Karlsruhe Institute of Technology

Master integrals for electroweak corrections to $g g \rightarrow H H$

8th International Workshop on High Precision for Hard Processes | September 20-22, 2022
Kay Schönwald
in collaboration with Joshua Davies, Go Mishima, Matthias Steinhauser and Hantian Zhang | September 21, 2022

Equal Mass Limit

$$
\begin{aligned}
& p_{1}+p_{2}+p_{3}+p_{4}=0, p_{i}^{2}=0 \\
& \left(p_{1}+p_{2}\right)^{2}=s,\left(p_{1}+p_{3}\right)^{2}=t \\
& s+t+u=0
\end{aligned}
$$

Equal Mass Limit

- The integral families can be obtained by crossings from the graphs shown above.
- We reduce the scalar integrals with Fire [Smirnov '15] and find 140 master integrals. We make sure to reduce to a minimal set by:
- We apply FindRules on all scalar integrals and run a second reduction.
- Equating results of both reduction runs reveals non-trivial relations between master integrals of different families.
- We run a search for master integrals with Kira [Klappert, Lange, Maierhöfer, Usovitsch '21] .
- We make sure to have a 'good' basis with ImproveMasters [Smirnov '20] , i.e.:
- The denominators factor in $\epsilon=(4-d) / 2$ and the kinemtics.
- We get rid of spurious poles in ϵ, so that we have to calculate only to $\mathcal{O}\left(\epsilon^{0}\right)$.
- We derive differential equations with respect to s, t and m_{t} utilizing LiteRed [Lee '13].

Calculation of Master Integrals

How to solve the master integrals?

- Full solution of the master integrals is still very complicated:
- Solutions depend on 3 scales: s, t, m_{t}.
- The master integrals have up to 7 massive internal lines.
- The solutions have two thresholds at $\sqrt{s}=2 m_{t}$ and $\sqrt{s}=3 m_{t}$.
- However: Analytic solutions possible in the high energy region $m_{t}^{2} \ll s,|t|$.

In the following:

- How to obtain a deep expansion utilizing the differential equations?
- How to obtain boundary conditions to solve the differential equations?
- How well does the approximation work?

Calculation of Master Integrals

Deep Expansion

- Establish a system of differential equations for the master integrals in the variable m_{t}.

Calculation of Master Integrals

Deep Expansion

- Establish a system of differential equations for the master integrals in the variable m_{t}.
- Compute an expansion around $m_{t}=0$ by:

Calculation of Master Integrals

Deep Expansion

- Establish a system of differential equations for the master integrals in the variable m_{t}.
- Compute an expansion around $m_{t}=0$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, m_{t} \rightarrow 0\right)=\sum_{i=-2}^{\infty} \sum_{j=0}^{j \max } \sum_{k=0}^{i+4} c_{j i k}^{(n)} \epsilon^{i} m_{t}^{j} \ln ^{k}\left(m_{t}\right)
$$

Calculation of Master Integrals

Deep Expansion

- Establish a system of differential equations for the master integrals in the variable m_{t}.
- Compute an expansion around $m_{t}=0$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, m_{t} \rightarrow 0\right)=\sum_{i=-2}^{\infty} \sum_{j=0}^{j \max } \sum_{k=0}^{i+4} c_{i j k}^{(n)} \epsilon^{i} m_{t}^{j} \ln ^{k}\left(m_{t}\right)
$$

- Compare coefficients in ϵ and m_{t} to establish a linear system of equations for the $c_{i j k}^{(n)}$.

Calculation of Master Integrals

Deep Expansion

- Establish a system of differential equations for the master integrals in the variable m_{t}.
- Compute an expansion around $m_{t}=0$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, m_{t} \rightarrow 0\right)=\sum_{i=-2}^{\infty} \sum_{j=0}^{j \max } \sum_{k=0}^{i+4} c_{i j k}^{(n)} \epsilon^{i} m_{t}^{j} \ln ^{k}\left(m_{t}\right)
$$

- Compare coefficients in ϵ and m_{t} to establish a linear system of equations for the $c_{i j k}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira and FireFly.

