Two-loop Yukawa corrections to double Higgs production

JHEP 08 (2022) 259

with G. Mishima, K. Schönwald, M. Steinhauser, H. Zhang

High Precision for Hard Processes (HP2)

J. Davies

21st September, 2022

●0000	0000	000000	0
Higgs se	elf coupling		

Standard Model Higgs potential:

$$V(H) = rac{1}{2}m_H^2H^2 + \lambda vH^3 + rac{\lambda}{4}H^4,$$

where $\lambda = m_H^2/(2v^2) \approx 0.13$.

VBF

Want to measure λ , to determine if V(H) is consistent with nature.

• Challenging! Cross-section $\approx 10^{-3} \times H$ prod.

•
$$-3.3 < \lambda/\lambda_{SM} < 8.5$$

 λ appears in various production channels:

► H-strahlung

[CMS '21]

Introduction	High-Energy Expansion	Form factor Results	Conclusion and Outlook

Gluon Fusion

Leading order (1 loop) partonic amplitude:

 $\mathcal{M}^{\mu
u} \sim \mathcal{A}_1^{\mu
u}(\mathcal{F}_{tri} + \mathcal{F}_{box1}) + \mathcal{A}_2^{\mu
u}(\mathcal{F}_{box2})$

• \mathcal{F}_{tri} contains the dependence on λ at LO

Form factors:

LO: known exactly

[Glover, van der Bij '88]

- Beyond LO... no fully-exact (analytic) results to date
 - QCD: numerical evaluation, expansion in various kinematic limits
 - EW: first steps: this work (HE) [Davies, Mishima, Schönwald, Steinhauser, Zhang '22]
 - (see also HTL considerations)

[Mühlleitner,Schlenk,Spira '22]

Introduction	High-Energy Expansion	Form factor Results	Conclusion and Outlook
gg ightarrow HH	Beyond LO		

- NLO QCD:
 - ► large-*m*t
 - numeric
 - large-m_t + threshold exp. Padé
 - high-energy expansion
 - small-p_T expansion

[Dawson,Dittmaier,Spira '98] [Grigo,Hoff,Melnikov,Steinhauser '13]

[Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke '16] [Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '19]

[Gröber, Maier, Rauh '17]

[Davies, Mishima, Steinhauser, Wellmann '18,'19]

[Bonciani, Degrassi, Giardino, Gröber '18]

NNLO QCD:

- ► large-m_t virtuals [de Florian, Mazzitelli '13] [Grigo, Hoff, Steinhauser '15][Davies, Steinhauser '19]
- ► HTL+numeric real ("FTapprox") [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli 18]
- ► large-*m*_t reals [Davies, Herren, Mishima, Steinhauser '19 '21]
- N3LO QCD:
 - ► Wilson coefficient C_{HH}
 - HTL

[Spira '16][Gerlach, Herren, Steinhauser '18]

[Chen, Li, Shao, Wang '19]

Introduction	High-Energy Expansion	Form factor Results	Conclusion and Outlook
00000	0000	000000	0

EW Corrections

As we investigate NNLO QCD and beyond, we should consider NLO EW:

$$\mathcal{M} \sim \alpha_{s} \alpha_{t} \Big(\mathcal{A}_{1} + \alpha_{s} \mathcal{A}_{2} + \alpha_{t} \mathcal{A}_{3} + \alpha_{t,\lambda,gauge} \mathcal{A}_{4} + \mathcal{O}(\alpha_{s}^{2}, \alpha_{t}^{2}, \ldots) \Big)$$

There are more scales to deal with, compared to the QCD contribution,

- start with $\alpha_s \alpha_t^2$ diagrams with internally propagating Higgs
 - expansion parameter $\alpha_t = \alpha m_t^2 / (2s_W^2 m_W^2) \sim \alpha_s / 2$
 - only planar integrals in this subset

High-Energy Expansion

The full diagrams depend on a lot of variables:

- \blacktriangleright ϵ, s, t, m_t, m_H
- complete analytic solution is out of reach
- First, expand around $m_H^{ext} = 0$ (as for QCD):
 - expand amplitude integrals with LiteRed [Lee'14]

 m_{H}^{int}

 m_H^{ext}

 ∞

Unlike for QCD the scale " m_H^{int} " remains, from the propagator:

- complicates the IBP reduction
- Master Integrals with this many scales are difficult.

We expand in this scale also, and propose two ways to do it:

• A:
$$s$$
, $|t| \gg m_t^2 \gg m_H^{int^2} \sim m_H^{ext^2}$,
• B: s , $|t| \gg m_t^2 \sim m_H^{int^2} \gg m_H^{ext^2}$.

