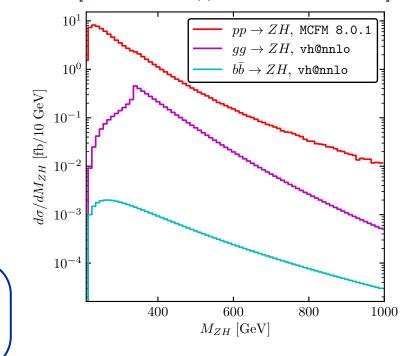


NNLO Ahmed, Ajjath, Chen, Dhani, Mukherjee, Ravindran 19



- Contribution to to total cross section ~10%
- Large scale uncertainties





[Harlander, Klappert, Liebler, Simon 18]

Uncertainties in ZH, WH measurements

ATLAS 2007.02873

Signal		
Cross-section (scale)	0.7% (qq), <mark>2</mark> 5% (gg)	
$H \rightarrow b\bar{b}$ branching fraction	1.7%	
Scale variations in STXS bins	$3.0\%-3.9\% (qq \rightarrow WH), 6.7\%-12\% (qq \rightarrow ZH) (37\%-100\%)(gg \rightarrow ZH)$	
PS/UE variations in STXS bins	$1\%-5\%$ for $qq \rightarrow VH$, $5\%-20\%$ for $gg \rightarrow ZH$	
PDF+ α_S variations in STXS bins	$1.8\%-2.2\% (qq \rightarrow WH), 1.4\%-1.7\% (qq \rightarrow ZH), 2.9\%-3.3\% (gg \rightarrow ZH)$	
m_{bb} from scale variations	M+S $(qq \rightarrow VH, gg \rightarrow ZH)$	
m_{bb} from PS/UE variations	M+S	
m_{bb} from PDF+ $\alpha_{\rm S}$ variations	M+S	
$p_{\rm T}^{V}$ from NLO EW correction	M+S	

(d)

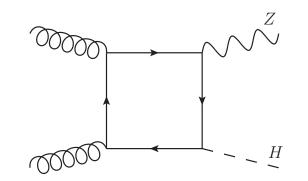
Introduction – gg → ZH: Calculations at LO and NLO

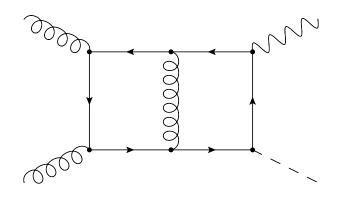
Leading Order

[Dicus, Kao 88; Kniehl 90]

 $1/m_t^8$

NLO in $m_t \to \infty$ limit [Altenkamp, Dittmaier, Harlander, H. Rzehak, Zirke 12] m_t^{32} m_t^{32}





Virtual corrections with m_t dependence

• Expansion in large m_t , up to $1/m_t^8$, improved by Padé approx. [Hasselhuhn, Luthe, Steinhauser 17]

Full NLO results:

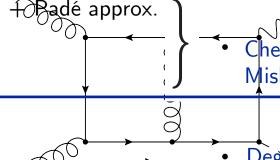
• expansion in small and large m_t , up to $1/m_t^{10}, m_t^{32}$ — Radé approx. [Davies, Mishima, Steinhauser 20]

rumerical evaluation using pySecDec [Chen, Heinrich, Jones, MK, Klappert, Schlenk 20]

• expansion in small p_T up to p_T^4 [Alasfar, Degrassi, Giardino, Gröber, Vitti 21]

