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Introduction High-Energy Expansion Form factor Results Conclusion and Outlook

Higgs self coupling
Standard Model Higgs potential:

V (H) =
1
2

m 2
HH2 + λvH3 +

λ

4
H4,

where λ = m 2
H/(2v2) ≈ 0.13.

Want to measure λ, to determine if V (H) is consistent with nature.
I Challenging! Cross-section ≈ 10−3 × H prod.
I −3.3 < λ/λSM < 8.5 [CMS ‘21]

λ appears in various production channels:

I Gluon fusion – dominant, 10x
I VBF

I t t̄ associated production
I H-strahlung
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Gluon Fusion

Leading order (1 loop) partonic amplitude:

Mµν ∼ Aµν1 (Ftri + Fbox1) +Aµν2 (Fbox2)

I Ftri contains the dependence on λ at LO

Form factors:
I LO: known exactly [Glover, van der Bij ‘88]

I Beyond LO... no fully-exact (analytic) results to date
I QCD: numerical evaluation, expansion in various kinematic limits
I EW: first steps: this work (HE) [Davies, Mishima, Schönwald, Steinhauser, Zhang ‘22]

I (see also HTL considerations) [Mühlleitner,Schlenk,Spira ‘22]
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gg → HH Beyond LO
NLO QCD:
I large-mt [Dawson,Dittmaier,Spira ‘98] [Grigo,Hoff,Melnikov,Steinhauser ‘13]

I numeric [Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke ‘16]
[Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher ‘19]

I large-mt + threshold exp. Padé [Gröber, Maier, Rauh ‘17]

I high-energy expansion [Davies, Mishima, Steinhauser, Wellmann ‘18,‘19]

I small-pT expansion [Bonciani, Degrassi, Giardino, Gröber ‘18]

NNLO QCD:
I large-mt virtuals [de Florian, Mazzitelli ‘13] [Grigo, Hoff, Steinhauser ‘15][Davies, Steinhauser ‘19]

I HTL+numeric real (“FTapprox”) [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli ‘18]

I large-mt reals [Davies, Herren, Mishima, Steinhauser ‘19 ‘21]

N3LO QCD:
I Wilson coefficient CHH [Spira ‘16][Gerlach, Herren, Steinhauser ‘18]

I HTL [Chen, Li, Shao, Wang ‘19]
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gg → HH Beyond LO
[Borowka, Greiner, Heinrich, Jones, Kerner ‘16]
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−14.9% 39.58+1.4%

−4.7%
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−4.9%

Full 19.85+27.6%
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−12.5% –
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EW Corrections

As we investigate NNLO QCD and beyond, we should consider NLO EW:

M∼ αsαt

(
A1 + αsA2 + αtA3 + αt ,λ,gaugeA4 +O(α2

s , α
2
t , . . .)

)

H χ/φ±
H Z

There are more scales to deal with, compared to the QCD contribution,
I start with αsα

2
t diagrams with internally propagating Higgs

I expansion parameter αt = αm2
t /(2s2

W m2
W ) ∼ αs/2

I only planar integrals in this subset
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High-Energy Expansion
The full diagrams depend on a lot of variables:
I ε, s, t ,mt ,mH

I complete analytic solution is out of reach

mext
H

mint
H

mext
H

mt

First, expand around mext
H = 0 (as for QCD):

I expand amplitude integrals with LiteRed
[Lee ‘14]

mint
Hmt

Unlike for QCD the scale “mint
H ” remains, from the propagator:

I complicates the IBP reduction
I Master Integrals with this many scales are difficult.

