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p1 + p2 + p3 + p4 = 0, p2
i = 0,

(p1 + p2)2 = s, (p1 + p3)2 = t ,
s + t + u = 0
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Equal Mass Limit



The integral families can be obtained by crossings from the graphs shown above.
We reduce the scalar integrals with Fire [Smirnov ’15] and find 140 master integrals. We make sure to
reduce to a minimal set by:

We apply FindRules on all scalar integrals and run a second reduction.
Equating results of both reduction runs reveals non-trivial relations between master integrals of different families.
We run a search for master integrals with Kira [Klappert, Lange, Maierhöfer, Usovitsch ’21] .

We make sure to have a ’good’ basis with ImproveMasters [Smirnov ’20] , i.e.:
The denominators factor in ε = (4− d)/2 and the kinemtics.
We get rid of spurious poles in ε, so that we have to calculate only to O(ε0).

We derive differential equations with respect to s, t and mt utilizing LiteRed [Lee ’13] .
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Equal Mass Limit



Full solution of the master integrals is still very complicated:
Solutions depend on 3 scales: s, t , mt .
The master integrals have up to 7 massive internal lines.
The solutions have two thresholds at

√
s = 2mt and

√
s = 3mt .

However: Analytic solutions possible in the high energy region m2
t � s, |t|.

In the following:

How to obtain a deep expansion utilizing the differential equations?

How to obtain boundary conditions to solve the differential equations?

How well does the approximation work?
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Calculation of Master Integrals
How to solve the master integrals?



Establish a system of differential equations for the master integrals in the variable mt .

Compute an expansion around mt = 0 by:

Inserting an ansatz for the master integrals into the differential equation.

Mn(ε,mt → 0) =
∞∑

i=−2

jmax∑
j=0

i+4∑
k=0

c(n)
ijk εi mj

t lnk (mt )

Compare coefficients in ε and mt to establish a linear system of equations for the c(n)
ijk .

Solve the linear system in terms of a small number of boundary constants using Kira and FireFly.
[Klappert, Klein, Lange ’19,’20]

Compute boundary values for mt → 0 and obtain an analytic expansion.
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Establish a system of differential equations for the master integrals in the variable mt .

Compute an expansion around mt = 0 by:
Inserting an ansatz for the master integrals into the differential equation.
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[Klappert, Klein, Lange ’19,’20]

Compute boundary values for mt → 0 and obtain an analytic expansion.

⇒ Why not utilize the differential equation in s or t?
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Calculation of Master Integrals
Deep Expansion



We can always put one scale to unity, we choose s ≡ 1.

We can use the differential equation in t in a similar manner.

Boundary conditions are then only needed in the limit mt , |t| → 0.

However, calculating the boundaries in the limit mt → 0 with full dependence on t turns out to be not
harder than in the double limit mt , |t| → 0.
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Calculation of Master Integrals
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We can always put one scale to unity, we choose s ≡ 1.

We can use the differential equation in t in a similar manner.

Boundary conditions are then only needed in the limit mt , |t| → 0.

However, calculating the boundaries in the limit mt → 0 with full dependence on t turns out to be not
harder than in the double limit mt , |t| → 0.

⇒ No benefit in utilizing the differential equation in t .
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Calculation of Master Integrals
Differential Equation in t



How to obtain the boundary values?

We start with the α representation of the diagram:

In =

∞∫
0

(
n∏

i=1

dαi
αδi

i

Γ(1 + δi )

)
U−d/2e−F/U ,

with the Symanzik polynomials U and F .

We use expansion-by-regions [Beneke, Smirnov ’98] and reveal the different regions with ASY.m [Pak, Smirnov ’11] .

High-energy limit: s, |t| ∼ χ0, m2
t ∼ χ

In total we reveal 13 regions:
One hard region (mt = 0), where master integrals are known [Smirnov, Veretin ’00; Bern, Sixon, Smirnov ’05] .
13 ’soft’ regions, where α parameters scale different in χ.

We calculate the expansion using Mellin-Barnes techniques.
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Calculation of Master Integrals
Boundary Conditions



Symanzik polynomials: (αi1...in = αi1 + · · ·+ αin )

U = α23α14 + α1234α5, F = Sα2α4α5 + Tα1α3α5 + m2
t α12345U

8 soft regions contribute for mt → 0: (m2
t → χm2

t )

αi → χv(r)i αi , ~v (1) = (0, 0, 0, 0, 1), ~v (2) = (0, 0, 1, 1, 0), . . .