• p_T^4 [Alasfar, Degrassions in small p_T^4 and small p_T^4

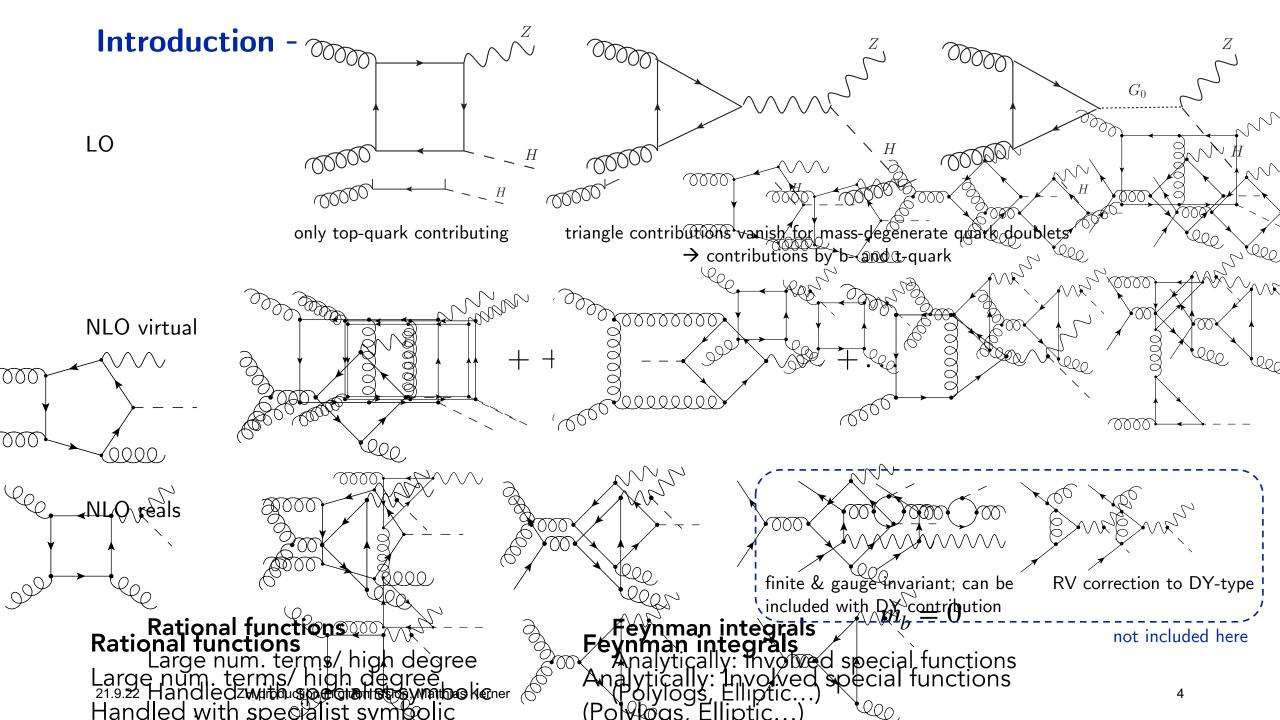
 $1/m_t^0$ ombi m_t^0 éxpansions in small p_T and small m_t [Bellafronte, Degrassi, Giardino, Gröber, Vitti 22]



Chen, Davies, Heinrich, Jones, MK, Mishima, Schlenk, Steinhauser 22

Degrassi, Gröber, Vitti, Zhao 22

• small m_Z, m_H expansion Wang, Xu, Xu, Yang 21



Overview of Calculation

Virtual Corrections using 2 methods:

Numerical evaluation using pySecDec [Chen, Heinrich, Jones, MK, Klappert, Schlenk 20]

- ✓ valid for arbitrary kinematics
 evaluation challenging in HE region
 masses fixed during integral reduction
 - \rightarrow can only use OS mass

High-energy expansion [Davies, Mishima, Steinhauser 20]

only valid in HE region

- ✓ fast evaluation
- ✓ arbitrary masses

 \rightarrow We combine these calculations at histogram level, using $p_T = 200$ GeV as a threshold

Real-radiation amplitudes generated with Gosam [Cullen et.al.]

