

Speeding up SM Amplitude Calculations with Chirality Flow

HP2 2022 21 SEPTEMBER 2022 - ANDREW LIFSON BASED ON HEP-PH:2003.05877 (EPJC), HEP-PH:2011.10075 (EPJC), AND HEP-PH:2203.13618 (EPJC) IN COLLABORATION WITH JOAKIM ALNEFJORD, CHRISTIAN REUSCHLE, MALIN SJÖDAHL, AND ZENNY WETTERSTEN

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED Massless QCD

Massive Particles

Automation

Aim and metho Results

Conclusions

1 Introduction

- Spinor-helicity recap
- Colour flow reminder

2 Chirality Flow

- Massless QED
- Massless QCD
- Massive Particles

3 Automation

- Aim and method
- Results

4 Conclusions

Our Main Numerical Result (so far) (hep-ph:2203.13618)

Introduction

Spinor-helicity recap

Chirality Flow

Massless QED Massless QCD

Massive Particles

Automation

Aim and methor Results

Conclusions

Andrew Lifson

Automating Chirality Flow

21st September 2022 4/21

Spinor-Helicity: its Building Blocks

ntroduction

Spinor-helicity recap

Colour flow reminde

Chirality Flow

Massless QED Massless QCD Massive Particles

Automation

Aim and methoo Results

Conclusions

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Spinors (use chiral basis):

$$u^{+}(p) = v^{-}(p) = \begin{pmatrix} 0 \\ |p \rangle \end{pmatrix} \qquad u^{-}(p) = v^{+}(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix}$$

$$\bar{u}^{+}(p) = \bar{v}^{-}(p) = ([p| \ 0) \qquad \bar{u}^{-}(p) = \bar{v}^{+}(p) = (0 \ \langle p|)$$

Amplitude written in terms of Lorentz-invariant spinor inner products

$$\langle ij \rangle = -\langle ji \rangle \equiv \langle i||j \rangle$$
 and $[ij] = -[ji] \equiv [i||j]$

These are well known complex numbers, $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$

Andrew Lifson

Spinor-Helicity: Vectors and Removing μ Indices

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$

Introduction

Spinor-helicity recap

Colour flow reminder

Chirality Flow

Massless QED Massless QCD Massive Particles

Automation

Aim and method Results

Conclusions

Dirac matrices in chiral basis $\gamma^{\mu}=egin{pmatrix} 0&\sqrt{2} au^{\mu}\ \sqrt{2}ar{ au}^{\mu}&0 \end{pmatrix} \qquad \sqrt{2} au^{\mu}=(1,ec{\sigma}), \ \sqrt{2}ar{ au}^{\mu}=(1,-ec{\sigma}),$ Remove vector indices with e.g. $\underbrace{\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|l\rangle = \langle il\rangle[kj]}_{\sqrt{2}\rho^{\mu}\tau_{\mu}} \equiv p = |p]\langle p|$ Fierz identity Contraction with Pauli Polarisation vectors ($r \equiv$ gauge choice, $r^2 = 0$, $r \cdot p \neq 0$): $\oint_{+}(p,r) = \frac{|p|\langle r|}{\langle rp \rangle},$

Andrew Lifson

Automating Chirality Flow

21st September 2022 6/21

Introduction

Spinor-helicity recap

Colour flow reminder

Chirality Flow

- Massless QED Massless OCD
- Massive Particles

Automation

Aim and methoo Results

Conclusions

- $|p\rangle \equiv$ right-chiral spinor
- $\blacksquare |p] \equiv \text{left-chiral spinor}$
- $\tau^{\mu}, \bar{\tau}^{\mu} \equiv$ Pauli matrices

