Signal-background interference effects for Higgs-mediated diphoton production beyond NLO

Federica Devoto

In collaboration with: P.Bargiela, F.Buccioni, F.Caola, A.von Manteuffel, L.Tancredi

Introduction

- Higgs boson discovered at the LHC a decade ago, still ongoing remarkable theoretical and experimental efforts to determine its parameters
- Higgs width Γ_H : predicted by the Standard Model to be $\sim 4 \text{ MeV}$ Direct sensitivity at the LHC is (ieV Impossible to measure directly Need indirect measurements/bounds

Federica Devoto

Constraints on Γ_H

 $\left|\sigma_{i \to H \to f} \sim \sigma_{i \to H} BR(H \to f) \sim \frac{g_i^2 g_f^2}{\Gamma_H}\right| \longrightarrow$

- on couplings and width
- (Some) existing ideas:
 - Campbell et al '13)
 - Higgs interferometry (Martin '12; Dixon,Li '13; De Florian et al '13)

Focus of the talk

Federica Devoto

HP2 2022, 21/09/2022

Cross sections are sensitive to ratios of couplings to width **Degeneracy** in parameter space

• To put indirect constraints one needs an observable with different dependence

 $^{\circ}\Gamma_{H}$ from off-shell cross-sections (Kauer, Passarino '13, Caola, Melnikov '13,

Signal-background interference in $gg \rightarrow H \rightarrow \gamma\gamma$

Federica Devoto

Signal-background interference: why $\gamma\gamma$?

$$|M_{gg \to \gamma\gamma}|^2 \simeq |S|^2 \left[1 + \frac{2s}{(s - m_H^2)^2 + \Gamma_H^2}\right]$$

Federica Devoto

HP2 2022, 21/09/2022

 $\frac{1}{2} \frac{1}{2} \frac{1}$

Signal-background interference: why $\gamma\gamma$?

$$|M_{gg \to \gamma\gamma}|^2 \simeq |S|^2 \left[1 + \frac{2s}{(s - m_H^2)^2 + \Gamma_H^2}\right]$$

Federica Devoto

HP2 2022, 21/09/2022

 $\frac{1}{2}m_H^2\left(\left(s-m_H^2\right)\operatorname{\mathsf{Re}}\frac{B^*}{S}+\Gamma_H m_H\operatorname{\mathsf{Im}}\frac{B^*}{S}\right)\right|+|B|^2$

Imaginary part: a closer look

- Symmetric around the peak, contributes to cross section
- Starts contributing at NLO, background helicity amplitudes contributing to interference at LO are real

Caveat: bottom quark mass would give an imaginary part Small effect

Federica Devoto

 $Im I = ReM_{bkg}ImM_{sig} - ImM_{bkg}ReM_{sig}$

Real part: a closer look

- Antisymmetric around the peak, does not contribute to cross section
- Interesting physical effects, e.g. apparent mass shift [Martin '12]
- excess of events below $m_{\gamma\gamma} = 125 \,\text{GeV}$ rather than above

Federica Devoto

 $\operatorname{Re} I = \operatorname{Re} M_{bkg} \operatorname{Re} M_{sig} + \operatorname{Im} M_{bkg} \operatorname{Im} M_{sig}$

Mass-shift estimate: theory How can we estimate it from a theory side?

First moment method

Federica Devoto

HP2 2022, 21/09/2022

Likelihood analysis, e.g. gaussian fit

Federica Devoto

HP2 2022, 21/09/2022

erc

More realistic ways to measure it in experiments?

Federica Devoto

HP2 2022, 21/09/2022

Federica Devoto

HP2 2022, 21/09/2022

More realistic ways to measure it in experiments?

Compare measures in $\gamma\gamma$ vs ZZ channels

 $p_{T,H}$ dependent measurements

Federica Devoto

HP2 2022, 21/09/2022

More realistic ways to measure it in experiments?

Compare measures in $\gamma\gamma$ vs ZZ channels

HP2 2022, 21/09/2022

More realistic ways to measure it in experiments?