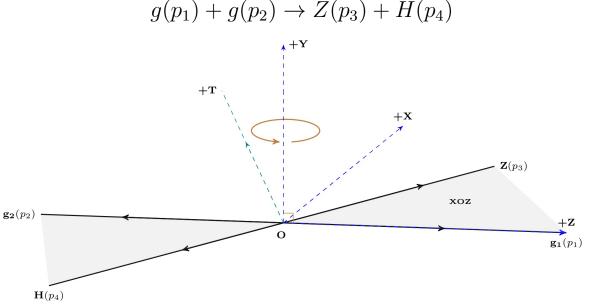
Polarized Amplitudes

$$\mathcal{A} = \varepsilon_{\lambda_1}^{\mu_1}(p_1) \, \varepsilon_{\lambda_2}^{\mu_2}(p_2) \, (\varepsilon_{\lambda_3}^{\mu_3}(p_3))^* \, \mathcal{A}_{\mu_1 \mu_2 \mu_3}$$

Polarization vectors can be constructed from external momenta [L. Chen 19]

choose

$$\begin{split} \varepsilon_{x}^{\mu} &= \mathcal{N}_{x} \, \left(-s_{23} p_{1}^{\mu} - s_{13} p_{2}^{\mu} + s_{12} p_{3}^{\mu} \right) \,, \\ \varepsilon_{y}^{\mu} &= \mathcal{N}_{y} \, \left(\epsilon_{\mu_{1} \, \mu_{2} \, \mu_{3}}^{\mu} \, p_{1}^{\mu_{1}} \, p_{2}^{\mu_{2}} \, p_{3}^{\mu_{3}} \right) \,, \\ \varepsilon_{T}^{\mu} &= \mathcal{N}_{T} \, \left(\left(-s_{23} (s_{13} + s_{23}) + 2 m_{Z}^{2} s_{12} \right) p_{1}^{\mu} + \left(s_{13} (s_{13} + s_{23}) - 2 m_{Z}^{2} s_{12} \right) p_{2}^{\mu} \right. \\ &\left. + s_{12} (-s_{13} + s_{23}) \, p_{3}^{\mu} \right) \,, \\ \varepsilon_{l}^{\mu} &= \mathcal{N}_{l} \, \left(-2 m_{Z}^{2} \left(p_{1}^{\mu} + p_{2}^{\mu} \right) + \left(s_{13} + s_{23} \right) p_{3}^{\mu} \right) \,, \end{split}$$



such that

$$\underbrace{\{\varepsilon_x,\,\varepsilon_y\}\cdot\{p_1,\,p_2\}=0,} \qquad \underbrace{\{\varepsilon_y,\,\varepsilon_T,\,\varepsilon_l\}\cdot p_3=0,} \qquad \varepsilon_i^2=-1$$

Can be used as polarization vectors of gluons and Z, respectively

circular polarizations:

$$\varepsilon_{\pm}^{\mu_1}(p_1) = \frac{1}{\sqrt{2}} \left(\varepsilon_x^{\mu_1} \pm i \varepsilon_y^{\mu_1} \right) \quad \varepsilon_{\pm}^{\mu_2}(p_2) = \frac{1}{\sqrt{2}} \left(\varepsilon_x^{\mu_2} \mp i \varepsilon_y^{\mu_2} \right) \quad \varepsilon_{\pm}^{\mu_3}(p_3) = \frac{1}{\sqrt{2}} \left(\varepsilon_T^{\mu_3} \pm i \varepsilon_y^{\mu_3} \right)$$

6 polarization configurations:

$$\mathcal{P}_{1}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{y}^{\mu_{3}}, \qquad \mathcal{P}_{2}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{T}^{\mu_{3}}
\mathcal{P}_{3}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{l}^{\mu_{3}}, \qquad \mathcal{P}_{4}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{T}^{\mu_{3}}
\mathcal{P}_{5}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{l}^{\mu_{3}}, \qquad \mathcal{P}_{6}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{y}^{\mu_{3}}$$

Integral Reduction

Use Integration-by-Parts Identities [Chetyrkin, Tkachov; Laporta] to express appearing 2-loop integrals in terms of master integrals.