We expand in this scale also, and propose two ways to do it:
I A: s, |t | � m2

t � mint
H

2 ∼ mext
H

2 ,
I B: s, |t | � m2

t ∼ mint
H

2 � mext
H

2 .
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High-Energy Expansion “A”
Option A: asymptotic expansion around mint

H = 0:

I two sub-graphs: mtTmint
H

mint
H + × Tl

mint
H

mt

The two-loop subgraph is a Taylor expansion of the Higgs propagator:
I results in integrals with a massless internal line, scales s, t ,mt .
I IBP reduce with FIRE and Kira [Smirnov ‘15] [Klappert,Lange,Maierhöfer,Usovitsch ‘21]

I these coincide with the QCD Master Integrals – reuse the old results
[Davies,Mishima,Steinhauser,Wellmann ‘18,‘19]

The massive tadpoles are easily computed by MATAD. [Steinhauser ‘00]

The asymp. expansion procedure is done by exp and FORM
[Harlander,Seidelsticker,Steinhauser ‘97] [Ruijl,Ueda,Vermaseren ‘17]

We expand to quartic order: (mint
H )a (mext

H )b, 0 ≤ (a + b) ≤ 4.
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High-Energy Expansion “B”

Option B: expand around mint
H ≈ mt ,

I simple Taylor expansion, exp not necessary
I much easier to implement

I IBP reduce resulting integrals, FIRE+Kira
mt

Write Higgs propagator as: 1
p2−m2

H
= 1

p2−m2
t (1−[2−δ]δ)

I expand around δ → 0 where δ = 1−mH/mt ≈ 0.28.

This yields new integral families compared to the QCD computation:
I all lines have the mass mt ,
I compute the MIs in the high-energy limit: see Kay Schönwald’s talk.

We expand to (mext
H )4 and δ3.
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Padé-Improved High-Energy Expansion
The MIs for both methods are computed as an expansion in mt � s, |t |.

The expansions diverge for
√

s ∼ 750GeV (“A”),
√

s ∼ 1000GeV (“B”).

The situation can be improved using Padé Approximants:
I approximate a function using a rational polynomial:

f (x) ≈ [n/m](x) =
a0 + a1x + a2x2 + · · ·+ anxn

1 + b1x + b2x2 + · · ·+ bmxm ,

where ai ,bj coefficients are fixed by the series coefficients of f (x).

We compute a set of various Padé Approximants:
I combine to give a central value and error estimates
I a deeper input expansion→ larger n + m→ smaller error
I here, m120

t exp. allows for very high-order Padé Approximants
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Renormalization

The form factors require UV renormalization (they are IR finite):

I MS renormalization of the top quark mass,

m0
t → mt

[
1 +

αt

π

1
ε

( 3
16

+
NC

2
m2

t

m2
H

)]
I LO has no δ expansion, so NLO δ terms must already be finite X

The second term in (· · · ) renormalizes the tadpole diagrams,
I computed, but not included in the following plots.

10/16



Introduction High-Energy Expansion Form factor Results Conclusion and Outlook

High-Energy Expansion and Padé Approximation
Re(Fbox1), fixed cos θ = 0, expansion “B” (to (m2

H)2δ3(m2
t ){15,16,56,57}):

I mt expansion diverges (strongly) around
√

s ∼ 1000GeV
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Convergence of delta expansion (“B”)
Re(Fbox1), fixed cos θ = 0, expansion “B” Padé (to (m2

H)2δ{0,1,2,3}):

I δ2 and δ3 terms differ by at most 0.5% for
√

s ≥ 400GeV
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Convergence of asymptotic expansion (“A”)
Re(Fbox1), fixed cos θ = 0, expansion “A” Padé (to (m2

H){0,1,2}):

I (m2
H)1 and (m2

H)2 terms differ by at most 5% for
√

s ≥ 400GeV
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Comparison of “A”, “B” expansions
Re(Fbox1), fixed cos θ = 0, best “A” and “B” Padé

I “A”, “B” differ by at most 2% for
√

s ≥ 400GeV,
I 0.1% for

√
s ≥ 500GeV
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Form factors at fixed pT

Expansions “A” and “B” agree for pT values as small as 120 GeV.
I deep expansions of the MIs required, for small Padé errors
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Conclusion
First step towards EW corrections to HH production:
I more difficult than the QCD contribution (extra internal scale)
I expansion allows us to compute them

High-energy expansion:
I Padé-based approximation to improve expansion
I good description of (partial) form factors for pT & 120GeV
I two different expansion methods, which give equivalent results
I deeper exp. of MIs compared to QCD papers→ better Padé

Work in progress:
I compute the remaining sets of diagrams

I high-energy expansion, new families of MIs to compute
I combine with other expansions to cover full phase space
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