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Introduction

 Phase space integrals for higher-order corrections to cross-sections have
infrared divergences that have to be regularized.

* There are many different subtraction schemes for handling IR divergences.
We will focus on slicing/non-local subtraction.

* The idea of the slicing method @ N*LO is to define a resolution variable X
such that:

1. In the region X > 0 we have 1 resolved emission, there are only
N*=1LO-type singularities.

2. The N*LO unresolved limits occur only at X = 0.



Slicing method

 For a process with n jets at the Born level we can split the N*LO correction to cross
section using the resolution variable:

JdUNkLO — JdGNkLO O(rpy — X) + [d0§k1L0 OX = Te)

* We can approximate the integral in the unresolved region by taking the soft and
collinear limits:

[dGNkLO or., —X)= Jdﬁﬁ}f’f O — X) + Ot ) = [% ® do; ) — Jdaﬁ,cTLO OX—r.,)+ O,
e The N*LO cross-section is then:

JdGNkLO = J% ® doyp + [ _dazsk—lLO B d"zngLO_ + O(r7,

X>r

cut

» The computation is performed using a small but finite value of r,., .. This means that the size of

power correction affects the performance of our method.
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g - subtraction (0-jet case)

* ¢ can be used as resolution variable for processes that do not involve jets at the
Born level. [catani, Grazzini (2007)]

e |t can distinguish the transition 0 — 1 jet.

* (7 - subtraction has been applied for the production of color-singlet and heavy-

quark @ NNLO MATRIX: [Grazzini, Kallweit, Wiesemann (2017)][Catani, Devoto, Grazzini, Kallweit, Mazzitelli (2019,
2020)]

|t has been applied @ N 3O for Drell-Yan [Chen, Gehrmann, Glover, Huss, Yang, Zhu (2021)][Camarda,
Cieri, Ferrera (2021)][Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli (2022)][Neumann, Campbell (2022) and
Higgs Biliis, Dehnadi, Ebert, Michel, Tackmann (2021)] production.

 Drawback: it cannot regularize final-state collinear singularities, i.e. it cannot
distinguish the transition N — N + ljets for N # O.



gr - subtraction (0-jet case): power corrections

Various analytical calculations confirmed quadratic power corrections (1 -~ logr, ) of
qr subtraction for colourless final-state.

However, power corrections may get worse if we apply fiducial cuts or if we consider
an emission from massive final-state quarks.

2-body fiducial cuts: linear power corrections in r
Drell-Yan, Higgs 2-body decay.

V. s Examples: symmetric cuts on

Photon isolation: linear and logarithmic enhanced power corrections: proportional to
r... I..10gr. . Examples: vector boson pair production involving photons.

Massive final-state emitters: linear power corrections in r
NLO EW, mixed QCD-EW to Drell-Yan.

r.... ExXample: heavy quarks,



N-Jet resolution variable

* An N-jet resolution variable has to smoothly capture the transition from /N to N + 1 jet configuration.

N

Q@

)

X <r..:2Jet

cut *

X >r..:3Jet

cut *

» The first proposal for such a variable is /N-Jettiness (7y). [stewart, Tackmann, Waalewiin (2010)]

* |t has been successfully applied as resolution variable in hadronic collisions for
ProCesSEeS with 1 jet up to NNLO [Boughezal, Focke, Giele, Liu, Petriello (2015)] [Boughezal, Campbell, Ellis,
Focke, Giele, Liu, Petriello (2016)].

* N-Jettiness exhibits linear logarithmic enhanced power corrections already @ NLO.
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Exploring jet resolution variables

 \We want to explore other jet resolution variables.
 We would like to have linear or even quadratic power corrections.

 We want to investigate why resolution variables have different power
correction scaling.

* |n this talk we will discuss and compare three jet resolution variables for
ete™ collisions: Yys, k255, kroK,




Yy n+1 Fesolution variable

Definition of the variable
» From now on we will focus on e e~ collisions.

* Consider the (dimensionless) distance between final-state partons and among final-state
partons and the beam normalized to Q2 = (p, + pb)z:

(1 —cos ;)
dij =2 min(E?, Ejz)
l 2
, 0
Pir
dip = —
02

» Run the k; jet-clustering algorithm until N + 1 proto-jets are left.