$$\int d^d p_i \frac{\partial}{\partial p_i^{\mu}} \left[q^{\mu} \mathbf{I}'(p_1, \dots, p_l; k_1, \dots, k_m) \right] = 0$$

~13.000 unreduced integrals → 452 masters

Reduction is quite challenging, can be simplified by fixing mass ratios

$$\frac{m_Z^2}{m_t^2} = \frac{23}{83}, \qquad \frac{m_H^2}{m_t^2} = \frac{12}{23}$$

 \rightarrow Eliminates 2 of the 5 mass scales s, t, m_t, m_Z, m_H

Obtained using the programs:

- Kira [Klappert, Lange, Maierhöfer, Usovitsch]
- Firefly [Klappert, Klein, Lange]
 - → uses finite-field methods to avoid large intermediate expressions

Choice of Master Integrals

- Use a (quasi-)finite basis of master integrals [von Manteuffel, Panzer, Schabinger 14]
 - simplifies numerical evaluation of integrals
 - poles in ε only in coefficients
 - requires integrals in shifted dimensions [Bern, Dixon, Kosower 92; Tarasov 96; Lee 10]
- Further improvements of integral basis to achieve: (by trying different basis choices for each sector)
 - d-dependence factorizes from kinematic dependence in denominators of reduction coefficients N(s,t,d)[Smirnov, Smirnov `20; Usovitsch `20]
 - simple denominator factors D_1 , D_2
 - avoid poles in coefficients of integrals in top-level sectors as far as possible
 - small file-size of reductions
- → Some spurious poles & cancellations between integrals can be avoided
- → Reduced File sizes of expressions
 - Amplitude: factor of 5 improvement
 - Largest coefficient (double-tadpole): 150 MB → 5 MB

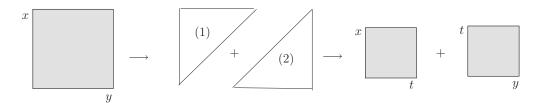
Loop Integrals – Sector Decomposition

Numerical evaluation of loop integrals with pySecDec

[Borowka, Heinrich, Jahn, Jones, MK, Langer, Magerya, Põldaru, Schlenk, Villa]

Available at github.com/gudrunhe/secdec

Sector decomposition [Binoth, Heinrich 00] factorizes overlapping singularities



- Subtraction of poles & expansion in ε
- Contour deformation [Soper 00; Binoth et.al. 05, $\frac{1}{(x_1-x_2)^{2+\varepsilon}}$ [$\theta(x_1-x_2)^{2+\varepsilon}$] [$\theta(x_1-x_2)^{2+\varepsilon$

pySecDec integral libraries can be directly linked to amplitude code

- expansion by regions
- evaluation of linear combinations of integrals, with automated optimization of sampling points per sector
- automated reduction of contour-def. parameter
- automatically adjusts FORM settings

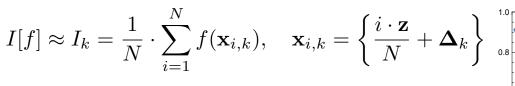
$$= -\frac{1}{\varepsilon} g(0,\varepsilon) + \int_0^1 \mathrm{d}x \, x^{-1-\varepsilon} \left(g(x,\varepsilon) - g(0,\varepsilon) \right)$$
 ZH production in gluon fusion, Matthias Kerner

pySecDec - Quasi-Monte Carlo

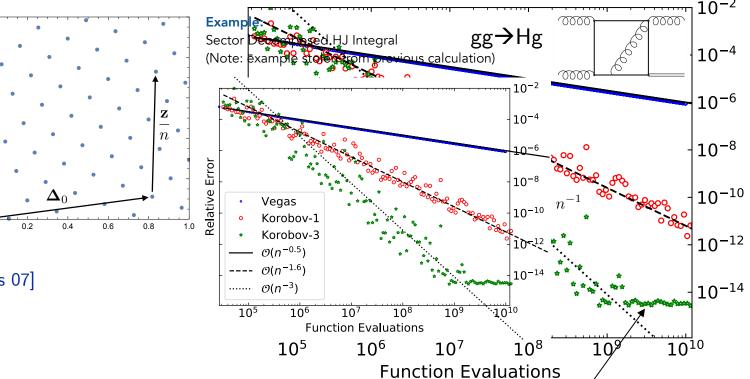
Our preferred integration algorithm is a Quasi-Monte Carlo using rank-1 shifted lattice rule