•
$$\langle ij
angle \sim [ij] \sim \sqrt{2 p_i \cdot p_j}$$

Andrew Lifson

Introduction

Spinor-helicity recap

Colour flow reminder

Chirality Flow

Massless QED Massless QCD

Massive Particles

Automation

Aim and methoo Results

Conclusions

- $|p\rangle \equiv \text{right-chiral spinor}$
- $\blacksquare |p] \equiv \text{left-chiral spinor}$
- $\tau^{\mu}, \bar{\tau}^{\mu} \equiv$ Pauli matrices

$$\langle ij
angle \sim [ij] \sim \sqrt{2 p_i \cdot p_j}$$

Spinor helicity: explicit matrix multiplication

$$\sim \left[ar{u}^{-}(p_1)\gamma^{\mu}\epsilon^+_{\mu}(p_4)\left(p_1^{
u}+p_4^{
u}
ight)\gamma_{
u}\gamma^{
ho}\epsilon^-_{
ho}(p_3)v^+(p_2)
ight]$$

- Also cache and recycle various components
- Most common numerical method

Andrew Lifson

Automating Chirality Flow

21st September 2022 7/21

Introduction

Spinor-helicity recap

Colour flow reminder

Chirality Flow

Massless QED Massless QCD

Massive Particles

Automation

Aim and methoo Results

Conclusions

- $|p\rangle \equiv$ right-chiral spinor
- $|p] \equiv$ left-chiral spinor
- $\tau^{\mu}, \bar{\tau}^{\mu} \equiv$ Pauli matrices

$$\langle ij
angle \sim [ij] \sim \sqrt{2
ho_i \cdot
ho_j}$$

Spinor helicity: explicit matrix multiplication

$$\sim \left[ar{u}^{-}(p_1)\gamma^{\mu}\epsilon^+_{\mu}(p_4)\left(p_1^{
u}+p_4^{
u}
ight)\gamma_{
u}\gamma^{
ho}\epsilon^-_{
ho}(p_3)v^+(p_2)
ight]$$

- Also cache and recycle various components
- Most common numerical method

Can we systematically remove need for algebra or matrix multiplication?

Andrew Lifson

Colour Flow: a Quick Introduction

ntroduction

Spinor-helicity recap

Chirality Flow

Massless QED Massless QCD Massive Particles

Automation

Aim and metho Results

Conclusions

Standard method in SU(N)-colour calculations:

Write all objects in terms of $\delta_{i\bar{\jmath}} \equiv$ flows of colour (for simplicity $T_R =$ 1) Calculations done pictorially, not via indices

Andrew Lifson

Automating Chirality Flow

21st September 2022 8/21

Chirality Flow Building Blocks

ntroduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED Massless QCD Massive Particles

Automation

Aim and method Results

Conclusions

Key idea (hep-ph:2003.05877)

Draw & connect lines to directly obtain inner products $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$ Removes need to do algebra or matrix multiplication

■ Define spinors as lines $\bar{u}_i^- = \bar{v}_i^+ = \langle i | \alpha = \bigcirc \qquad i \quad , \qquad u_j^+ = v_j^- = |j\rangle_{\alpha} = \bigcirc \qquad j$ $\bar{u}_i^+ = \bar{v}_i^- = [i]_{\dot{\beta}} = \bigcirc \qquad i \quad , \qquad u_j^- = v_j^+ = |j]^{\dot{\beta}} = \bigcirc \qquad j$

Spinor inner products follow

$$\langle i|^{\alpha}|j\rangle_{\alpha} \equiv \langle ij\rangle = -\langle ji\rangle = i _ j$$
$$[i|_{\dot{\beta}}|j]^{\dot{\beta}} \equiv [ij] = -[ji] = i j$$

Define slashed momentum as dot

Andrew Lifson

Automating Chirality Flow

21st September 2022 9/21

The Massless QED Flow Rules: External Particles

Automation

Aim and method Results

Conclusions

Left-chiral \equiv dotted lines

right-chiral \equiv solid lines

Andrew Lifson

Automating Chirality Flow

21st September 2022 10/21

The QED Flow Rules: Vertices and Propagators

Colour flow reminder

Left-chiral \equiv dotted lines

right-chiral \equiv solid lines

Andrew Lifson

Automating Chirality Flow

21st September 2022 11/21

Automation

Aim and method Results

Conclusions

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED

Massless QCD Massive Particles

Automation

Aim and method Results

Conclusions

Andrew Lifson

Chirality flow:

Automating Chirality Flow

21st September 2022 12/21

 r_4

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED

Massless QCD Massive Particles

Automation

Aim and method Results

Conclusions

Chirality flow:

Andrew Lifson

Automating Chirality Flow

21st September 2022 12/21

A complicated QED Example

ntroduction

Spinor-helicity recap Colour flow reminde

Chirality Flow

Massless QED

Massless QCD Massive Particles

Automation

Aim and methor Results

Conclusions

Arrow directions only consistently set within full diagram

Andrew Lifson

UNIVERSITY

QCD Example: $q_1\bar{q}_1 \rightarrow q_2\bar{q}_2g$

Introduction

Spinor-helicity recap

Chirality Flow

Massless QED

Massless QCD

Massive Particles

Automation

Aim and metho Results

Conclusions

Automating Chirality Flow

21st September 2022 15/21

Massive Chirality Flow (hep-ph:2011.10075)

Introduction

Spinor-helicity recap Colour flow reminde

Chirality Flow

- Massless QED
- Massive Particles

Automation

Aim and method Results

Conclusions

Decompose massive momentum into massless ones

$$p^{\mu} = p^{\flat,\mu} + lpha q^{\mu} \;, \quad (p^{\flat})^2 = q^2 = 0 \;, \quad lpha = rac{p^2}{2p^{\flat,\mu}}$$

Spinors contain both chiralities, e.g.

$$\bar{\mathbf{v}}^{-}(\mathbf{p}) = \textcircled{p}_{-}^{p} = \left(\textcircled{p}_{-}^{p}, \underbrace{m}_{\langle qp^{\flat} \rangle} \textcircled{p}_{-}^{p} \right)$$

- Add new polarisation vector $\notin_0 = \frac{1}{m\sqrt{2}}$
- Need matrix structure in fermion propagators and vertices, e.g.

$$p^{\mu}\gamma_{\mu} - m \sim \begin{pmatrix} m^{\underline{\alpha}} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Andrew Lifson

Massive Chirality Flow (hep-ph:2011.10075)

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED Massless QCD

Massive Particles

Automation

Aim and method Results

Conclusions

Main conclusion

Matrix structure unavoidable with massive fermions Proceed as before to calculate without algebra

Andrew Lifson

A Massive Illuminating Example

ntroduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

- Massless QED
- Massless QCD
- Massive Particles

Automation

Aim and method Results

Conclusions

Consider the same diagram of $f_1^+ \bar{f}_2^- \to \gamma_3^+ \gamma_4^-$ as before but include mass m_f

Andrew Lifson

Automating Chirality Flow

21st September 2022 17/21

MadGraph and the Automation of Chirality Flow

ntroduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED Massless QCD Massive Particles

Automation

Aim and method Results

Conclusions

UNIVERSITY

Summary

- So far: Numerical calculations use explicit multiplication rather than spin algebra analytically because quicker
- We have made the analytical spin algebra trivial
 - Can we use this to make even faster numerics?

MadGraph and the Automation of Chirality Flow

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED Massless QCD Massive Particles

Automation

Aim and method Results

Conclusions

Summary

- So far: Numerical calculations use explicit multiplication rather than spin algebra analytically because quicker
- We have made the analytical spin algebra trivial
- Can we use this to make even faster numerics?

