Transverse momentum-like resolution variables and power suppressed contributions
 High Precision for Hard Processes 2022

Flavio Guadagni
University of Zurich
Work done in collaboration with with L. Buonocore, M. Grazzini, L. Rottoli

Outline

- Slicing method
- q_{T} - subtraction
- Exploring different jet resolution variables: $Y_{N, N+1}, k_{T}^{\text {ness }}, k_{T}^{F S R}$.
- Power corrections
- Application to $e^{+} e^{-} \rightarrow 2 j @$ NLO
- Conclusions and outlook

Introduction

- Phase space integrals for higher-order corrections to cross-sections have infrared divergences that have to be regularized.
- There are many different subtraction schemes for handling IR divergences. We will focus on slicing/non-local subtraction.
- The idea of the slicing method @ $N^{k} L O$ is to define a resolution variable X such that:

1. In the region $X>0$ we have 1 resolved emission, there are only $N^{k-1} L O$-type singularities.
2. The $N^{k} L O$ unresolved limits occur only at $X=0$.

Slicing method

- For a process with n jets at the Born level we can split the $N^{k} L O$ correction to cross section using the resolution variable:

$$
\int d \sigma_{N^{k} L O}=\int d \sigma_{N^{k} L O} \theta\left(r_{c u t}-X\right)+\int d \sigma_{N^{k-1} L O}^{R} \theta\left(X-r_{c u t}\right)
$$

- We can approximate the integral in the unresolved region by taking the soft and collinear limits:

$$
\int d \sigma_{N^{k} L O} \theta\left(r_{c u t}-X\right)=\int d \sigma_{N^{k} L O}^{s i n g} \theta\left(r_{c u t}-X\right)+\mathcal{O}\left(r_{c u t}^{\ell}\right)=\int \mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{N^{k} L O}^{C T} \theta\left(X-r_{c u t}\right)+\mathcal{O}\left(r_{c u t}^{\ell}\right)
$$

- The $N^{k} L O$ cross-section is then:

$$
\int d \sigma_{N^{k} L O}=\int \mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{N^{k-1} L O}^{R}-d \sigma_{N^{k} L O}^{C T}\right]_{X>r_{c u t}}+\mathscr{O}\left(r_{c u t}^{\ell}\right)
$$

- The computation is performed using a small but finite value of $r_{c u t}$. This means that the size of power correction affects the performance of our method.

q_{T} - subtraction (0-jet case)

- q_{T} can be used as resolution variable for processes that do not involve jets at the Born level. [Catani, Grazzini (2007)]
- It can distinguish the transition $0 \rightarrow 1$ jet.
- q_{T} - subtraction has been applied for the production of color-singlet and heavyquark @ NNLO. MATRIX: [Grazzini, Kallweit, Wiesemann (2017)][Catani, Devoto, Grazzini, Kallweit, Mazzitelli (2019, 2020)]
- It has been applied @ $N^{3} L O$ for Drell-Yan [Chen, Gehrmann, Glover, Huss, Yang, Zhu (2021)][Camarda, Cieri, Ferrera (2021)][Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli (2022)][Neumann, Campbell (2022)] and Higgs [Bilis, Dehnadi, Ebert, Michel, Tackmann (2021)] production.
- Drawback: it cannot regularize final-state collinear singularities, i.e. it cannot distinguish the transition $N \rightarrow N+1$ jets for $N \neq 0$.

q_{T} - subtraction (0-jet case): power corrections

- Various analytical calculations confirmed quadratic power corrections $\left(r_{c u t}^{2} \log r_{c u t}\right)$ of q_{T} subtraction for colourless final-state.
- However, power corrections may get worse if we apply fiducial cuts or if we consider an emission from massive final-state quarks.
- 2-body fiducial cuts: linear power corrections in $r_{c u t}$. Examples: symmetric cuts on Drell-Yan, Higgs 2-body decay.
- Photon isolation: linear and logarithmic enhanced power corrections: proportional to $r_{c u t}, r_{c u t} \log r_{c u t}$. Examples: vector boson pair production involving photons.
- Massive final-state emitters: linear power corrections in $r_{c u t}$. Example: heavy quarks, NLO EW, mixed QCD-EW to Drell-Yan.

N -Jet resolution variable

- An N-jet resolution variable has to smoothly capture the transition from N to $N+1$ jet configuration.

- The first proposal for such a variable is N-Jettiness $\left(\tau_{N}\right)$. [Stewart, Tackmann, Waalewin (2010)]
- It has been successfully applied as resolution variable in hadronic collisions for processes with 1 jet up to NNLO [Boughezal, Focke, Giele, Liu, Petriello (2015)] [Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (2016)].
- N-Jettiness exhibits linear logarithmic enhanced power corrections already @ NLO.

Exploring jet resolution variables

- We want to explore other jet resolution variables.
- We would like to have linear or even quadratic power corrections.
- We want to investigate why resolution variables have different power correction scaling.
- In this talk we will discuss and compare three jet resolution variables for $e^{+} e^{-}$collisions: $Y_{23}, k_{T}^{\text {ness }}, k_{T}^{F S R}$.

$Y_{N, N+1}$ resolution variable

Definition of the variable

- From now on we will focus on $e^{+} e^{-}$collisions.
- Consider the (dimensionless) distance between final-state partons and among final-state partons and the beam normalized to $Q^{2}=\left(p_{a}+p_{b}\right)^{2}$:

$$
\begin{gathered}
d_{i j}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right) \frac{\left(1-\cos \theta_{i j}\right)}{Q^{2}} \\
d_{i B}=\frac{p_{i, T}^{2}}{Q^{2}}
\end{gathered}
$$

- Run the k_{T} jet-clustering algorithm until $N+1$ proto-jets are left.
- When $N+1$ proto-jets are left, $Y_{N, N+1}$ is the square root of the minimum among all the $d_{i j}$ and the $d_{i B}$:

$$
Y_{N, N+1}=\sqrt{\min _{i, j}\left\{d_{i j}, d_{i B}\right\}}
$$

- In the collinear limit this variable coincides with the transverse momentum w.r.t. the collinear axis.