Compare measures in $\gamma\gamma$ vs ZZ channels

HP2 2022, 21/09/2022

Compare measures in $\gamma\gamma$ vs ZZ channels

Allow Higgs width to differ from SM

- Allow Higgs width to differ from SM prediction
- Higgs couplings need to change accordingly to maintain roughly SM yield (LHC measurements)

$$g_i \longrightarrow \lambda_i g_i$$
$$g_f \longrightarrow \lambda_f g_f$$

$$\frac{(\lambda_i \lambda_f)^2 S}{m_H \Gamma_H} + \lambda_i \lambda_f I \sim \frac{S}{m_H \Gamma_{H,SM}} + I$$

Federica Devoto

 Γ_H/Γ_H^{SM}

[Dixon, Li '13]

Allow Higgs width to differ from SM

- Allow Higgs width to differ from SM prediction
- Higgs couplings need to change accordingly to maintain roughly SM yield (LHC measurements)

$$g_i \longrightarrow \lambda_i g_i$$
$$g_f \longrightarrow \lambda_f g_f$$

$$\frac{(\lambda_i \lambda_f)^2 S}{m_H \Gamma_H} + \lambda_i \lambda_f I \sim \frac{S}{m_H \Gamma_{H,SM}} + \varkappa$$

Federica Devoto

 Γ_H/Γ_H^{SM}

[Dixon, Li '13]

Allow Higgs width to differ from SM

- Allow Higgs width to differ from SM prediction
- Higgs couplings need to change accordingly to maintain roughly SM yield (LHC measurements)

$$g_i \longrightarrow \lambda_i g_i$$
$$g_f \longrightarrow \lambda_f g_f$$

$$\frac{(\lambda_i \lambda_f)^2 S}{m_H \Gamma_H} + \lambda_i \lambda_f I \sim \frac{S}{m_H \Gamma_{H,SM}} + X$$

Federica Devoto

[Dixon, Li '13]

- prediction
- yield (LHC measurements)

HP2 2022, 21/09/2022

- prediction
- yield (LHC measurements)

HP2 2022, 21/09/2022

- prediction
- yield (LHC measurements)

HP2 2022, 21/09/2022

- prediction
- yield (LHC measurements)

HP2 2022, 21/09/2022

- prediction
- yield (LHC measurements)

Interference effects: state of the art

- order [Dixon,Li '13]

• Interference effects analysis in $\gamma\gamma$ channel performed up to next-to-leading

• Other channels also included: i.e. $qg \rightarrow \gamma \gamma q$ (about three times smaller than gg but opposite sign), $q\bar{q} \rightarrow \gamma \gamma g$ (same sign as qg, negligible contribution)

• NLO analysis decreases mass shift to $\sim 70 \,\mathrm{MeV}$

 $\mathcal{O}(40\%)$ decrease w.r.t LO!

• Calls for a higher order analysis!

LO(gg)

LO(qg)

NLO(gg)

NNLO(gg)

Federica Devoto

HP2 2022, 21/09/2022

$LO(q\bar{q})$

LO(gg)

 $\mathrm{LO}(\mathrm{qg})$

NLO(gg)

$LO(q\bar{q})$

- Subtraction @ NNLO for color singlet production
- 5-points two loop amplitudes for background [Badger et al, '21] [Agarwal et al, '21] process
- Three-loop amplitudes for background process

[Bargiela, Caola, von Manteuffel, Tancredi, '22]

In principle: everything is there... in practice: potential technical difficulties (e.g. evaluation of complicated amplitudes in extreme kinematic configurations, involved subtraction structure etc.)

Interference is enhanced at low $p_{T,H}$, bulk of the contribution coming from the virtuals

Federica Devoto

- Subtraction @ NNLO for color singlet production
- 5-points two loop amplitudes for background [Badger et al, '21] [Agarwal et al, '21] process
- Three-loop amplitudes for background process

[Bargiela, Caola, von Manteuffel, Tancredi, '22]

In principle: everything is there... in practice: potential technical difficulties (e.g. evaluation of complicated amplitudes in extreme kinematic configurations, involved subtraction structure etc.)

Interference is enhanced at low $p_{T,H}$, bulk of the contribution coming from the virtuals

Federica Devoto

- Subtraction @ NNLO for color singlet production
- 5-points two loop amplitudes for background [Badger et al, '21] [Agarwal et al, '21] process
- Three-loop amplitudes for background process

[Bargiela, Caola, von Manteuffel, Tancredi, '22]

In principle: everything is there... in practice: potential technical difficulties (e.g. evaluation of complicated amplitudes in extreme kinematic configurations, involved subtraction structure etc.)