Use MadGraph5_aMC@NLO (MG5aMC) for proof of concept automation

- Make minimal changes to massless QED in MG5aMC
- Pro: any difference in speed from our changes ⇒ sound conclusions
- Con: MG5aMC not designed for chirality flow ⇒ not optimal implementation

Sources of Expect Speed Gains

Simplified vertices and propagators

- We minimise matrix multiplication
- Each component of a calculation is simpler

pinor-helicity recap

1

Colour flow reminder

Chirality Flow

- Massless QED Massless QCD
- Massive Particles

Automation

Aim and method Results

Conclusions

Andrew Lifson

Sources of Expect Speed Gains

Simplified vertices and propagators

- We minimise matrix multiplication
- Each component of a calculation is simpler
- 2 Gauge-based diagram removal
 - Polarisation vectors contain arbitrary gauge-reference spinor of momentum r
 - Spinor inner products antisymmetric $\Rightarrow \langle ii \rangle = [jj] = 0$
 - Chirality-flow makes optimal choice of r obvious \Rightarrow remove diagrams!

Andrew Lifson

ntroduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED Massless QCD

Automation

Aim and method Results

Conclusions

Our Main Result (hep-ph:2203.13618)

ntroduction

Spinor-helicity recap

Chirality Flow

Massless QED Massless QCD

Massive Particles

Automation

Aim and method

Results

Conclusions

Andrew Lifson

Automating Chirality Flow

21st September 2022 20/21

Conclusions and Outlook

ntroduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED Massless QCD Massive Particles

Automation

Aim and method Results

Conclusions

Conclusions:

- Chirality flow is the shortest route from Feynman diagram to complex number
- We have flow rules for full SM at tree level
- We automised it for massless QED, found significant gains in MadGraph

Outlook and other work in this area:

- Simon Plätzer and Malin Sjödahl used chirality flow as basis for resummation (hep-ph:2204.03258)
- Use method analytically to calculate loop amplitudes
 - Ongoing work by AL, Simon Plätzer, and Malin Sjödahl,
- Automate for rest of (tree-level) Standard Model and tweak algorithm to use all possible features of chirality flow
 - Two current master students working to achieve this

Reminder: Lorentz Group Representations

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Lorentz group elements: $e^{i(\theta_i J_i + \eta_i K_i)}$ $J_i \equiv \text{rotations}$, $K_i \equiv \text{boosts}$

Lorentz group generators ≃ 2 copies of su(2) generators
 so(3,1)_C ≃ su(2) ⊕ su(2)

Group algebra defined by commutator relations

 $[J_i, J_j] = i\epsilon_{ijk}J_k, \quad [J_i, K_j] = i\epsilon_{ijk}K_k, \quad [K_i, K_j] = -i\epsilon_{ijk}J_k$ $N_i^{\pm} = \frac{1}{2}(J_i \pm iK_i), \quad [N_i^-, N_j^+] = 0,$ $[N_i^-, N_i^-] = i\epsilon_{ijk}N_k^-, \qquad [N_i^+, N_i^+] = i\epsilon_{ijk}N_k^+$

- (0,0) scalar particles
- ($\frac{1}{2}$, 0) left-chiral and (0, $\frac{1}{2}$) right-chiral Weyl (2-component) spinors.
- ($\frac{1}{2}$, 0) \oplus (0, $\frac{1}{2}$), Dirac (4-component) spinors.
- ($\frac{1}{2}, \frac{1}{2}$) vectors, e.g. gauge bosons

Andrew Lifson

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Lorentz algebra $so(3,1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Outgoing polarisation vectors:

$$\epsilon^{\mu}_{+}(p,r) = rac{\langle r|ar{ au}^{\mu}|p]}{\langle rp
angle} \,, \qquad \epsilon^{\mu}_{-}(p,r) = rac{[r| au^{\mu}|p
angle}{[pr]}$$

r is a (massless) arbitrary reference momentum (*p* · *r* ≠ 0)
 Different *r* choices correspond to different gauges

$$\epsilon^{\mu}_{+}(p,r')-\epsilon^{\mu}_{+}(p,r)=-p^{\mu}rac{\langle r'r
angle}{\langle r'
ho
angle \langle rp
angle}$$