Calculation of Master Integrals

Deep Expansion

- Establish a system of differential equations for the master integrals in the variable m_{t}.
- Compute an expansion around $m_{t}=0$ by:
- Inserting an ansatz for the master integrals into the differential equation.

$$
M_{n}\left(\epsilon, m_{t} \rightarrow 0\right)=\sum_{i=-2}^{\infty} \sum_{j=0}^{j_{\max }} \sum_{k=0}^{i+4} c_{i j k}^{(n)} \epsilon^{i} m_{t}^{j} \ln ^{k}\left(m_{t}\right)
$$

- Compare coefficients in ϵ and m_{t} to establish a linear system of equations for the $c_{j i k}^{(n)}$.
- Solve the linear system in terms of a small number of boundary constants using Kira and FireFly
[Klappert, Klein, Lange '19,'20]
- Compute boundary values for $m_{t} \rightarrow 0$ and obtain an analytic expansion.
\Rightarrow Why not utilize the differential equation in \boldsymbol{s} or t ?

Calculation of Master Integrals

Differential Equation in t

- We can always put one scale to unity, we choose $s \equiv 1$.
- We can use the differential equation in t in a similar manner.
- Boundary conditions are then only needed in the limit $m_{t},|t| \rightarrow 0$.
- However, calculating the boundaries in the limit $m_{t} \rightarrow 0$ with full dependence on t turns out to be not harder than in the double limit $m_{t},|t| \rightarrow 0$.

Calculation of Master Integrals

Differential Equation in t

Karlsruhe Institute of Technology

- We can always put one scale to unity, we choose $s \equiv 1$.
- We can use the differential equation in t in a similar manner.
- Boundary conditions are then only needed in the limit $m_{t},|t| \rightarrow 0$.
- However, calculating the boundaries in the limit $m_{t} \rightarrow 0$ with full dependence on t turns out to be not harder than in the double limit $m_{t},|t| \rightarrow 0$.
\Rightarrow No benefit in utilizing the differential equation in t.

Calculation of Master Integrals

Boundary Conditions

How to obtain the boundary values?

- We start with the α representation of the diagram:

$$
I_{n}=\int_{0}^{\infty}\left(\prod_{i=1}^{n} d \alpha_{i} \frac{\alpha_{i}^{\delta_{i}}}{\Gamma\left(1+\delta_{i}\right)}\right) \mathcal{U}^{-d / 2} e^{-\mathcal{F} / \mathcal{U}}
$$

with the Symanzik polynomials \mathcal{U} and \mathcal{F}.

- We use expansion-by-regions ${ }_{[B e n e k e, ~ S m i r n o v ~}{ }^{98]}$ and reveal the different regions with ASY.m ${ }_{[P a k}$ Smirnov ${ }^{111]}$.
- High-energy limit: $s,|t| \sim \chi^{0}, m_{t}^{2} \sim \chi$
- In total we reveal 13 regions:
- One hard region ($m_{t}=0$), where master integrals are known [Smirnov, Veretin 00 ; Bern, Sixon, Smirov 05$]$.
- 13 'soft' regions, where α parameters scale different in χ.
- We calculate the expansion using Mellin-Barnes techniques.

Calculation of Master Integrals

Boundary Conditions - Mellin-Barnes Techniques

Karlsruhe Institute of Technology

- Symanzik polynomials:

$$
\left(\alpha_{i_{1} \ldots i_{n}}=\alpha_{i_{1}}+\cdots+\alpha_{i_{n}}\right)
$$

$$
\mathcal{U}=\alpha_{23} \alpha_{14}+\alpha_{1234} \alpha_{5}, \quad \mathcal{F}=S \alpha_{2} \alpha_{4} \alpha_{5}+T \alpha_{1} \alpha_{3} \alpha_{5}+m_{t}^{2} \alpha_{12345} \mathcal{U}
$$