High-Energy Expansion "A"

Option A: asymptotic expansion around $m_H^{int} = 0$:

The two-loop subgraph is a Taylor expansion of the Higgs propagator:

- results in integrals with a massless internal line, scales s, t, m_t .
- ► IBP reduce with FIRE and Kira [Smirnov '15] [Klappert,Lange,Maierhöfer,Usovitsch '21]
- these coincide with the QCD Master Integrals reuse the old results [Davies,Mishima,Steinhauser,Wellmann '18,'19]

The massive tadpoles are easily computed by MATAD. [Steinhauser '00]

The asymp. expansion procedure is done by exp and FORM [Harlander,Seidelsticker,Steinhauser '97] [Ruijl,Ueda,Vermaseren '17]

We expand to quartic order: $(m_H^{int})^a (m_H^{ext})^b, \ 0 \le (a+b) \le 4.$

Introduction	High-Energy Expansion	Form factor Results	Conclusion and Outlook	
High-Ene	ergy Expansion	" B "		
Option B: ex simple mu IBP red	spand around $m_H^{int} \approx m_H^{int}$ Taylor expansion, exp ch easier to implement uce resulting integrals	Dt, not necessary , FIRE+Kira		
Write Higgs propagator as: $\frac{1}{p^2 - m_H^2} = \frac{1}{p^2 - m_t^2(1 - [2 - \delta]\delta)}$ • expand around $\delta \to 0$ where $\delta = 1 - m_H/m_t \approx 0.28$.				
This yields r	new integral families co	ompared to the Q	CD computation:	

- ▶ all lines have the mass m_t ,
- compute the MIs in the high-energy limit: see Kay Schönwald's talk.

We expand to $(m_H^{ext})^4$ and δ^3 .

Padé-Improved High-Energy Expansion

The MIs for both methods are computed as an expansion in $m_t \ll s$, |t|.

The expansions diverge for \sqrt{s} \sim 750GeV ("A"), \sqrt{s} \sim 1000GeV ("B").

The situation can be improved using Padé Approximants:

approximate a function using a rational polynomial:

$$f(x) \approx [n/m](x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{1 + b_1 x + b_2 x^2 + \dots + b_m x^m}$$

where a_i , b_j coefficients are fixed by the series coefficients of f(x).

We compute a set of various Padé Approximants:

- combine to give a central value and error estimates
- a deeper input expansion \rightarrow larger $n + m \rightarrow$ smaller error
- here, m_t^{120} exp. allows for very high-order Padé Approximants

Introduction	High-Energy Expansion	Form factor Results ●00000	Conclusion and Outlook

Renormalization

The form factors require UV renormalization (they are IR finite):

▶ MS renormalization of the top quark mass,

$$m_t^0 \to \overline{m}_t \left[1 + \frac{\alpha_t}{\pi} \frac{1}{\epsilon} \left(\frac{3}{16} + \frac{N_C}{2} \frac{\overline{m}_t^2}{m_H^2} \right) \right]$$

 \blacktriangleright LO has no δ expansion, so NLO δ terms must already be finite \checkmark

The second term in (\cdots) renormalizes the tadpole diagrams,

computed, but not included in the following plots.

High-Energy Expansion and Padé Approximation

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "B" (to $(m_H^2)^2 \delta^3(m_t^2)^{\{15,16,56,57\}}$):

• m_t expansion diverges (strongly) around $\sqrt{s} \sim 1000 {
m GeV}$

Convergence of delta expansion ("B")

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "B" Padé (to $(m_H^2)^2 \delta^{\{0,1,2,3\}}$):

• δ^2 and δ^3 terms differ by at most 0.5% for $\sqrt{s} \ge 400 {\rm GeV}$

Convergence of asymptotic expansion ("A")

 $\operatorname{Re}(F_{box1})$, fixed $\cos \theta = 0$, expansion "A" Padé (to $(m_H^2)^{\{0,1,2\}}$):

• $(m_H^2)^1$ and $(m_H^2)^2$ terms differ by at most 5% for $\sqrt{s} \ge 400 \text{GeV}$

Comparison of "A", "B" expansions

 $\text{Re}(F_{box1})$, fixed $\cos \theta = 0$, best "A" and "B" Padé

- "A", "B" differ by at most 2% for $\sqrt{s} \ge 400$ GeV,
- 0.1% for $\sqrt{s} \ge 500 \text{GeV}$

Introduction	High-Energy Expansion	Form factor Results	Conclusion and Outlook
00000	0000	00000	0

Form factors at fixed p_T

Expansions "A" and "B" agree for p_T values as small as 120 GeV.

deep expansions of the MIs required, for small Padé errors

Conclusion

First step towards EW corrections to HH production:

- more difficult than the QCD contribution (extra internal scale)
- expansion allows us to compute them

High-energy expansion:

- Padé-based approximation to improve expansion
- ▶ good description of (partial) form factors for $p_T \gtrsim 120 \text{GeV}$
- ► two different expansion methods, which give equivalent results
- $\blacktriangleright\,$ deeper exp. of MIs compared to QCD papers $\rightarrow\,$ better Padé

Work in progress:

- compute the remaining sets of diagrams
 - high-energy expansion, new families of MIs to compute
 - combine with other expansions to cover full phase space