- Gauge invariant quantities must be *r*-invariant
 - Choose *r* as conveniently as possible (remember $\langle ij \rangle = -\langle ji \rangle$ s.t. $\langle ii \rangle = 0$) (4-gluon amplitude: can make 20/21 terms vanish)
 - Variance under $r \rightarrow r'$ good check of gauge invariance of (partial) amplitude

Andrew Lifson

Spinor-Helicity: Vectors and Removing μ Indices

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Dirac matrices in chiral basis

$$\lambda^\mu = egin{pmatrix} 0 & \sqrt{2} au^\mu \ \sqrt{2}ar{ au}^\mu & 0 \end{pmatrix} \qquad \sqrt{2} au^\mu = (1,ec{\sigma}), \ \ \sqrt{2}ar{ au}^\mu = (1,-ec{\sigma}),$$

Remove $\tau/\bar{\tau}$ matrices in amplitude with

$$\underbrace{\langle \boldsymbol{i}|\bar{\tau}^{\mu}|\boldsymbol{j}][\boldsymbol{k}|\tau_{\mu}|\boldsymbol{l}\rangle = \langle \boldsymbol{i}\boldsymbol{l}\rangle[\boldsymbol{k}\boldsymbol{j}]}_{\text{Fierz identity}},$$

$$\underbrace{\langle \boldsymbol{i}|\bar{\tau}^{\mu}|\boldsymbol{j}]=[\boldsymbol{j}|\tau^{\mu}|\boldsymbol{i}\rangle}_{\boldsymbol{\lambda}}$$

Charge Conjugation

Express (massless) p^{μ} in terms of spinors

$$p^{\mu} = rac{[
ho| au^{\mu}|
ho
angle}{\sqrt{2}} = rac{\langle
ho|ar{ au}^{\mu}|
ho]}{\sqrt{2}} , \quad \sqrt{2} p^{\mu} au_{\mu} \equiv p \hspace{-1.5mm}/ = |
ho| \langle
ho| , \quad \sqrt{2} p^{\mu} ar{ au}_{\mu} \equiv ar{p} = |
ho
angle [
ho|$$

Andrew Lifson

Automating Chirality Flow

21st September 2022 3/17

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Lorentz algebra $so(3, 1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Outgoing polarisation vectors ($r \equiv$ gauge choice, $r^2 = 0, r \cdot p \neq 0$): $egin{aligned} \epsilon^{\mu}_{+}(oldsymbol{p},r) &= rac{\langle r|ar{ au}^{\mu}|oldsymbol{p}]}{\langle r oldsymbol{p}
angle} \ , \ oldsymbol{p} \cdot \epsilon_{+}(oldsymbol{p},r) &= rac{\langle r|oldsymbol{p}^{\mu}ar{ au}_{\mu}|oldsymbol{p}]}{\langle r oldsymbol{p}
angle} = 0 \end{aligned}$ $\epsilon^{\mu}_{-}(\boldsymbol{p},r) = \frac{[r|\tau^{\mu}|\boldsymbol{p}\rangle}{[\boldsymbol{p}r]}$ $oldsymbol{p} \cdot \epsilon^{\mu}_{-}(oldsymbol{p},r) = rac{[r| oldsymbol{p}^{\mu} au_{\mu} | oldsymbol{p}
angle}{[oldsymbol{p}r]} = 0$ Weyl eq. $p^{\mu} \bar{\tau}_{\mu} | p = 0$ Weyl eq. $p^{\mu}\tau_{\mu}|p\rangle = 0$ $\epsilon_{+}(p,r)\cdot(\epsilon_{-})^{*}(p,r) = \underbrace{\frac{\langle r|\bar{\tau}^{\mu}|p|}{\langle rp\rangle}}_{[pr]} \underbrace{\frac{|r|\tau_{\mu}|p\rangle}{[pr]}}_{[pr]} = \frac{\langle rp\rangle[rp]}{\langle rp\rangle[pr]} = \underbrace{-1}_{[pr]=-[n]}$ $\epsilon_{\pm} = (\epsilon_{\pm})^*$

