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Review of the method of
regions (MoR)

Traditional approach in momentum space

v

N
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(from “Introduction to Soft-
Collinear Effective Theory”
by Becher, Broggio, Ferroglia)
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In terms of the method of regions:

The Feynman integral can be
regarded as a sum over
contributions from the
corresponding regions.
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Soft region : k¥ ~ (A, A, A)Q




‘ The University of Edinburgh

In terms of the method of regions:

Hard region : k" ~ (1,1,1)Q
Collinear region to p : k" ~ (A, 1, )\%)Q
Collinear region to [ : k" ~ (1, A, )\%)Q

Soft region : k¥ ~ (A, A, A)Q

v The hard region, for example:
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In terms of the method of regions:

Hard region : k" ~ (1,1,1)Q
Collinear region to p : k" ~ (A, 1, )\%)Q
Collinear region to [ : k" ~ (1, A, )\%)Q

Soft region : k¥ ~ (A, A, A)Q

v The hard region, for example:
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In terms of the method of regions:

Hard region : k" ~ (1,1,1)Q
Collinear region to p : k" ~ (A, 1, )\%)Q
Collinear region to [ : k" ~ (1, A, )\%)Q

Soft region : k¥ ~ (A, A, A)Q
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Traditional approach in momentum space

In terms of the method of regions:

Hard region : k" ~ (1,1,1)Q
Collinear region to p: k" ~ (A, 1, )\%)Q
Collinear region to [ : k" ~ (1, A, )\%)Q

Soft region : k¥ ~ (A, A, A)Q

2 2 2
W o I=L+L+ L+ = 52 (1H(Q)1n(i2)+7;+0(>\))

\ Actually, this equality holds to all orders of A!

(More examples can be find in Smirnov’s book “Applied
Asymptotic Expansions in Momenta and Masses”.)




Eyu : The University of Edinburgh

Traditional approach in momentum space

To summarize:

* The original integral can be approximated, or even
restored, by the sum over contributions from each
region.
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Traditional approach in momentum space

To summarize:

* The original integral can be approximated, or even
restored, by the sum over contributions from each
region.

\ J * The integration measure is the entire space for each
term.
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Traditional approach in momentum space

To summarize:

* The original integral can be approximated, or even
restored, by the sum over contributions from each

region.

\ , * The integration measure is the entire space for each
b term.

* The regions are chosen using heuristic methods
based on examples and experience.
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Review of the method of
regions (MoR)

The Newton Polytope Approach
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The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

B I'(D/2) > . —D/2
O = S 10D2 = ) Lo T /0 (H e l) \P(=e)

ecd

Plx,s) =U(x) + F(x, s),

U(x) = Z H T, Flx,s) = —ZSTQ H me—b—b{(az)ZmEme :

Tl egT! T2 egT? €




“ : The University of Edinburgh

The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

Our work focuses on the on-shell expansion
for wide-angle scattering:

on-shell expansion: -p? ~ Q2. q?- ~ Q2. m? =0

U wide-angle scattering:  pg - p; ~ Q° (Vk #1).

where A\ < 1 is asmall scaling vector.
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The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

Example:
q1
U=ux1+ x9 + 23,
_ LAY 2N\ 2N
F = (—pl).l?l,l’};g + (—])2).1?2.’1,-3 + (—ql).’i’,-l.’l,g.
P(x.s) =U(xz) + F(x, s).
P1 P2

oo
T(G) = C/ d:}:’ldq;gd:z:;_;:r’fl_1:1“:;2_13:‘;3_1
. _

: , , 2., 2 . 2. ..\~ D/2
-(11 + T2 + T3 — p1r1T3 — Por2T3 — ql-’ﬁllz)
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The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

Example:
q1 0
Hard region : x1,x2,x3 ~ A
Collinear region to py : @1, x5 ~ A1, x5 ~ A"
Collinear region to ps : @1 ~ A, @9, 3 ~ A7}
Soft region : &1, @2 ~ AL, x5 ~ A2
”m P2

o0
(@) = C / drydrgdrsr 2k
0
)—D/2

. . . 2., 2, 2
-(11 + T2 + X3 — PIT1T3 — Pr2T3 — 1 r1T2
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The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

Example:

a1

P1 P2

Hard region : xi,x2, 3 ~ \’

o0
—~ v1—1 1ro—1 wv3—1 2 _D/2
1, = C/ dridrodrsry' 5% "3’ '(:1:1 + 29 + 13 — Q7 :1?:13;2) :

0 _’_
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The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

Example:
qi1
P1 P2
\_ Collinear region to p; : ©1, 3 ~ A~ L, xy ~ X’

e @]
— rvi—1 _vo—1 v3—1 ] ] 2 ) 2 . _D/2
T, =C / dridrodrsxr' 1" x4’ -(.’1:1 + x3 — piTr1T3 — ql.rla:g)
J0
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The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