Review: Dick, Kuo, Sloan 13 First application to loop integrals: Li, Wang, Yan, Zhao 15

Integrator available at github.com/mppmu/qmc [Borowka, Heinrich, Jahn, Jones, MK, Schlenk]



- \ldots } = fractional part ($\rightarrow x \in [0; 1]$)
- $\Delta_{\it k} = {
 m randomized shifts}$
 - $\rightarrow m$ different estimates of Integral
 - \rightarrow error estimate of result
 - z = generating vector constructed component-by-component [Nuyens 07] minimizing worst-case error
 - \rightarrow integration error scales as $\mathcal{O}(n^{-1})$ or better



Limited by double precision arithmetic

Evaluation of Amplitude

After sector decomposition and expansion in $\epsilon \rightarrow$ amplitude written in terms of 19.530 finite integrals

Optimizations to reduce run time:

dynamically set n for each integral, minimizing

$$T = \sum_{\substack{\text{integral } i \\ \sigma_i = \text{ error estimate (including coefficients in amplitude)} \\ \lambda = \text{Lagrange multiplier}} \sigma_i = c_i \cdot t_i^{-e}$$

• avoid reevaluation of integrals for different orders in ε and form factors

$$F^a = \sum_i \left\lceil \left(\sum_j C^a_{i,j} \varepsilon^j \right) \cdot \left(\sum_k I_{i,k} \varepsilon^k \right) \right\rceil = \frac{C^a_{1,-2} I_{1,0} + C^a_{1,-1} I_{1,-1} + \dots}{\varepsilon^2} + \underbrace{\frac{C^a_{1,-1} I_{1,0} + \dots}{\varepsilon^1} + \dots}_{\varepsilon^1} + \dots$$

parallelization on GPUs
 typical run-time to obtain virtual amplitude with 0.3% precision:
 2h using 2x Nvidia Tesla V100 GPUs

High-Energy Expansion

Scale hierarchy in high-energy region:

$$m_Z$$
, $m_H < m_t \ll s$, t

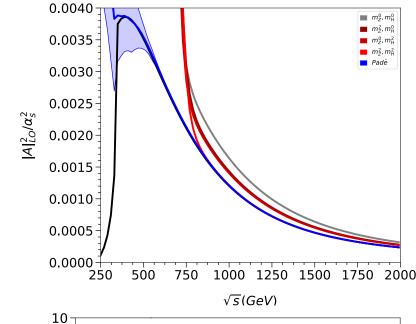
- 1) Use Taylor series expansion in m_Z, m_H \rightarrow remaining integrals only depend on m_t, s, t
- 2) Solve differential equations using ansatz

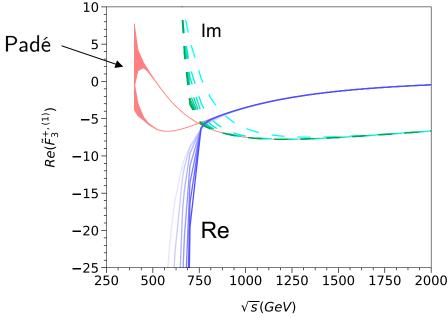
$$I = \sum_{n_1 = n_1^{\min}}^{\infty} \sum_{n_2 = n_2^{\min}}^{\infty} \sum_{n_3 = 0}^{2l + n_1} c(I, n_1, n_2, n_3, s, t) \, \epsilon^{n_1} \left(m_t^2 \right)^{n_2} \left(\log(m_t^2) \right)^{n_3}$$