Andrew Lifson

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Colour Flow: a Quick Introduction Standard method in SU(N)-colour calculations:

Write all objects in terms of $\delta_{i\bar{\jmath}} \equiv$ flows of colour (for simplicity $T_R =$ 1) Calculations done pictorially, not via indices

Andrew Lifson

Automating Chirality Flow

21st September 2022 5/17

Massive Examples

Spinor Helicity Reminder Colour flow reminder

Massless OCD

Colour Flow: a Quick Introduction Standard method in SU(N)-colour calculations:

Arrow directions only consistently set within full diagram Double line $\equiv g_{\mu\nu}$, momentum dot $\equiv p_{\mu}$

Andrew Lifson

Automating Chirality Flow

21st September 2022 7/17

The Non-abelian Massless QCD Flow Vertices

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

QCD Example: $q_1\bar{q}_1 \rightarrow q_2\bar{q}_2g$

Backup Slides

- Spinor Helicity Reminder Colour flow reminder Massless OCD
- Massive Chirality Flow Massive Examples
- **Lorentz Group Details**
- Spinor-hel details
- Chirality-Flow Motivation

Andrew Lifson

Automating Chirality Flow

21st September 2022 8/17

Incoming Massive Spinors in Chirality Flow

- **Backup Slides**
- Spinor Helicity Reminder Colour flow reminder Massless OCD
- **Massive Chirality Flow** Massive Examples

- Motivation

$$p^{\mu} = p^{\flat,\mu} + \alpha q^{\mu} , \quad (p^{\flat})^2 = q^2 = 0 , \quad e^{i\varphi}\sqrt{\alpha} = \frac{m}{\langle p^{\flat}q \rangle} , \qquad e^{-i\varphi}\sqrt{\alpha} = \frac{m}{[qp^{\flat}]}$$
Spin operator $-\frac{\Sigma^{\mu}s_{\mu}}{2} = \frac{\gamma^5 s^{\mu}\gamma_{\mu}}{2}, \quad s^{\mu} = \frac{1}{m}(p^{\flat,\mu} - \alpha q^{\mu})$

Automating Chirality Flow

21st September 2022 9/17

Some Fermion Flow Rules

$$oldsymbol{p}^\mu = oldsymbol{p}^{lat,\mu} + lpha oldsymbol{q}^\mu \;, \quad (oldsymbol{p}^arphi)^2 = oldsymbol{q}^2 = oldsymbol{0} \;, \quad lpha = rac{oldsymbol{p}^2}{2oldsymbol{p}\cdotoldsymbol{q}}
eq 0$$

Fermion-vector vertex

Massive Examples

Backup Slides Spinor Helicity Reminder Colour flow reminder Massless QCD

Lorentz Group Details

Massive Chirality Flow

Spinor-hel details

Chirality-Flow Motivation

$$\sum m = ie(P_L C_L + P_R C_R)\gamma^{\mu} = ie\sqrt{2} \left(C_L \right)$$

$$\begin{pmatrix} 0 & C_R \\ C_L & 0 \end{pmatrix}$$

Fermion propagator

$$\frac{i}{p^2 - m_f^2} \begin{pmatrix} m_f \delta^{\dot{\alpha}}{}_{\dot{\beta}} & \sqrt{2} p^{\dot{\alpha}\beta} \\ \sqrt{2}\bar{p}_{\alpha\dot{\beta}} & m_f \delta_{\alpha}{}^{\beta} \end{pmatrix} = \frac{i}{p^2 - m_f^2} \begin{pmatrix} m_f \dot{\underline{\phi}}_{- \cdot \cdot \cdot \cdot \dot{\beta}} & \cdots & \overset{\Sigma_i p_i}{\bullet \cdot \cdot \cdot \cdot} \\ \xrightarrow{\Sigma_i p_i} & \cdots & m_f \overset{\Sigma_i p_i}{\bullet \cdot \cdot \cdot \cdot} & m_f \overset{\Sigma_i p_i}{\bullet \cdot \cdot \cdot \cdot} \end{pmatrix}$$