Example:

a1

v

P1 P2

\._ Collinear region to p2 : &1 ~ )\0, To, Ly ~ At

oo
: . —1 _vo—1_v3—1 ( N 2 2 D/2
Yy 7,,=C / dridxodrzry' 25" "x5° -(;1:2 + x3 — prr2T3 —ql.-r_:l;};g)
Jo
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The Newton polytope approach

Lee-Pomeransky representation of the Feynman integral

Example:

a1

P1 P2

Soft region : @1, @2 ~ A1, x5 ~ A2

- _ - i do A o 1—1 vo—1_ v3—1 ( 2 2 2 D/2
IS — C /[) (]..!..1(1;.!..2(&1 3;].-1 Lo d 3; -(;},:—; — P13 — PoA3 — ql.I.l;I,-Q) '
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The Newton polytope approach

A systematic way to determine these regions:

To construct the Newton polytope associated to the Lee-
Pomeransky polynomial:

. _, , 2 e N2 e e 2.,
P(x,s) =1 + xo + T3 — p{T1T3 — P5T2T3 — qT1T2

* 4 More precisely, the Newton polytope is the convex hull
of the exponents of the Lee-Pomeransky polynomial,
\ which is (N+1)-dimensional.

(N: the number of propagators of G)
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The Newton polytope approach

A systematic way to determine these regions:

To construct the Newton polytope associated to the Lee-
Pomeransky polynomial:

. _, , 2 e N2 e e 2.,
P(x,s) =1 + xo + T3 — p{T1T3 — P5T2T3 — qT1T2

1 l 1 1

(1,0,0,0) | (0,0,1,0) (1,0,1,1) (1,1,0,0)

(0,1,0,0) (0,1,1,1)
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The Newton polytope approach

The Newton polytope is the convex hull of the exponents
of the Lee-Pomeransky polynomial.

Suppose a graph has N propagators, then the Newton
polytope is (N+1)-dimensional.

v

\ The regions are identified as the lower facets of the
Newton polytope.
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The Newton polytope approach

Coming back to our example:

. , , 2., N2 e 2.,
P(x,s) = x1 + xo + T3 — pir103 — P5T2T3 — @1 T1T2

l 1 1 1

(1,0,0,0) | (0,0,1,0) (1,0,1,1) (1,1,0,0)

(0,1,0,0) (0,1,1,1)

v

Each region is considered as a specific facet containing
certain points of the polytope.
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The Newton polytope approach

Coming back to our example:

. , . 2o . N2 e 2.
P(x,s) = x1 + xo + T3 — pir103 — P5T2T3 — @1 T1T2

l 1 1 1

(1,0,0,0) | (0,0,1,0) (1,0,1,1) (1,1,0,0)

(0,1,0,0) (0,1,1,1)

These points are in the hard facet:
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The Newton polytope approach

Coming back to our example:

| | f 2 . 2 2 ..
P(x,s) = x1 + xo + T3 — pir103 — P5T2T3 — @1 T1T2

| | | |
(1,0,0,0) | (0,0,1,0) (1,0,1,1) (1,1,0,0)

v

v

(0,1,0,0) (0,1,1,1)

These points are in the hard facet:

Hard region : x1,xo,x3 ~ 1

o0
- vi—1 vo—1 wg—1 2 —D/2
1, = C/ dridrodrsry' 5% "3’ -(:1:1 + x9 + 13 — (] :1?1:1“:2)

0 _’_
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The Newton polytope approach

The points r on a lower facet are those with the

minimum value of r-vr, where vr is the vector normal to
the facet.

Hard region vector vh=(0,0,0,1)

, , , 2., "2 e 2.,
P(x,s) =1 + xo + T3 — p{T1T3 — P5T2T3 — qT1T2

l l 1 1

(1,0,0,0) | (0,0,1,0) (1,0,1,1) (1,1,0,0)

(0,1,0,0) (0,1,1,1)

These points are in the hard facet:
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The Newton polytope approach

Coming back to our example:

. , , 2., N2 e 2.,
P(x,s) = x1 + xo + T3 — pir103 — P5T2T3 — @1 T1T2

l 1 1 1

(1,0,0,0) (0,0,1,0) (1,0,1,1) (1,1,0,0)

These points are in the collinear-p1 facet:

Collinear region to p; : 1,3 ~ 1, 53 ~ A

)-D/Q

e @]
= 1, ) v1—1 _vo—1 v3—1 . . 2 2 )
T, =C / dridrodrsxr' 1" x4’ -(.’Ll + x3 — pIT1T3 — Q{172
Jo
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The Newton polytope approach

Coming back to our example:

. , , 2., N2 e 2.,
P(x,s) = x1 + xo + T3 — pir103 — P5T2T3 — @1 T1T2

1 |

(0;011;0) (1’1’0’0)

v

v

(0,1,0,0) (0,1,1,1)

v

These points are on the collinear-p2 facet:

Collinear region to ps : 1 ~ A, x2, x3 ~ 1

\

oo
: . —1 _vo—1_v3—1 ( N 2 2 D/2
Yy 7,,=C / dridxodrzry' 25" "x5° -(;1:2 + x3 — prr2T3 —ql.-r_:l;};g)
Jo
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The Newton polytope approach

Coming back to our example:

. , , 2., N2 e 2.,
P(x,s) = x1 + xo + T3 — pir103 — P5T2T3 — @1 T1T2

L |

(0,0,1,0) (1,0,1,1) (1,1,0,0)

v

(ol 1’ 111)

These points are on the soft facet:

Soft region : 1,9 ~ A, 3 ~ 1

(8.9 ,
= _ g g o=l ve—1 ws—1 2 o o  \=D/2
IS — C ﬁ (]..!..1(1;.!..2(&1 3.].-1 Lo d 3; -(;},:—; — P13 — PoA3 — ql.I.l;I,-Q) '
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The Newton polytope approach

The Newton polytope is the convex hull of the exponents
of the Lee-Pomeransky polynomial.

The regions are identified as the lower facets of the
Newton polytope.

1’ There have been computer codes based on this approach,
such as Asy2, ASPIRE and pySecDec.

\ We aim to find an analytic way to determine the regions,
- by relating them to the Landau equations.
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The Landau equations

ON THE ANALYTIC PROPERTIES OF VERTEX PARTS IN QUANTUM FIELD THEORY

L. D. LANDAU
Institute of Physical Problems, Academy of Sciences, U.S.S.R.

Submitted to JETP editor February 19, 1959; resubmitted April 7, 1959
J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 62-70 (July, 1959)

A general method is developed, on the basis of the diagram technique, for finding the singular-
ities of quantities involved in quantum field theory.
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The Landau equations

In the Feynman parameterized integral

BB il (Hd‘”‘ )‘S(Z“ 1) [ e

with D(k.p.q:a) = ZQF 12(k,p,q) +m? — i€)
ecl
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The Landau equations

In the Feynman parameterized integral

BB il (Hd‘”‘ 1)5(2“ 1) [ e

with D(k.p,qa) = ZQF 2(k,p,q) +m? —uc)
ecl

The Landau equations read:
al?(k,p,q) =0 VeeG
0
Ok,

D(k,p,q;a) =0 Va € {1,...,L}.
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The Landau equations

There are other representations of the Landau equations.

The solution(s) of the Landau equations are called the
“pinch surfaces”, which are like o0

H: hard subgraph
J1, J2,..., Jx: jet subgraphs
S: soft subgraph

" PK

P2
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The Landau equations

Given an amplitude G
2 __ -
some external momenta on-shell p; =0 (=1,..., K)

the submanifold of the momentum space

Hard: kjy = (K, ki, k. k) ~ Q(1,1,1,1),
Jet: kﬁ}? — (kJ?; ) ﬁi? kj?; ) ﬁ'éa ka, ) /BiJ_) ~ Q (]-*0*0)*
Soft: ki = (K, k&, k%, k%) ~ @Q(0,0,0,0).

is a solution of the Landau equations

al?(k,p,q) =0 VeeG
%,
Ok,

D(k,p,q;a) =0 Va € {1,...,L}.
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The Landau equations

Observation: if we take , ,
the on-shell expansion condition P; ~~ AQT (i=1,...,K),

the vicinity of the pinch surface in momentum space
Hard: K}, = (K, ki, kY k7)) ~ Q(1,1,1,1),
Jet: K% = (ky, - Biy ki - Bis ki Bir) ~ Q (1,)\,)\1/2):
Soft: kly = (k, k&, k%, k%) ~ QA X, A N).

and modify the Landau equations to

ali(k,p,q) SN Veed
0

D (k,p.q:a) <A Va € {1,...,L}.
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The Landau equations

The scaling of the Lee-Pomeransky parameters reads

cHE< A0 <N\ IS < N2

Therefore, it is natural to propose the following region vector
for G:
UVp — (“‘lef ?_!..R:g: - sy ?.LR:N; J.) ?'LR,E - {(] —]_*_ —2}:
ure =0 & ecH

Ure=—1 < eecJ= Ufil.._f,i

URe=—2 <& €e€S
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The Landau equations

Coming back to our example again:

. , , V.S N2 e 2.,
P(x,s) = x1 + xo + T3 — pir103 — P5T2T3 — @1 T1T2

1 . .
! Four regions in total:

vy = (0,0,0;1),
ve, = (—1,0,—1; 1),
ve, = (0, -1, —-1;1),
Vg = (—1:—1: —2:1).
compatible to the proposition.
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The Landau equations

Question: is the proposition true in general?