After rescaling we can expand in χ, e.g.:

I(1)5 =

∫ ( 5∏
i=1

dαiα
δi
i

Γ(1 + δi )

)
U−d/2

1 e−F1/U1

[
1− χ

(
m2

t α5 − S
α2α4α1234(α5)2

(U1)2
+ . . .

)
+ . . .

]

with the expanded Symanzik polynomials

U1 = α23α14, F1 = Sα2α4α5 + Tα1α3α5 + m2
t α1234U1

S = −s, T = −t
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Calculation of Master Integrals
Boundary Conditions – Mellin-Barnes Techniques



Useful formula:
∞∫

0

dααae−Aα = A−1−aΓ(1 + a),

∞∫
0

dααa(A + Bα)b = A1+a+bB−1−a Γ[1 + a,−1− a− b]

Γ(−b)
,

1
(A + B)λ

=

i∞∫
−i∞

dz
2πi

Bz

Aλ+z

Γ[−z, λ+ z]

Γ(λ)
, with Γ[x1, x2, . . . , xn] = Γ(x1)Γ(x2) . . . Γ(xn)
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Calculation of Master Integrals
Boundary Conditions – Mellin-Barnes Techniques



We can describe the expansion with one template integral:

T1,{δ1,δ2,δ3,δ4,δ5},ε =

∫ ( 5∏
i=1

dαiα
δi
i

Γ(1 + δi )

)
U−d/2

1 e−F1/U1

=
(m2

t )−δ1234−2ε

Sδ5+1

∫
dz1

2πi

(
S
T

)z1 Γ[δ23 + ε, δ14 + ε, δ2 − δ5 − z1,−z1, δ4 − δ5 − z1, δ1 + z1 + 1, δ3 + z1 + 1, δ5 + z1 + 1]

Γ[δ1 + 1, δ2 + 1, δ3 + 1, δ4 + 1, δ5 + 1, δ23 − δ5 + 1, δ14 − δ5 + 1]

We find up to 3-dimensional Mellin-Barnes integrals.

The analytic continuation in δi and ε can be performed with MB.m [Czakon ’05] .

The sum of all regions has to be free of poles in δi .

⇒ How to perform Mellin-Barnes integrals systematically?

Introduction High Energy Expansion Conclusions and Outlook

9/22 21.9.22 Kay Schönwald: Master integrals for gg → HH TTP

Calculation of Master Integrals
Boundary Conditions – Mellin-Barnes Techniques



We find:

I3 = m−4ε+2
t

∫
dz1

2πi
Γ[−z1, z1 − ε+ 2,−z1 + ε− 1, z1 + 1, z1 + 1, z1 + ε]

Γ[2− ε, 2z1 + 2]

We use MB.m for the analytic continuation in ε:

I3 = m−4ε+2
t e−2εγE

(
− 3

2ε2
− 9

2ε
− 21

2
− 5π2

12
+ I(MB) +O(ε).

)
With the remaining integral:

I(MB) =

−1/7+i∞∫
−1/7−i∞

dz1

2πi
Γ[−z1 − 1,−z1, z1, z1 + 1, z1 + 1, z1 + 2]

Γ(2z1 + 2)
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Mellin-Barnes Integrals
Example



We can close the contour to the right and sum the residues at z1 = 0, 1, 2, ...:

I(MB) =

−1/7+i∞∫
−1/7−i∞

dz1

2πi
Γ[−z1 − 1,−z1, z1, z1 + 1, z1 + 1, z1 + 2]

Γ(2z1 + 2)

= 4 +
π2

6
+ 2

∞∑
k=0

(
2k + 1

k

)−1
(4k2 + 8k + 3)[S1(k)− S1(2k)]− 4(k + 1)

(2k + 1)(2k + 2)(2k + 3)2

Summation over residue sum can be done analytically with HarmonicSums [Ablinger et al. ’10-] , Sigma and
EvaluateMultiSums [Schneider ’07-] .
The (inverse) binomial sums we encounter sum to special constants, e.g.:

∞∑
k=0

ξk

(
2k + 1

k

)−1 1
3 + 2k

=
2

x
√

(4− x)x

x∫
0

dt
√

(4− t)t − 1
x→1
=

4π

3
√

3
− 2
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Mellin-Barnes Integrals
Example



Most complicated boundary condition: G4(1,1,1,1,1,1,1,-1,-1)

The irreducible numerators can be handled by starting from the
topology with all 9 lines.