Left and right chiral couplings may differ

Andrew Lifson

Automating Chirality Flow

21st September 2022 10/17

A Massive Illuminating Example

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Consider the same diagram of $f_1^+ \bar{f}_2^- \rightarrow \gamma_3^+ \gamma_4^-$ as before but include mass m_f

Andrew Lifson

Automating Chirality Flow

21st September 2022 11/17

A Second Massive Example: $f_1 \overline{f}_2 \rightarrow W \rightarrow f_3 \overline{f}_4 h_5$

Andrew Lifson

Automating Chirality Flow

21st September 2022 12/17

A Second Massive Example: $f_1 \overline{f}_2 \rightarrow W \rightarrow f_3 \overline{f}_4 h_5$

Backup Slides

- Spinor Helicity Reminder Colour flow reminder Massless QCD
- Massive Chirality Flow Massive Examples
- **Lorentz Group Details**
- Spinor-hel details
- Chirality-Flow Motivation

- W bosons simplifies ($C_R = 0$)
- Simplify with choices of $q_1, \dots q_5$ $e^{i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{\langle p_i^b q_i \rangle}, \quad e^{-i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{[q_i p_i^b]}$
- Scalar has no flow line

Step 2: Flip arrows and connect: $C_{L,12}C_{L,34}\sqrt{\alpha_2\alpha_3}e^{i(\varphi_2+\varphi_3)}$

Andrew Lifson

21st September 2022 12/17

Lorentz Group Representations

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Lorentz group elements: $e^{i(\theta_i J_i + \eta_i K_i)}$ $J_i \equiv \text{rotations}$, $K_i \equiv \text{boosts}$

Lorentz group generators ≃ 2 copies of su(2) generators
 so(3,1)_C ≅ su(2) ⊕ su(2)

Group algebra defined by commutator relations

$$[J_i, J_j] = i\epsilon_{ijk}J_k, \quad [J_i, K_j] = i\epsilon_{ijk}K_k, \quad [K_i, K_j] = -i\epsilon_{ijk}J_k$$
$$N_i^{\pm} = \frac{1}{2}(J_i \pm iK_i), \quad [N_i^-, N_j^+] = 0,$$
$$[N_i^-, N_j^-] = i\epsilon_{ijk}N_k^-, \quad [N_i^+, N_j^+] = i\epsilon_{ijk}N_k^+$$

- **Representations** (i.e. realisations of N_i^{\perp})
 - (0,0) scalar particles
 - ($\frac{1}{2}$, 0) left-chiral and (0, $\frac{1}{2}$) right-chiral Weyl (2-component) spinors.
 - ($\frac{1}{2}$, 0) \oplus (0, $\frac{1}{2}$), Dirac (4-component) spinors.
 - $\left(\frac{1}{2},\frac{1}{2}\right)$ vectors, e.g. gauge bosons

Andrew Lifson

How to Calculate? Spinor-Helicity

Give each particle a defined helicity \Rightarrow amplitude now a number!

pinors (in chiral basis):

$$u^+(p) = v^-(p) = \begin{pmatrix} 0 \\ |p \rangle \end{pmatrix}$$
 $u^-(p) = v^+(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix}$
 $\bar{u}^+(p) = \bar{v}^-(p) = ([p| \ 0) \qquad \bar{u}^-(p) = \bar{v}^+(p) = (0 \ \langle p|)$
 $\gamma^{\mu} = \begin{pmatrix} 0 & \sqrt{2}\tau^{\mu} \\ \sqrt{2}\bar{\tau}^{\mu} & 0 \end{pmatrix}$
 $\sqrt{2}\tau^{\mu} = (1, \vec{\sigma}), \ \sqrt{2}\bar{\tau}^{\mu} = (1, -\vec{\sigma}),$