- 3) Boundary conditions using [see Mishima 18]
 - expansion-by-regions [Beneke, Smirnov; Jantzen]
 - Mellin-Barnes techniques
- 4) Series convergence improved using Padé approximants:

$$\mathcal{V}_{\text{fin}}^{N} = \frac{a_0 + a_1 x + \ldots + a_n x^n}{1 + b_1 x + \ldots + b_m x^m} \equiv [n/m](x)$$

Davies, Mishima, Steinhauser 20



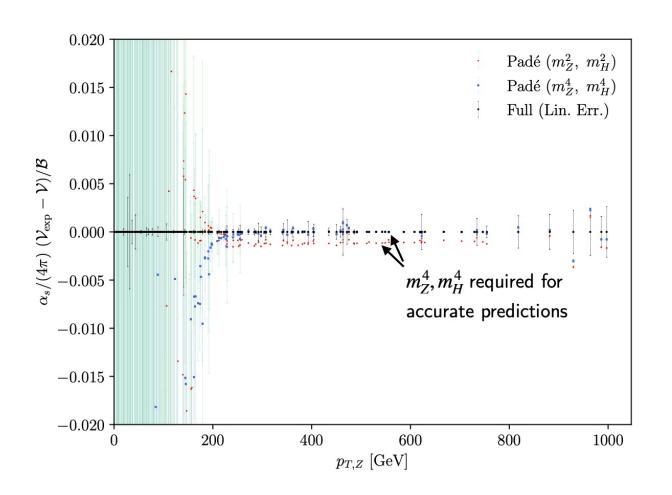


Combination with Expansions

Comparison of numerical results with high-energy expansion

- expansion around small masses up to $\ m_t^{32}, \, m_Z^4, \, m_H^4$
- agreement at 0.1% level or better for $p_T > 200$ GeV
- $m_Z^4, \, m_H^4$ terms required to reach this accuracy

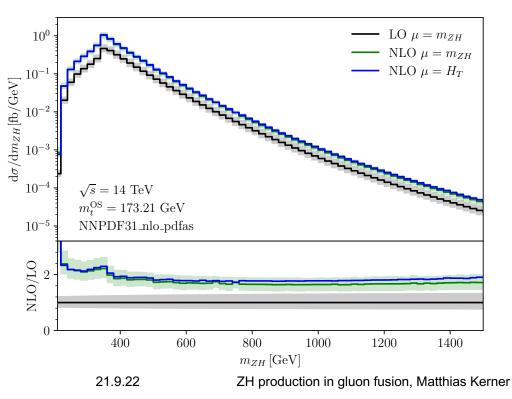
We switch from the numerical calculation to the expansion at p_T =200



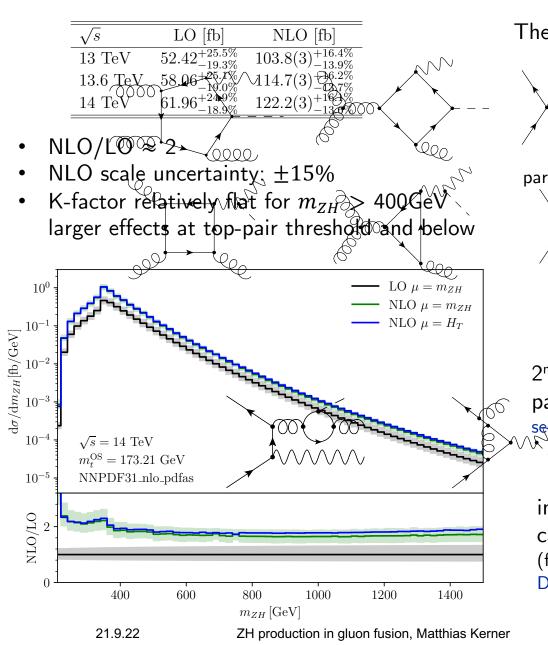
Results – Total Cross Section & Invariant Mass

