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Introduction
• Phase space integrals for higher-order corrections to cross-sections have 

infrared divergences that have to be regularized. 


• There are many different subtraction schemes for handling IR divergences. 
We will focus on slicing/non-local subtraction. 

• The idea of the slicing method @  is to define a resolution variable  
such that:


1. In the region  we have 1 resolved emission, there are only 
-type singularities.


2. The  unresolved limits occur only at .

NkLO X

X > 0
Nk−1LO

NkLO X = 0
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Slicing method
• For a process with  jets at the Born level we can split the  correction to cross 

section using the resolution variable:
n NkLO

∫ dσNkLO = ∫ dσNkLO θ(rcut − X) + ∫ dσR
Nk−1LO θ(X − rcut)

• We can approximate the integral in the unresolved region by taking the soft and 
collinear limits:

∫ dσNkLO θ(rcut − X) = ∫ dσsing
NkLO

θ(rcut − X) + 𝒪(rℓ
cut) = ∫ ℋ ⊗ dσLO − ∫ dσCT

NkLO θ(X − rcut) + 𝒪(rℓ
cut)

• The  cross-section is then:NkLO

∫ dσNkLO = ∫ ℋ ⊗ dσLO + ∫ [dσR
Nk−1LO − dσCT

NkLO]X>rcut

+ 𝒪(rℓ
cut)

• The computation is performed using a small but finite value of . This means that the size of 
power correction affects the performance of our method.

rcut
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 - subtraction (0-jet case) qT

•  can be used as resolution variable for processes that do not involve jets at the 
Born level. [Catani, Grazzini (2007)]


• It can distinguish the transition  jet. 


•  - subtraction has been applied for the production of color-singlet and heavy-
quark @ .  MATRIX: [Grazzini, Kallweit, Wiesemann (2017)][Catani, Devoto, Grazzini, Kallweit, Mazzitelli (2019, 
2020)]


• It has been applied @  for Drell-Yan [Chen, Gehrmann, Glover, Huss, Yang, Zhu (2021)][Camarda, 
Cieri, Ferrera (2021)][Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli (2022)][Neumann, Campbell (2022)] and 
Higgs [Billis, Dehnadi, Ebert, Michel, Tackmann (2021)] production.


• Drawback: it cannot regularize final-state collinear singularities, i.e. it cannot 
distinguish the transition jets for .

qT

0 → 1

qT
NNLO

N3LO

N → N + 1 N ≠ 0
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 - subtraction (0-jet case): power correctionsqT

• Various analytical calculations confirmed quadratic power corrections (  ) of 
 subtraction for colourless final-state. 


• However, power corrections may get worse if we apply fiducial cuts or if we consider 
an emission from massive final-state quarks.


• 2-body fiducial cuts: linear power corrections in . Examples: symmetric cuts on 
Drell-Yan, Higgs 2-body decay.


• Photon isolation: linear and logarithmic enhanced power corrections: proportional to 
, . Examples: vector boson pair production involving photons. 


• Massive final-state emitters: linear power corrections in . Example: heavy quarks, 
NLO EW, mixed QCD-EW to Drell-Yan.

r2
cut log rcut

qT

rcut

rcut rcut log rcut

rcut
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N-Jet resolution variable
• An -jet resolution variable has to smoothly capture the transition from  to  jet configuration.N N N + 1

 : 2 JetX < rcut  : 3 JetX > rcut

• The first proposal for such a variable is -Jettiness ( ). [Stewart, Tackmann, Waalewijn (2010)] 


• It has been successfully applied as resolution variable in hadronic collisions for 
processes with 1 jet up to NNLO [Boughezal, Focke, Giele, Liu, Petriello (2015)] [Boughezal, Campbell, Ellis, 
Focke, Giele, Liu, Petriello (2016)].


• N-Jettiness exhibits linear logarithmic enhanced power corrections already @ NLO.

N τN
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Exploring jet resolution variables 

• We want to explore other jet resolution variables.


• We would like to have linear or even quadratic power corrections.


• We want to investigate why resolution variables have different power 
correction scaling. 

• In this talk we will discuss and compare three jet resolution variables for 
 collisions: , , .e+e− Y23 kness

T kFSR
T
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 resolution variableYN,N+1
Definition of the variable
• From now on we will focus on  collisions.e+e−

• Consider the (dimensionless) distance between final-state partons and among final-state 
partons and the beam normalized to :Q2 = (pa + pb)2

dij = 2 min(E2
i , E2

j )
(1 − cos θij)

Q2

• Run the  jet-clustering algorithm until  proto-jets are left.