Interference is enhanced at low $p_{T,H}$, bulk of the contribution coming from the virtuals

Federica Devoto

Soft-virtual approximation in a nutshell

$$Q^2 \frac{d\sigma}{dQ^2}(s_H, Q^2) = \sum_{a,b} \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, f_{b/h_2}(x_2, \mu_F^2) \int_0^1 dx_1 \, dx_2 \, f_{a/h_1}(x_1, \mu_F^2) \, dx_2 \,$$

- Evaluation of soft contributions only, neglect hard emissions
- Works best near partonic threshold, i.e. $z \rightarrow 1$
- Gluon PDFs fall off fast at large partonic x: center-ofmass energy tends to be close to invariant mass of the system ponly soft extra radiation allowed

Federica Devoto

• $\sqrt{s} = 13.6 \,\mathrm{TeV}$

- PDF set: NNPDF31_nnlo_as_0118
- Dynamic scale: $\mu_F = \mu_R \equiv \mu = \frac{m_{\gamma\gamma}}{2}$
- Fiducial cuts: $p_{T\gamma_{1,2}} > 20 \,\mathrm{GeV}$
 - $|\eta_{\gamma}| < 2.5$
 - $p_{T \gamma_1} p_{T \gamma_2} > (35 \,\text{GeV})^2$
 - $\Delta R_{\gamma_{1,2}} > 0.4$

Federica Devoto

HP2 2022, 21/09/2022

[Salam, Slade '21]

• $\sqrt{s} = 13.6 \,\mathrm{TeV}$

- PDF set: NNPDF31_nnlo_as_0118
- Dynamic scale: $\mu_F = \mu_R \equiv \mu = \frac{m_{\gamma\gamma}}{2}$
- Fiducial cuts: $p_{T\gamma_{1,2}} > 20 \,\mathrm{GeV}$
 - $|\eta_{\gamma}| < 2.5$

•
$$p_{T\gamma_1}p_{T\gamma_2} > (35 \,\mathrm{Ge})$$

• $\Delta R_{\gamma_{1,2}} > 0.4$

Federica Devoto

HP2 2022, 21/09/2022

[Salam, Slade '21]

• $\sqrt{s} = 13.6 \,\mathrm{TeV}$

- PDF set: NNPDF31_nnlo_as_0118
- Dynamic scale: $\mu_F = \mu_R \equiv \mu = \frac{m_{\gamma\gamma}}{2}$
- Fiducial cuts: $p_{T\gamma_{1,2}} > 20 \,\mathrm{GeV}$
 - $|\eta_{\gamma}| < 2.5$

•
$$p_{T\gamma_1}p_{T\gamma_2} > (35 \,\mathrm{Ge})$$

• $\Delta R_{\gamma_{1,2}} > 0.4$

Federica Devoto

HP2 2022, 21/09/2022

Signal-background interference receives large corrections "Usual" cuts plagued by unphysical sensitivity to IR physics

[Salam, Slade '21]

Validation of SV: interference

Federica Devoto

Results: Interference @NNLOsv

Federica Devoto

HP2 2022, 21/09/2022

Real part of interference

Federica Devoto

$\mid \Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}$	$ -114.1^{+0.5\%}$	-12
NLO	$-82.0^{+13\%}_{-15\%}$	-0.7% $-82.3^{+12\%}_{-14\%}$	-8
NNLOsv	$-67.7^{+22\%}_{-26\%}$	$ -68.2^{+20\%}_{-24\%}$	-6'

First moment method

Federica Devoto

 $\Delta M_{(N)NLO} = \Delta M_{\rm LO} K_{(N)NLO}$

19

HP2 2022, 21/09/2022

11.0

$\mid \Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} \right.$	-8
NNLOsv	$-67.7^{+22\%}_{-26\%}$	$\left -68.2^{+20\%}_{-24\%} \right $	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$\left -56.0^{+13\%}_{-14\%} \right $	-55
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$\left -46.4^{+20\%}_{-24\%} \right $	-46

Federica Devoto

HP2 2022, 21/09/2022

$$5.4^{+12\%}_{-12\%}$$

$$5.2^{+17\%}_{-20\%}$$

$$\Delta M_{(N)NLO} = \Delta M_{\rm LO} \, K_{(N)NLO}$$

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} \right.$	-8
NNLOsv	$\left -67.7^{+22\%}_{-26\%} \right $	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} \end{array} } \right.$	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$-56.0^{+13\%}_{-14\%}$	-5
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$-46.4^{+20\%}_{-24\%}$	-4