- 8 soft regions contribute for $m_{t} \rightarrow 0: \quad\left(m_{t}^{2} \rightarrow \chi m_{t}^{2}\right)$

$$
\alpha_{i} \rightarrow \chi^{v_{i}^{(r)}} \alpha_{i}, \quad \vec{v}^{(1)}=(0,0,0,0,1), \quad \vec{v}^{(2)}=(0,0,1,1,0),
$$

- After rescaling we can expand in χ, e.g.:

$$
I_{5}^{(1)}=\int\left(\prod_{i=1}^{5} \frac{d \alpha_{i} \alpha_{i}^{\delta_{i}}}{\Gamma\left(1+\delta_{i}\right)}\right) \mathcal{U}_{1}^{-d / 2} e^{-\mathcal{F}_{1} / \mathcal{U}_{1}}\left[1-\chi\left(m_{t}^{2} \alpha_{5}-S \frac{\alpha_{2} \alpha_{4} \alpha_{1234}\left(\alpha_{5}\right)^{2}}{\left(\mathcal{U}_{1}\right)^{2}}+\ldots\right)+\ldots\right]
$$

with the expanded Symanzik polynomials

$$
\mathcal{U}_{1}=\alpha_{23} \alpha_{14}, \quad \mathcal{F}_{1}=S \alpha_{2} \alpha_{4} \alpha_{5}+T \alpha_{1} \alpha_{3} \alpha_{5}+m_{t}^{2} \alpha_{1234} \mathcal{U}_{1}
$$

Calculation of Master Integrals

Boundary Conditions - Mellin-Barnes Techniques

- Useful formula:

$$
\begin{aligned}
\int_{0}^{\infty} d \alpha \alpha^{a} e^{-A \alpha} & =A^{-1-a} \Gamma(1+a), \\
\int_{0}^{\infty} d \alpha \alpha^{a}(A+B \alpha)^{b} & =A^{1+a+b} B^{-1-a} \frac{\Gamma[1+a,-1-a-b]}{\Gamma(-b)}, \\
\frac{1}{(A+B)^{\lambda}} & =\int_{-i \infty}^{i \infty} \frac{d z}{2 \pi i} \frac{B^{z}}{A^{\lambda+z}} \frac{\Gamma[-z, \lambda+z]}{\Gamma(\lambda)}, \text { with } \Gamma\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\Gamma\left(x_{1}\right) \Gamma\left(x_{2}\right) \ldots \Gamma\left(x_{n}\right)
\end{aligned}
$$

Calculation of Master Integrals

Boundary Conditions - Mellin-Barnes Techniques

- We can describe the expansion with one template integral:

$$
\begin{aligned}
& T_{1,\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}\right\}, \epsilon}=\int\left(\prod_{i=1}^{5} \frac{d \alpha_{i} \alpha_{i}^{\delta_{i}}}{\Gamma\left(1+\delta_{i}\right)}\right) \mathcal{U}_{1}^{-d / 2} e^{-\mathcal{F}_{1} / \mathcal{U}_{1}} \\
& =\frac{\left(m_{t}^{2}\right)^{-\delta_{1234}-2 \epsilon}}{S^{\delta_{5}+1}} \int \frac{d z_{1}}{2 \pi i}\left(\frac{S}{T}\right)^{z_{1}} \frac{\Gamma\left[\delta_{23}+\epsilon, \delta_{14}+\epsilon, \delta_{2}-\delta_{5}-z_{1},-z_{1}, \delta_{4}-\delta_{5}-z_{1}, \delta_{1}+z_{1}+1, \delta_{3}+z_{1}+1, \delta_{5}+z_{1}+\dddot{1}\right]}{\Gamma\left[\delta_{1}+1, \delta_{2}+1, \delta_{3}+1, \delta_{4}+1, \delta_{5}+1, \delta_{23}-\delta_{5}+1, \delta_{14}-\delta_{5}+1\right]}
\end{aligned}
$$

- We find up to 3-dimensional Mellin-Barnes integrals.
- The analytic continuation in δ_{i} and ϵ can be performed with MB.m [Czakon '05] .
- The sum of all regions has to be free of poles in δ_{i}.
\Rightarrow How to perform Mellin-Barnes integrals systematically?