• When  proto-jets are left,  is the square root of the minimum among all the  and 
the :

kT N + 1

N + 1 YN,N+1 dij
diB

diB =
p2

i,T

Q2

YN,N+1 = min
i,j

{dij , diB}

• In the collinear limit this variable coincides with the transverse momentum w.r.t. the collinear axis.
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 - subtractionY2,3
Counterterm and finite piece, e+e− → qq̄@NLO
• The counterterm can be obtained considering the divergent part of the integral over 

the radiation variables of the real matrix element below the cut in the collinear limit:

8παsμ2ϵ |ℳB |2 ∫ dϕrad
1
sij

Pqq(z, ϵ)θ(rcut − Y2,3) = − dσCT + finite term + ϵ-poles + 𝒪(rcut)

dσCT = dσLO
αS

π
CF (2 log2 rcut + 3 log rcut)

• To obtain the correct finite piece we have to add the soft wide-angle contribution:

8παSCF |ℳB |2 ∫ dϕrad [(−T1 ⋅ T2) ω12 − T2
1ω1 − T2

2ω2] θ(rcut − Y23) = |ℳB |CF
αs

2π
π2

6

• Since the soft wide angle contribution does not vanish, we expect a linear 
scaling.

ω12 =
p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
ω1 =

p1 ⋅ p2

(p1 ⋅ k)(p1 + p2) ⋅ k
ω2 =

p1 ⋅ p2

(p2 ⋅ k)(p1 + p2) ⋅ k
ω12 = ω1 + ω2
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 - subtractionY2,3
Power corrections

• Slicing using  variable has linear power correction in . This can be seen by analytically 
integrating the real matrix element (not approximated) above the cut:

Y23 rcut

dσLOCF
αS

2π ∫
1

0
dx1 ∫

1

1−x1

dx2
x2

1 + x2
2

(1 − x1)(1 − x2)
θ(Y23 − rcut) xi =

2Ei

Q

• We computed this integral obtaining the complete dependence on  of the power corrections.


• The final result is a large expression involving function of  that contains logarithms up to weight 2. 
Power corrections up to  are:

rcut

rcut
𝒪(rcut)

dσLOCF
αS

π ( 5
4

−
π2

12
+ 3 log 2 + 3 log rcut + 2 log2 rcut + (2 arcsinh(1) − 4 2)rcut + 𝒪(r2

cut))
Cancelled by the 

counterterm Linear Power Correction
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 - subtractionY2,3
Power corrections

rcut

(∫
1

0
dx1 ∫

1

1−x1

dx2
x2

1 + x2
2

(1 − x1)(1 − x2)
θ(Y23 − rcut)) − 3 log rcut − 2 log2 rcut

Numerical application
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 resolution variablekness
T

• The definition of  is similar to the one of  but we use the distance among partons:kness
T Y2,3

dij = min(k2
i,T , k2

j,T)
ΔR2

ij

Q2
ΔR2

ij = Δη2
ij + Δϕ2

ij

• Since  and  coincide in the collinear limit, the counterterm is the same as 
the one for .


• We have a non-vanishing soft wide-angle contribution: 

Y2,3 kness
T

Y2,3

∫ dϕrad {ω12[θ(ΔR2
1k − ΔR2

2k) θ(r2
cut − d2k) + θ(ΔR2

2k − ΔR2
1k) θ(r2

cut − d1k)] − ω1(r2
cut − d∥

1k) − ω2(r2
cut − d∥

2k)]} =

= 2∫ dϕrad {ω1θ(ΔR2
1k − ΔR2

2k)[θ(r2
cut − d2k) − θ(r2

cut − d1k)] + ω1[θ(r2
cut − d1k) − θ(r2

cut − d∥
1k)]}

• The soft contribution has been computed numerically as a two-folded integral.

Finite in  
dimensions

d = 4
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- subtractionkness
T

• -subtraction has been successfully applied to hadronic collisions @NLO [Buonocore, Grazzini, Haag, 

Rottoli, Savoini (2022)] for dijet and trijet processes and has been implemented in the MATRIX framework.


• Power corrections are linear in  for hadronic processes too.

kness
T

rcut

Numerical application
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 resolution variablekFSR
T

• How to reach a quadratic scaling?


• The idea is to define a variable that has the same properties of  for colour-singlet 
production (that scales quadratically). 


• It has to coincide with the transverse momentum in the singular limit.


• The soft wide-angle contribution vanishes.


• @ NLO, we consider the reference frame in which  and  are back-to-back.  is defined 
as the transverse momentum of the emitted gluon in that frame with respect to the  axis.


• This variable is specific for  jet transition.

qT

q q̄ kFSR
T

qq̄

2 → 3

qq̄

g
kboost

T
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 - subtractionkFSR
T
• The counterterm for - subtraction is the same as the one for the other two variables.


• Soft wide-angle contribution vanishes:

kboost
T

2CF ∫ dϕrad ω1 [θ(r2
cut − kFSR

T ) − θ(r2
cut − kFSR,∥

T )] , since = 0 kFSR
T = kFSR,∥

T

We observe quadratic power 
corrections!
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Comparison among the variables 
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Conclusions and outlook

Resolution Variable Dependence on 
rapidity Dependence on kT Soft wide-angle 

contribution Scaling

N-Jettiness Logarithmic en.

Linear

Linear

Quadratic

Y2,3

kness
T

kFSR
T

Future Goals: •Deeper investigation of scaling properties.

•Extensions to NNLO.

We considered resolution variables that in the collinear limit are: ka
T e−b|η|
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