Gaussian fit method

Federica Devoto

HP2 2022, 21/09/2022

$$5.4^{+12\%}_{-12\%}$$

$$5.2^{+17\%}_{-20\%}$$

$$\Delta M_{(N)NLO} = \Delta M_{\rm LO} \, K_{(N)NLO}$$

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} \right.$	-8
NNLOsv	$\left -67.7^{+22\%}_{-26\%} \right $	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} \end{array} } \right.$	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$-56.0^{+13\%}_{-14\%}$	-5
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$-46.4^{+20\%}_{-24\%}$	-4

Gaussian fit method

Federica Devoto

HP2 2022, 21/09/2022

$$\begin{array}{c|c} .6 \ {\rm TeV} \\ \hline 8.8_{-0.2\%} \\ \hline 5.4_{-12\%}^{+12\%} \\ \hline 5.2_{-20\%}^{+17\%} \\ \hline \end{array}$$

$$\Delta M_{(N)NLO} = \Delta M_{\rm LO} \, K_{(N)NLO}$$

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} \right.$	-8
NNLOsv	$\left -67.7^{+22\%}_{-26\%} \right $	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} \end{array} } \right.$	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$-56.0^{+13\%}_{-14\%}$	-5
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$-46.4^{+20\%}_{-24\%}$	-4

Gaussian fit method

Federica Devoto

HP2 2022, 21/09/2022

 $.6 \, \mathrm{TeV}$ $.8_{-0.2\%}$ $5.4^{+12\%}_{-12\%}$ $6.2^{+17\%}_{-20\%}$

 $\Delta M_{(N)NLO} = \Delta M_{\rm LO} K_{(N)NLO}$

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} \right.$	-8
NNLOsv	$\left -67.7^{+22\%}_{-26\%} \right $	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} \end{array} } \right.$	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$-56.0^{+13\%}_{-14\%}$	-5
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$-46.4^{+20\%}_{-24\%}$	-4

Gaussian fit method

Federica Devoto

HP2 2022, 21/09/2022

Starting to converge..

 $\Delta M_{(N)NLO} = \Delta M_{\rm LO} K_{(N)NLO}$

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} \right.$	-8
NNLOsv	$\left -67.7^{+22\%}_{-26\%} \right $	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} \end{array} } \right.$	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$-56.0^{+13\%}_{-14\%}$	-5
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$-46.4^{+20\%}_{-24\%}$	-4

Gaussian fit method

Federica Devoto

HP2 2022, 21/09/2022

Starting to converge...

$\Delta M [{ m MeV}]$	First moment	Gaussian
$ $ $K_{\rm NLO}$	0.662	0.662
$\mid K_{ m NNLOsv}$	0.551	0.552

 $\Delta M_{(N)NLO} = \Delta M_{\rm LO} K_{(N)NLO}$ erc 19

 $.6 \, \mathrm{TeV}$ $.8_{-0.2\%}$ $5.4^{+12\%}_{-12\%}$ $6.2^{+17\%}_{-20\%}$

$\mid \Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} \right.$	-82
NNLOsv	$-67.7^{+22\%}_{-26\%}$	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} \end{array} } \right.$	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$-56.0^{+13\%}_{-14\%}$	-5
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$-46.4^{+20\%}_{-24\%}$	-4

Gaussian fit method

Federica Devoto

HP2 2022, 21/09/2022

Starting to converge..

$\mid \Delta M [{ m MeV}]$	First moment	Gaussian
$ $ $K_{\rm NLO}$	0.662	0.662
$K_{ m NNLOsv}$	0.551	0.552

 $\Delta M_{(N)NLO} = \Delta M_{\rm LO} K_{(N)NLO}$

19

 $5.6 \text{ TeV} \\ \hline 3.8_{-0.2\%} \\ \hline 5.4^{+12\%}_{-12\%} \\ \hline 6.2^{+17\%}_{-20\%} \\ \hline \end{vmatrix}$

$\mid \Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-12
NLO	$\left {\begin{array}{*{20}c} -82.0^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} } \right.$	-82
NNLOsv	$-67.7^{+22\%}_{-26\%}$	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} \end{array} } \right.$	-6'