Mellin-Barnes Integrals

Example

- We find:

$$
I_{3}=m_{t}^{-4 \epsilon+2} \int \frac{d z_{1}}{2 \pi i} \frac{\Gamma\left[-z_{1}, z_{1}-\epsilon+2,-z_{1}+\epsilon-1, z_{1}+1, z_{1}+1, z_{1}+\epsilon\right]}{\Gamma\left[2-\epsilon, 2 z_{1}+2\right]}
$$

- We use MB.m for the analytic continuation in ϵ :

$$
I_{3}=m_{t}^{-4 \epsilon+2} e^{-2 \epsilon \gamma_{E}}\left(-\frac{3}{2 \epsilon^{2}}-\frac{9}{2 \epsilon}-\frac{21}{2}-\frac{5 \pi^{2}}{12}+l^{(M B)}+\mathcal{O}(\epsilon) .\right)
$$

- With the remaining integral:

$$
I^{(M B)}=\int_{-1 / 7-i \infty}^{-1 / 7+i \infty} \frac{d z_{1}}{2 \pi i} \frac{\Gamma\left[-z_{1}-1,-z_{1}, z_{1}, z_{1}+1, z_{1}+1, z_{1}+2\right]}{\Gamma\left(2 z_{1}+2\right)}
$$

Mellin-Barnes Integrals

Example

Karlsruhe Institute of Technology

- We can close the contour to the right and sum the residues at $z_{1}=0,1,2, \ldots$:

$$
\begin{aligned}
I^{\text {(MB) })} & =\int_{-1 / 7-i \infty}^{-1 / 7+i \infty} \frac{d z_{1}}{2 \pi i} \frac{\Gamma\left[-z_{1}-1,-z_{1}, z_{1}, z_{1}+1, z_{1}+1, z_{1}+2\right]}{\Gamma\left(2 z_{1}+2\right)} \\
& =4+\frac{\pi^{2}}{6}+2 \sum_{k=0}^{\infty}\binom{2 k+1}{k}^{-1} \frac{\left(4 k^{2}+8 k+3\right)\left[S_{1}(k)-S_{1}(2 k)\right]-4(k+1)}{(2 k+1)(2 k+2)(2 k+3)^{2}}
\end{aligned}
$$

- Summation over residue sum can be done analytically with HarmonicSums [Abinger etal. 10.1., Sigma and EvaluateMultiSums [schneider $\left.{ }^{\circ} 7 \mathrm{~F}\right]$.
- The (inverse) binomial sums we encounter sum to special constants, e.g.:

$$
\sum_{k=0}^{\infty} \xi^{k}\binom{2 k+1}{k}^{-1} \frac{1}{3+2 k}=\frac{2}{x \sqrt{(4-x) x}} \int_{0}^{x} d t \sqrt{(4-t) t}-1 \stackrel{x \rightarrow 1}{=} \frac{4 \pi}{3 \sqrt{3}}-2
$$

Mellin-Barnes Integrals

Example

- Most complicated boundary condition: $G_{4}(1,1,1,1,1,1,1,-1,-1)$
- The irreducible numerators can be handled by starting from the topology with all 9 lines.
- We end up with a large number of Mellin-Barnes integrals:

one-dimensional	two-dimensional	three-dimensional
2003	515	14

- Taking residues and summation can be automatized.

Boundary Conditions - Pitfalls

- During our calculations we find terms like:

$$
I=\int_{-1 / 7-i \infty}^{-1 / 7+i \infty} d z_{2} \frac{z_{2}^{8} \Gamma^{2}\left(-z_{2}\right) \Gamma^{2}\left(z_{2}\right)}{\left(z_{2}+1\right)^{3}\left(z_{2}+2\right)^{3}}
$$

- Naive residue sum gives:

$$
I=-\sum_{k=0}^{\infty} \frac{3 k^{5}(4+3 k)}{(1+k)^{4}(2+k)^{4}}=-18 \zeta_{3}-\frac{3 \pi^{2}}{3}-\frac{21 \pi^{4}}{10}+240
$$

not in agreement with numerical evaluation.