We end up with a large number of Mellin-Barnes integrals:
one-dimensional two-dimensional three-dimensional

2003 515 14

Taking residues and summation can be automatized.
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Mellin-Barnes Integrals
Example



During our calculations we find terms like:

I =

−1/7+i∞∫
−1/7−i∞

dz2
z8

2 Γ2(−z2)Γ2(z2)

(z2 + 1)3(z2 + 2)3

Naive residue sum gives:

I = −
∞∑

k=0

3k5(4 + 3k)

(1 + k)4(2 + k)4 = −18ζ3 −
3π2

3
− 21π4

10
+ 240,

not in agreement with numerical evaluation.

−3 −2 −1 0 1 2 3

Re(z2)

−3

−2

−1

0

1

2

3

Im
(z

2
)

Problem: integral does not fall off fast enough for |z2| → ∞.
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Boundary Conditions – Pitfalls



Problem: integral does not fall off fast enough for |z2| → ∞.

We can solve this problem with regularization:

I =

−1/7+i∞∫
−1/7−i∞

dz2 ξ
z2

z8
2 Γ2(−z2)Γ2(z2)

(z2 + 1)3(z2 + 2)3 = −
∞∑

k=0

ξk

(
3k5(4 + 3k)

(1 + k)4(2 + k)4 +
k6

(1 + k)3(2 + k)3 ln(ξ)

)

=
∞∑

k=0

ξk

(
3k5(4 + 3k)

(1 + k)4(2 + k)4 +

[
1− (2 + 3k)(4 + 12k + 15k2 + 9k3 + 3k4)

(1 + k)3(2 + k)3

]
ln(ξ)

)
ξ→1
= −18ζ3 −

3π2

3
− 21π4

10
+ 240 + 1

Alternative approach: high precision numerical evaluation in combination with PSLQ [Ferguson, Bailey ’92] .
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Boundary Conditions – Pitfalls



We obtain analytic expressions of all 140 master integrals up to O(m120
t ).

The final result can be expressed via harmonic polylogarithms [Remiddi, Vermaseren ’99]

H0(−t/s),H1(−t/s),H0,1(−t/s),H0,0,1(−t/s),H0,1,1(−t/s),H0,0,0,1(−t/s),H0,0,1,1(−t/s),H0,1,1,1(−t/s)

and transcendental numbers

π, ln(3),
√

3, ζ2, ζ3, ψ
(1)(1/3), Im

[
Li3(i/

√
3)
]
.

We also extended the calculation of the master integrals with massless internal line up to O(m120
t ).
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Results



The expansion in mt � s, |t| has a finite radius of convergence.

We can improve using Padé approximations:

f (x) ≈=
a0 + a1x + ...+ anxn

1 + b1x + ...+ bmxm ,

where ai , bj are fixed by the series expansion of f (x).

A deeper expansion in mt allows for a higher-order Padé approximation.

We increased the expansion depth from O(m32
t ) to O(m120

t ).

We obtain reliable approximations for lower values of pt than before.
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Padé Improvement
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Fixed order mt expansions diverge at√
s ∼ 1000 GeV.

The Padé approximation extends the
range of validity.
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Approach A:

middle line massless mint
H ≈ 0

calculated in the context of QCD corrections
[Davies, Mishima, Steinhauser, Wellmann ’18, ’19]

Approach B:

middle line massive mint
H ≈ mt
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Comparison to the mH → 0 Expansion
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Comparison with Approach A



Conclusions:

We calculated planar 2→ 2 master integrals with fully massive internal lines in the high-energy limit.

The deep expansion up to O(m120
t ) allows for a good description for pT & 120 GeV.

The master integrals are used to describe leading Yukawa corrections to gg → HH.

Outlook:

Apply calculation strategy to the full electroweak corrections.
⇒ This will include also non-planar sectors.

Explore complementary expansions to cover the whole kinematic range.
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