At higher loops:

1. Does each solution of the Landau equations
correspond to a particular region?

'J 2. Does each region correspond to a particular solution
of the Landau equations?
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The criteria for the regions
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The criteria for the regions

The all order result: a solution of the Landau equations
corresponds to one of the regions, if and only if the following
requirements on the subgraphs H, J, S are satisfied:

e Requirement of H: the integral over any hard loop momentum s not scaleless after
- 3 - [
we set all the jet and soft momenta entering H to be exactly on-shell.”

e Requirement of J: the total momentum flowing into (and out of ) each 1VI component

of J; must be equal to the jet momentum pf.f’

e Requirement of S: every connected component of S must be attached to at least two
\ different jet subgraphs J; and .J;.
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The criteria for the regions

An equivalent graph-theoretical set of requirements:

1. For anyi=1,..., K, the subgraph H U J \ J; is mojetic.

2. Every connected component of S must be attached to at least two different jets J; and

Jj.

Mojetic (invented from “motic”): a graph is called mojetic if it
is one-vertex irreducible (1VI) after contracting all its external
vertices to one vertex.
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The criteria for the regions

The following examples are NOT regions
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The criteria for the regions

In order that R is a region of G, several requirements on
the subgraphs of G must be met.

These requirements rule out the scaleless integrals that
possibly appear in the on-shell expansion.

‘L’ These requirements can be translated into a graph-
theoretical language.

\ From this graph-theoretical language, we can design an
| algorithm to find the regions of G directly.
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An algorithm to obtain the
regions
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An algorithm to obtain the regions

Step 1: For cach i« = 1,...,K, construct the one-external subgraph ~; in the p;
channel, such that the subgraph H; = G \ ~; is mojetic.

Step 2: Consider all possible sets {71,...,vx}. For each such set focus on each edge
of G. If it has been assigned to two or more ~;’s, it belongs to the soft subgraph S if
it has been assigned to exactly one 7;, it belongs to the jet subgraph .J;; if it has not
been assigned to any 7;’s, it belongs to H. We also denote J = UfilJi.

Step 3: We now check the obtained result from three aspects: (i) each jet subgraph
Jji is connected; (ii) each hard subgraph H is connected; (iii) each of the K subgraphs
HuUJ\ J; (i=1,...,K) is mojetic. The region would be ruled out if any of these
conditions are not satisfied.
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An algorithm to obtain the regions

Roughly speaking,

Step 1: For every on-shell momentum pi, construct a jet Ji that
includes pi, such that all the propagators in G \ Ji are hard;

Step 2: Examine each propagator of G; if it has been assigned
to more than one jets in the step above, then it should be soft;
"_’ if it is assigned to exactly one jet J;, it should be part of Ji;
otherwise (if assigned to no jet) it is hard;

\ Step 3: Exclude some “bad results” according to some graph-
' ~ theoretical rules.
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An algorithm to obtain the regions

q
Examples: '
P1 P2
Step 1: 0 "
Y1

"
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An algorithm to obtain the regions

q
Examples: '

P P2

Step 2: we obtain a soft region

v1Uye

p
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An algorithm to obtain the regions

p1 %
G3x2 =
D4 D3
Step 1: P P2 P P2
7 3

P4 P3 Pa p3
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An algorithm to obtain the regions

P1 P2
G3x2 =
P4 P3
Step 2: P1 P2
2\

P4 p3
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An algorithm to obtain the regions

Step 1:
P1 P2 P1 P2
Yo : v
P4 P3 P4 P3
P1 P2 P1 P2
V3b - V4 -
e

P4 P3 P4 P3
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An algorithm to obtain the regions

Step 2:
P1 P2

P4 P3
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Conclusions and Outlook

%
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Conclusions

In this talk, we have

1, introduced two approaches to the method of regions
(momentum space & parameter space)

2, related the Landau equations to the region vectors;

-

J 3, found a set of criteria for the subgraphs of a region;

\ 4, constructed and explained the algorithm to obtain the set
of regions.
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Conclusions

In this work, we also

5, studied the action of consecutive expansions, and derived
a criterion for the commutativity of two expansions;

6, related the expansion by regions to the infrared forest
formula.
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Outlook

Here are some interesting topics:

1. For the on-shell expansion, does each region correspond to a
particular solution of the Landau equations?

2. What will the conclusions be in some other expansions/processes?

3. There may be a geometric interpretation of the (infrared) forest
formula.

4. Can the method of regions be justified with the help of this
approach?
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Thank you!