- Problem: integral does not fall off fast enough for $\left|z_{2}\right| \rightarrow \infty$.

Boundary Conditions - Pitfalls

- Problem: integral does not fall off fast enough for $\left|z_{2}\right| \rightarrow \infty$.
- We can solve this problem with regularization:

$$
\begin{aligned}
I & =\int_{-1 / 7-i \infty}^{-1 / 7+i \infty} d z_{2} \xi^{z_{2}} \frac{z_{2}^{8} \Gamma^{2}\left(-z_{2}\right) \Gamma^{2}\left(z_{2}\right)}{\left(z_{2}+1\right)^{3}\left(z_{2}+2\right)^{3}}=-\sum_{k=0}^{\infty} \xi^{k}\left(\frac{3 k^{5}(4+3 k)}{(1+k)^{4}(2+k)^{4}}+\frac{k^{6}}{(1+k)^{3}(2+k)^{3}} \ln (\xi)\right) \\
& =\sum_{k=0}^{\infty} \xi^{k}\left(\frac{3 k^{5}(4+3 k)}{(1+k)^{4}(2+k)^{4}}+\left[1-\frac{(2+3 k)\left(4+12 k+15 k^{2}+9 k^{3}+3 k^{4}\right)}{(1+k)^{3}(2+k)^{3}}\right] \ln (\xi)\right) \\
& \stackrel{\xi \rightarrow 1}{=}-18 \zeta_{3}-\frac{3 \pi^{2}}{3}-\frac{21 \pi^{4}}{10}+240+1
\end{aligned}
$$

- Alternative approach: high precision numerical evaluation in combination with PSLQ [Ferguson, Bailey '92].

Results

- We obtain analytic expressions of all 140 master integrals up to $\mathcal{O}\left(m_{t}^{120}\right)$.
- The final result can be expressed via harmonic polylogarithms [Remiddi, Vermaseren '99]
$H_{0}(-t / s), H_{1}(-t / s), H_{0,1}(-t / s), H_{0,0,1}(-t / s), H_{0,1,1}(-t / s), H_{0,0,0,1}(-t / s), H_{0,0,1,1}(-t / s), H_{0,1,1,1}(-t / s)$
and transcendental numbers

$$
\pi, \ln (3), \sqrt{3}, \zeta_{2}, \zeta_{3}, \psi^{(1)}(1 / 3), \operatorname{Im}\left[\operatorname{Li}_{3}(i / \sqrt{3})\right]
$$

- We also extended the calculation of the master integrals with massless internal line up to $\mathcal{O}\left(m_{t}^{120}\right)$.

Padé Improvement

- The expansion in $m_{t} \ll s,|t|$ has a finite radius of convergence.
- We can improve using Padé approximations:

$$
f(x) \approx=\frac{a_{0}+a_{1} x+\ldots+a_{n} x^{n}}{1+b_{1} x+\ldots+b_{m} x^{m}}
$$

where a_{i}, b_{j} are fixed by the series expansion of $f(x)$.

- A deeper expansion in m_{t} allows for a higher-order Padé approximation.
- We increased the expansion depth from $\mathcal{O}\left(m_{t}^{32}\right)$ to $\mathcal{O}\left(m_{t}^{120}\right)$.
- We obtain reliable approximations for lower values of p_{t} than before.

Padé Improvement

- Fixed order m_{t} expansions diverge at $\sqrt{s} \sim 1000 \mathrm{GeV}$.
- The Padé approximation extends the range of validity.

Padé Improvement

$$
\sqrt{\square}
$$

Fixed order m_{t} expansions diverge at $\sqrt{s} \sim 1000 \mathrm{GeV}$.

- The Padé approximation extends the range of validity.