« When N + 1 proto-jets are left, YN,N+1 Is the square root of the minimum among all the dl-]- and
the dp:

Yynt1 = \/ min{d;;, d;z}

l,]

* In the collinear limit this variable coincides with the transverse momentum w.r.t. the collinear axis.
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Y, 5 - subtraction
Counterterm and finite piece, e"e™ — qg@NLO

* The counterterm can be obtained considering the divergent part of the integral over
the radiation variables of the real matrix element below the cut in the collinear limit;:

1
8ot ju>¢ | M \2Jd¢md—qu(z, )0(r. — Yo 3) = — do" + finite term + e-poles + 6(r,,)
Slj

o
dot! = dULo_SCF (2 10g2 Few 131087 cut)
T

* Jo obtain the correct finite piece we have to add the soft wide-angle contribution:
2

a, 7T
s Crl A ‘zjd@ad [(_Tl o= T%a)l - T%ah] O — Yo3) = | M| Cp 2w 6
1 o o - —
(p1 - )Py + p2) - k p btk (k) ET T

e Since the soft wide angle contribution does not vanish, we expect a linear
scaling.
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Y, ; - subtraction

Power corrections

» Slicing using Y, variable has linear power correction in r, . This can be seen by analytically
integrating the real matrix element (not approximated) above the cut:

do; ,C s rd [1 d x12 x22 (Y. = —2 i
O X X — X.
LO F27Z' 1 I—x, 2(1 —x)(1 — xy) 23

» We computed this integral obtaining the complete dependence on r,. , of the power corrections.

» The final result is a large expression involving function of r,. . that contains logarithms up to weight 2.

Power corrections up to O(r,., ) are:

T 12

\\‘ == \\\112_?::_? S

ac [ 5 #° — —
do; nCr— S (4 7T - 3log?2 310g Cut+210g r., (2arcsmh(1)_4 )cut or ut))

Cancelled by the Linear Power Correction I
- counterterm — —
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Y, ; - subtraction

Power corrections
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» Full power corrections, numerical
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Numerical application
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k7> resolution variable

- The definition of K is similar to the one of Y, 5 but we use the distance among partons:
AR;
0?2
» Since Y, ; and k" coincide in the collinear limit, the counterterm is the same as

the one for ¥ .

dzj — min(ka, k]%T) AR; — A;/]l? + A¢§

 We have a non-vanishing soft wide-angle contribution:

.[ APraa {a)lz[@(AR%k — AR3) 01, — dy) + O(ARY, — ARY) 017, — dy )] = (7, — d}}) — 0y(r5, — )] } B

=2 Jd¢rad {w19(AR12k — ARO(rz, — doy) — O — di )] + @, (0G5, — dyy) — (2, — d}))] } Finite in d = 4

dimensions

* The soft contribution has been computed numerically as a two-folded integral.
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k72>°= subtraction

Numerical application
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» k;“"-subtraction has been successfully applied to hadronic collisions @NLO (Buonocore, Grazzini, Hazag,
Rottoli, Savoini (2022)] for dijet and trijet processes and has been implemented in the MATRIX framework.

for hadronic processes too.
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» Power corrections are linearinr,,,



k->* resolution variable

How to reach a quadratic scaling?

The idea is to define a variable that has the same properties of g for colour-singlet
production (that scales quadratically).

It has to coincide with the transverse momentum in the singular limit.
The soft wide-angle contribution vanishes.

@ NLO, we consider the reference frame in which g and g are back-to-back. k?SR s defined

as the transverse momentum of the emitted gluon in that frame with respect to the gg axis.

This variable is specific for 2 — 3 jet transition.




k->% - subtraction

« The counterterm for k?oo‘”- subtraction is the same as the one for the other two variables.

* Soft wide-angle contribution vanishes:

ZCF[d¢md W

[0(r?

cut

We observe quadratic power
corrections!

S
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Comparison among the variables
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Conclusions and outlook

We considered resolution variables that in the collinear limit are: k7. e Ml

Resolution Variable

Dependence on
rapidity

Dependence on kT

Soft wide-angle
contribution

Scaling

N-Jettiness Q Q Q Logarithmic en.
Y2,3 Q Q Linear
= o o
kYE SR Q Quadratic

Future Goals: <Deeper investigation of scaling properties.
e Extensions to NNLO.