First moment method

$\Delta M [{ m MeV}]$	7 TeV	8 TeV	13
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \end{array} \right $	$ -77.7^{+0.5\%}_{-0.7\%}$	-83
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$-56.0^{+13\%}_{-14\%}$	-5
NNLOsv	$-46.1^{+22\%}_{-26\%}$	$-46.4^{+20\%}_{-24\%}$	-4

Gaussian fit method

Federica Devoto

Conclusions and outlooks

- Mass-shift can be used to put bounds on the Higgs width
- We extended the existing analysis beyond NLO and included NNLO corrections in the soft-virtual approximation
- The NLO mass-shift is enhanced at low values of Higgs p_T , we expect the bulk of contribution coming from this region -> SV good approximation

•
$$K_{NNLOsv} = 0.55$$

- Study of Higgs p_T distribution beyond LO in $gg \rightarrow H \rightarrow \gamma \gamma j$ would enable p_T dependent mass shift extraction (future work!)
- Ultimate goal is the exact calculation: would enable to perform a full analysis of interference effects

Federica Devoto

20

Thank you for your attention!

Back up slides

Federica Devoto

Validation of SV: signal

- Exact calculation available up to N3LO both inclusive [Anastasiou et al '15] and differential [Chen et al '21]
- Soft-virtual (SV) approximation studied extensively in the Higgs sector
- Known how to "tweak" it, i.e. retain subleading terms (which would naively vanish at threshold $z \rightarrow 1$)

We will use a "soft-collinear" approximation for the signal:

$$\mathscr{D}_{i}(z) \rightarrow \mathscr{D}_{i}(z) + \delta \mathscr{D}_{i}(z)$$

 $\delta \mathscr{D}_{i}(z) = (2 - 3z + 2z^{2}) \frac{\log^{i}((1 - z)/\sqrt{z})}{1 - z} - \frac{\log^{i}(1 - z)}{1 - z}$

Federica Devoto

HP2 2022, 21/09/2022

Higgs K-factor at NLO (NNLO PDFs)

[Ball,Bonvini,Forte,Marzani,Ridolfi '14]

"NNLOsv'"

Validation of SV: signal

- Exact calculation available up to N3LO both inclusive [Anastasiou et al '15] and differential [Chen et al '21]
- Soft-virtual (SV) approximation studied extensively in the Higgs sector
- Known how to "tweak" it, i.e. retain subleading terms (which would naively vanish at threshold $z \rightarrow 1$)

We will use a "soft-collinear" approximation for the signal:

$$\mathscr{D}_{i}(z) \rightarrow \mathscr{D}_{i}(z) + \delta \mathscr{D}_{i}(z)$$

 $\delta \mathscr{D}_{i}(z) = (2 - 3z + 2z^{2}) \frac{\log^{i}((1 - z)/\sqrt{z})}{1 - z} - \frac{\log^{i}(1 - z)}{1 - z}$

Federica Devoto

HP2 2022, 21/09/2022

Higgs K-factor at NLO (NNLO PDFs)

[Ball,Bonvini,Forte,Marzani,Ridolfi '14]

"NNLOsv'"

Validation of SV: signal

- Exact calculation available up to N3LO both inclusive [Anastasiou et al '15] and differential [Chen et al '21]
- Soft-virtual (SV) approximation studied extensively in the Higgs sector
- Known how to "tweak" it, i.e. retain subleading terms (which would naively vanish at threshold $z \rightarrow 1$)

We will use a "soft-collinear" approximation for the signal:

$$\mathscr{D}_{i}(z) \rightarrow \mathscr{D}_{i}(z) + \delta \mathscr{D}_{i}(z)$$

$$\delta \mathscr{D}_{i}(z) = (2 - 3z + 2z^{2}) \frac{\log^{i}((1 - z)/\sqrt{z})}{1 - z} - \frac{\log^{i}(1 - z)}{1 - z}$$

Federica Devoto

Higgs K-factor at NLO (NNLO PDFs)

$\mid \Delta M [{ m MeV}]$	7 TeV	8 TeV	13.6 TeV
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \right.$	$\left \begin{array}{c} -77.7^{+0.5\%}_{-0.7\%} \end{array} \right $	$-83.8_{-0.2\%}$
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -56.0^{+13\%}_{-14\%} \end{array} } \right.$	$-55.4^{+12\%}_{-12\%}$
NNLOsv	$\left -46.1^{+22\%}_{-26\%} \right $	$-46.4^{+20\%}_{-24\%}$	$\left -46.2^{+17\%}_{-20\%} \right $
NNLOsv'	$\left \begin{array}{c} -39.4^{+13\%}_{-20\%} \end{array} \right $	$\left {\begin{array}{*{20}c} - 39.7^{+11\%}_{-19\%} \end{array} } \right.$	$\left \begin{array}{c} -39.6^{+7.8\%}_{-14\%} \end{array} \right $