Padé Improvement

High Energy Expansion 000000000000000000

$$
p_{T}^{2}=\frac{t u-m_{h}^{4}}{s}
$$

- Lower order Padé approximantions cannot reach low values of p_{T}.
- For QCD corrections expansions up to m_{t}^{32} were available: $p_{T} \gtrsim 150 \mathrm{GeV}$
- With expansions up to m_{t}^{120} we reach: $p_{T} \gtrsim 120 \mathrm{GeV}$.
- Error estimate from Padé approximations is reliable.

Padé Improvement

High Energy Expansion 0000000000000000000

$$
p_{T}^{2}=\frac{t u-m_{h}^{4}}{s}
$$

- Lower order Padé approximantions cannot reach low values of p_{T}.
- For QCD corrections expansions up to m_{t}^{32} were available: $p_{T} \gtrsim 150 \mathrm{GeV}$
- With expansions up to m_{t}^{120} we reach: $p_{T} \gtrsim 120 \mathrm{GeV}$.
- Error estimate from Padé approximations is reliable.

Padé Improvement

- Lower order Padé approximantions cannot reach low values of p_{T}.
- For QCD corrections expansions up to m_{t}^{32} were available: $p_{T} \gtrsim 150 \mathrm{GeV}$
- With expansions up to m_{t}^{120} we reach: $p_{T} \gtrsim 120 \mathrm{GeV}$.
- Error estimate from Padé approximations is reliable.

Padé Improvement

$\left.\operatorname{Re}\left[G_{7}(1,1,1,1,1,1,1,0,0)\right]\right|_{\epsilon^{0}}, p_{T}=120 \mathrm{GeV}$

$$
p_{T}^{2}=\frac{t u-m_{h}^{4}}{s}
$$

- Lower order Padé approximantions cannot reach low values of p_{T}.
- For QCD corrections expansions up to m_{t}^{32} were available: $p_{T} \gtrsim 150 \mathrm{GeV}$
- With expansions up to m_{t}^{120} we reach: $p_{T} \gtrsim 120 \mathrm{GeV}$.
- Error estimate from Padé approximations is reliable.

High Energy Expansion 000000000000000000

Conclusions and Outlook -

Introduction
-

Comparison to the $\boldsymbol{m}_{H} \rightarrow 0$ Expansion

Approach A:

- middle line massless $m_{H}^{\text {int }} \approx 0$
- calculated in the context of QCD corrections [Davies, Mishima, Steinhauser, Wellmann '18, '19]

Approach B:

- middle line massive $m_{H}^{\text {int }} \approx m_{t}$

Comparison with Approach A

Approach A: threshold at $\sqrt{s}=2 m_{t}=346 \mathrm{GeV}$

Introduction

High Energy Expansion
Approach B: threshold at $\sqrt{s}=3 m_{t}=519 \mathrm{GeV}$

Comparison with Approach A

Approach A: threshold at $\sqrt{s}=2 m_{t}=346 \mathrm{GeV}$

High Energy Expansion
Approach B: threshold at $\sqrt{s}=3 m_{t}=519 \mathrm{GeV}$

Conclusions and Outlook

Conclusions:

- We calculated planar $2 \rightarrow 2$ master integrals with fully massive internal lines in the high-energy limit.
- The deep expansion up to $\mathcal{O}\left(m_{t}^{120}\right)$ allows for a good description for $p_{T} \gtrsim 120 \mathrm{GeV}$.
- The master integrals are used to describe leading Yukawa corrections to $g g \rightarrow \mathrm{HH}$.

Conclusions and Outlook

Conclusions:

- We calculated planar $2 \rightarrow 2$ master integrals with fully massive internal lines in the high-energy limit.
- The deep expansion up to $\mathcal{O}\left(m_{t}^{120}\right)$ allows for a good description for $p_{T} \gtrsim 120 \mathrm{GeV}$.
- The master integrals are used to describe leading Yukawa corrections to $g g \rightarrow \mathrm{HH}$.

Outlook:

- Apply calculation strategy to the full electroweak corrections.
\Rightarrow This will include also non-planar sectors.
- Explore complementary expansions to cover the whole kinematic range.