Amplitude written in terms of Lorentz-invariant spinor inner products

$$\langle ij \rangle = -\langle ji \rangle \equiv \langle i||j \rangle$$
 and $[ij] = -[ji] \equiv [i||j]$

- These are well known complex numbers, $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$
- Remove $\tau/\bar{\tau}$ matrices in amplitude with

 $\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|l\rangle = \langle il\rangle[kj], \qquad \langle i|\bar{\tau}^{\mu}|j] = [j|\tau^{\mu}|i\rangle$

Andrew Lifson

S

Automating Chirality Flow

Massive Examples

Spinor-hel details

How to Calculate a Process

Backup Slides

- Spinor Helicity Reminder Colour flow reminder Massless QCD
- Massive Chirality Flow Massive Examples
- Lorentz Group Details
- Spinor-hel details

Chirality-Flow Motivation

Sum all Feynman diagrams, square, and integrate

Often spin structure is non-trivial

$$\sim \left[ar{u}(m{p}_1) \gamma^\mu \left(m{p}_1^
u + m{p}_4^
u
ight) \gamma_
u \gamma^
ho m{v}(m{p}_2)
ight] \epsilon_
ho(m{p}_3) \epsilon_\mu(m{p}_4)
ight)$$

A mathematical expression we have simplify and square

Most common method: use helicity basis

Each diagram is a complex number, easy to square Can use algebra to simplify first, or brute force matrix multiplication

Define Problem

Backup Slides

- Spinor Helicity Reminder Colour flow reminder Massless QCD
- Massive Chirality Flow Massive Examples
- Lorentz Group Details
- Spinor-hel details
- Chirality-Flow Motivation

Kinematic part of amplitude slowed by spin and vector structures

- Can we still improve on this?
 - Deriving spinor inner products (ij), [kl] requires at least 2 steps
 - Re-write every object as spinors
 - **Use Fierz identity** $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
 - Not intuitive which inner products we obtain
 - In SU(N) use graphical reps for calculations
 - E.g. using the colour-flow method
 - (Also birdtracks etc.)
- Spinor-helicity $\equiv su(2) \oplus su(2)$
 - Can we use graphical reps?

Creating Chirality Flow: Building Blocks

Backup Slides

- Spinor Helicity Reminder Colour flow reminder Massless QCD
- Massive Chirality Flow Massive Examples
- Lorentz Group Details
- Spinor-hel details
- Chirality-Flow Motivation

- A flow is a directed line from one object to another su(2) objects have dotted indices and su(2) objects undotted indices
- First step: Ansatz for spinor inner products (only possible Lorentz invariant) $\langle i |^{\alpha} | j \rangle_{\alpha} \equiv \langle i j \rangle = -\langle j i \rangle = i \longrightarrow j$ $[i|_{\dot{\beta}} | j]^{\dot{\beta}} \equiv [i j] = -[j i] = i \longrightarrow j$

Spinors and Kronecker deltas follow

$$\langle i | {}^{\alpha} = \bigoplus i , \qquad |j\rangle_{\alpha} = \bigoplus j$$

$$[i|_{\dot{\beta}} = \bigoplus \cdots i , \qquad |j|^{\dot{\beta}} = \bigoplus \cdots j$$

$$\equiv \mathbb{1}_{\alpha}^{\beta} = \stackrel{\alpha}{\longrightarrow} \stackrel{\beta}{\longrightarrow} , \qquad \delta^{\dot{\beta}}_{\dot{\alpha}} \equiv \mathbb{1}^{\dot{\beta}}_{\dot{\alpha}} = \stackrel{\beta}{\longrightarrow} \cdots \stackrel{\dot{\alpha}}{\longrightarrow}$$

Andrew Lifson

 $\delta_{\alpha}^{\ \beta}$

Automating Chirality Flow

21st September 2022 17/17