$\Delta M [{ m MeV}]$	$7 { m TeV}$	8 TeV	13.6 TeV
LO	$-111.0^{+0.7\%}_{-0.9\%}$	$-114.1^{+0.5\%}_{-0.7\%}$	$\mid -123.2^{+0.1\%}_{-0.2\%}\mid$
NLO	$-82.0^{+13\%}_{-15\%}$	$\left {\begin{array}{*{20}c} -82.3^{+12\%}_{-14\%} \end{array} } \right.$	$\left \begin{array}{c} -81.5^{+12\%}_{-12\%} \end{array} \right $
NNLOsv	$-67.7^{+22\%}_{-26\%}$	$\left {\begin{array}{*{20}c} -68.2^{+20\%}_{-24\%} } \right.$	$\left -67.9^{+17\%}_{-20\%} \right $
NNLOsv'	$-57.9^{+12\%}_{-20\%}$	$-58.4^{+11\%}_{-18\%}$	$\left {\begin{array}{*{20}c} -58.2^{+7.8\%}_{-14\%} \end{array}} \right $

HP2 2022, 21/09/2022

25

First moment method

$\mid \Delta M [{ m MeV}]$	7 TeV	8 TeV	13.6 TeV	Gaussian fit method
LO	$\left \begin{array}{c} -75.6^{+0.7\%}_{-0.9\%} \right.$	$\left \begin{array}{c} -77.7^{+0.5\%}_{-0.7\%} \end{array} \right $	$ -83.8_{-0.2\%} $	
NLO	$\left {\begin{array}{*{20}c} -55.8^{+13\%}_{-15\%} \end{array} } \right.$	$\left {\begin{array}{*{20}c} -56.0^{+13\%}_{-14\%} \end{array} } \right.$	$\left \begin{array}{c} -55.4^{+12\%}_{-12\%} \end{array} \right $	
NNLOsv	$\left -46.1^{+22\%}_{-26\%} \right $	$\left -46.4^{+20\%}_{-24\%} \right $	$\left -46.2^{+17\%}_{-20\%} \right $	
NNLOsv'	$\left {\begin{array}{*{20}c} - 39.4^{+13\%}_{-20\%} } \right.$	$\left {\begin{array}{*{20}c} - 39.7^{+11\%}_{-19\%} \end{array} } \right.$	$\mid -39.6^{+7.8\%}_{-14\%} \mid$	
$\mid \Delta M [{ m MeV}]$	7 TeV $ $	$8 { m TeV}$	13.6 TeV	First moment method
				_
LO	$\left \begin{array}{c} -111.0^{+0.7\%}_{-0.9\%} \end{array} \right $	$-114.1^{+0.5\%}_{-0.7\%}$	$ -123.2^{+0.1\%}_{-0.2\%}$	
NLO	$\left -82.0^{+13\%}_{-15\%} \right $	$-82.3^{+12\%}_{-14\%}$	$-81.5^{+12\%}_{-12\%}$	
NNLOsv	$\left -67.7^{+22\%}_{-26\%} \right $	$-68.2^{+20\%}_{-24\%}$	$\left -67.9^{+17\%}_{-20\%} \right $	

$\mid \Delta M [{ m MeV}]$	7 TeV	8 TeV	
LO	$ -111.0^{+0.7\%}_{-0.9\%}$	$ -114.1^{+0.5\%}_{-0.7\%}$	-
NLO	$\left -82.0^{+13\%}_{-15\%} \right $	$-82.3^{+12\%}_{-14\%}$	-
NNLOsv	$\left -67.7^{+22\%}_{-26\%} \right $	$\left -68.2^{+20\%}_{-24\%} \right $	-
NNLOsv'	$\left -57.9^{+12\%}_{-20\%} \right $	$-58.4^{+11\%}_{-18\%}$	-

$$-58.2^{+7.8\%}_{-14\%}$$

HP2 2022, 21/09/2022