$\overline{\sqrt{s}}$	LO [fb]	NLO [fb]
13 TeV	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)^{+16.4\%}_{-13.9\%}$
$13.6~{\rm TeV}$	$58.06^{+25.1\%}_{10.0\%}$	$114.7(3)^{+16.2\%}_{12.7\%}$
14 TeV	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)_{-13.6\%}^{+16.1\%}$

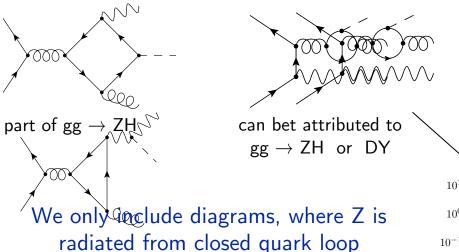
- NLO/LO ≈ 2
- NLO scale uncertainty: ±15%
- K-factor relatively flat for $m_{ZH}>400{\rm GeV}$ larger effects at top-pair threshold and below



Results – Total Cross Section & Invariant Mass



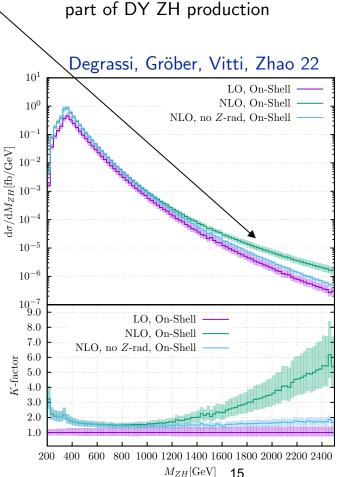
There is some freedom, which diagrams to include in $q\bar{q}$ real radiation



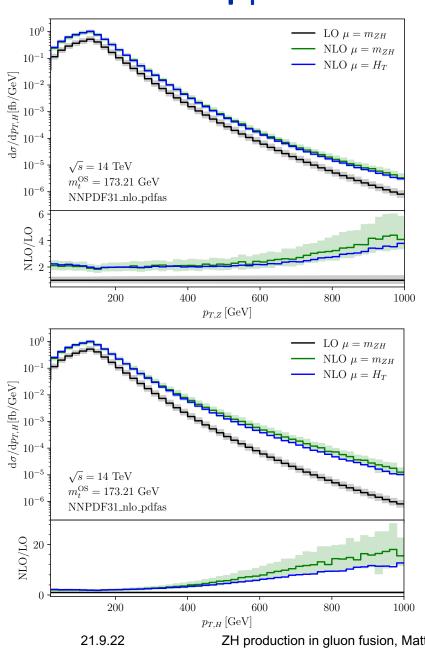
 $2^{\rm nd}$ class has been studied as part of NNLO $q\bar{q}\to {\sf ZH}$ production see e.g. Brein, Harlander, Wiesemann, Zirke 12

included in independent calculation of $gg \rightarrow ZH$ production (formally N3LO of DY type)

Degrassi, Gröber, Vitti, Zhao 22



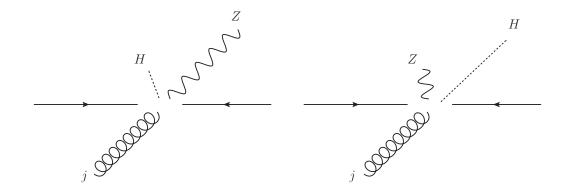
Results $-p_T$ distributions



large corrections at high p_T

already observed in ZHj@LO Hespel, Maltoni, Vryonidou 15; Les Houches 19

caused by new kinematic region in real radiation:



difference of eikonal factors:

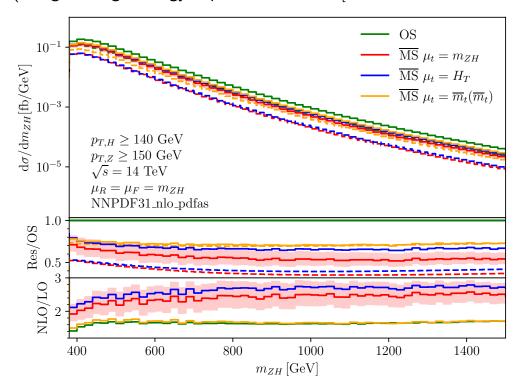
soft Z emission:
$$\frac{p^{\mu}}{p \cdot p_Z}$$

soft H emission:
$$\frac{m_t}{p \cdot p_H}$$

larger enhancement of Z emission for large p_T

Mass Scheme Dependence

The results presented so far use OS renormalization of m_t , we can change to \overline{MS} renormalization (using the high-energy expansion where m_t is not fixed in reduction)



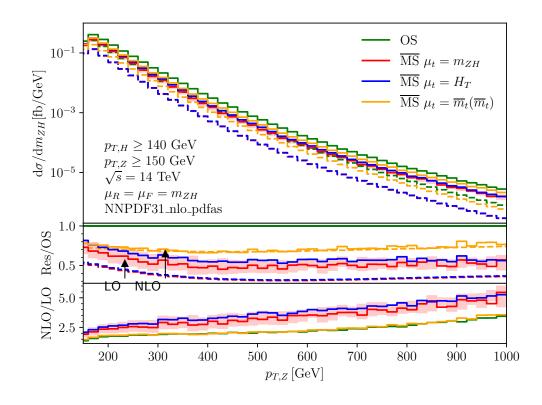
The \overline{MS} result is significantly smaller than OS result:

LO: ~ factor 2.9 NLO: ~ factor 1.9

at
$$m_{ZH}=1~{\rm TeV}$$

 $\overline{\text{MS}}$

$$m_t \to \overline{m_t}(\mu_t) \left(1 + \frac{\alpha_s(\mu_R)}{4\pi} C_F \left\{ 4 + 3 \log \left[\frac{\mu_t^2}{\overline{m_t}(\mu_t)^2} \right] \right\} \right)$$



If taken as uncertainty, it is much larger than scale dependence

Mass Scheme Dependence

 $gg \rightarrow HH$

Leading HE contributions in gg \rightarrow HH and gg \rightarrow ZH production

$$A_i^{\text{fin}} = a_s A_i^{(0),\text{fin}} + a_s^2 A_i^{(1),\text{fin}} + \mathcal{O}(a_s^3)$$

HH

$$A_i^{(0)} \sim m_t^2 f_i(s, t)$$

$$A_i^{(1)} \sim 6C_F A_i^{(0)} \log \left[\frac{m_t^2}{s} \right]$$

LO: m_t^2 from y_t^2 NLO: leading $\log(m_t^2)$ from mass c.t. converting to \overline{MS} gives $\log(\mu_t^2/s)$ motivating scale choice of $\mu_t^2 = s$ ZH

$$A_i^{(0)} \sim m_t^2 f_i(s, t) \log^2 \left[\frac{m_t^2}{s} \right] ,$$

$$A_i^{(1)} \sim \frac{(C_A - C_F)}{6} A_i^{(0)} \log^2 \left[\frac{m_t^2}{s} \right]$$

LO: one m_t from y_t NLO: leading $\log(m_t^2)$ not coming from mass c.t. $\log(m_t^2)$

 $\frac{\log(m_t)}{\text{MS}}$ $\log\left[\mu_t^2/s\right]$ $\mu_t^2 \sim s$

→ The leading contributions seem to have different origins for the 2 processes

It would be interesting to understand these logarithms in more detail. (for some recent progress for off-shell H production, see Liu, Modi, Penin 21; Mazzitelli 22)

Conclusion

NLO corrections to ZH production in gluon-fusion

Virtual corrections obtained from combination of 2 calculations

- numeric evaluation using pySecDec
- high-energy expansion

Phenomenological results

- K-factor ≈ 2
- large corrections at high- p_T due to new kin. configurations
- large dependence on top-mass renormalization scheme

Thank you for your attention!