$Y_{2,3}$ - subtraction

Counterterm and finite piece, $e^{+} e^{-} \rightarrow q \bar{q} @ N L O$

- The counterterm can be obtained considering the divergent part of the integral over the radiation variables of the real matrix element below the cut in the collinear limit:

$$
\begin{gathered}
8 \pi \alpha_{s} \mu^{2 \epsilon}\left|\mathscr{M}_{B}\right|^{2} \int d \phi_{r a d} \frac{1}{s_{i j}} P_{q q}(z, \epsilon) \theta\left(r_{c u t}-Y_{2,3}\right)=-d \sigma^{C T}+\text { finite term }+\epsilon \text {-poles }+\mathcal{O}\left(r_{c u t}\right) \\
d \sigma^{C T}=d \sigma_{L O} \frac{\alpha_{S}}{\pi} C_{F}\left(2 \log ^{2} r_{\text {cut }}+3 \log r_{c u t}\right)
\end{gathered}
$$

- To obtain the correct finite piece we have to add the soft wide-angle contribution:

$$
\begin{gathered}
8 \pi \alpha_{S} C_{F}\left|\mathscr{M}_{B}\right|^{2} \int d \phi_{\text {rad }}\left[\left(-\mathrm{T}_{1} \cdot \mathrm{~T}_{2}\right) \omega_{12}-\mathrm{T}_{1}^{2} \omega_{1}-\mathrm{T}_{2}^{2} \omega_{2}\right] \theta\left(r_{\text {cut }}-Y_{23}\right)=\left|\mathscr{M}_{B}\right| C_{F} \frac{\alpha_{s}}{2 \pi} \frac{\pi^{2}}{6} \\
\omega_{1}=\frac{p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{1}+p_{2}\right) \cdot k} \quad \omega_{2}=\frac{p_{1} \cdot p_{2}}{\left(p_{2} \cdot k\right)\left(p_{1}+p_{2}\right) \cdot k} \quad \omega_{12}=\frac{p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)} \quad \omega_{12}=\omega_{1}+\omega_{2}
\end{gathered}
$$

- Since the soft wide angle contribution does not vanish, we expect a linear scaling.

$Y_{2,3}$ - subtraction

Power corrections

- Slicing using Y_{23} variable has linear power correction in $r_{\text {cut }}$. This can be seen by analytically integrating the real matrix element (not approximated) above the cut:

$$
d \sigma_{L O} C_{F} \frac{\alpha_{S}}{2 \pi} \int_{0}^{1} d x_{1} \int_{1-x_{1}}^{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)} \theta\left(Y_{23}-r_{c u t}\right) \quad x_{i}=\frac{2 E_{i}}{Q}
$$

- We computed this integral obtaining the complete dependence on $r_{c u t}$ of the power corrections.
- The final result is a large expression involving function of $r_{c u t}$ that contains logarithms up to weight 2 . Power corrections up to $\mathcal{O}\left(r_{\text {cut }}\right)$ are:

$$
d \sigma_{L O} C_{F} \frac{\alpha_{S}}{\pi}\left(\frac{5}{4}-\frac{\pi^{2}}{12}+3 \log 2+3 \log r_{c u t}+2 \log ^{2} r_{c u t}+(2 \operatorname{arcsinh}(1)-4 \sqrt{2}) r_{c u t}+\mathcal{O}\left(r_{c u t}^{2}\right)\right)
$$

$Y_{2,3}$ - subtraction

Power corrections

$$
\left(\int_{0}^{1} d x_{1} \int_{1-x_{1}}^{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)} \theta\left(Y_{23}-r_{\text {cut }}\right)\right)-3 \log r_{\text {cut }}-2 \log ^{2} r_{\text {cut }}
$$

Numerical application

$k_{T}^{\text {ness }}$ resolution variable

- The definition of $k_{T}^{\text {ness }}$ is similar to the one of $Y_{2,3}$ but we use the distance among partons:

$$
d_{i j}=\min \left(k_{i, T}^{2}, k_{j, T}^{2}\right) \frac{\Delta R_{i j}^{2}}{Q^{2}} \quad \Delta R_{i j}^{2}=\Delta \eta_{i j}^{2}+\Delta \phi_{i j}^{2}
$$

- Since $Y_{2,3}$ and $k_{T}^{\text {ness }}$ coincide in the collinear limit, the counterterm is the same as the one for $Y_{2,3}$.
- We have a non-vanishing soft wide-angle contribution:

$$
\begin{aligned}
& \left.\int d \phi_{\text {rad }}\left\{\omega_{12}\left[\theta\left(\Delta R_{1 k}^{2}-\Delta R_{2 k}^{2}\right) \theta\left(r_{\text {cut }}^{2}-d_{2 k}\right)+\theta\left(\Delta R_{2 k}^{2}-\Delta R_{1 k}^{2}\right) \theta\left(r_{\text {cut }}^{2}-d_{1 k}\right)\right]-\omega_{1}\left(r_{\text {cut }}^{2}-d_{1 k}^{\|}\right)-\omega_{2}\left(r_{\text {cut }}^{2}-d_{2 k}^{\|}\right)\right]\right\}= \\
& =2 \int d \phi_{\text {rad }}\left\{\omega_{1} \theta\left(\Delta R_{1 k}^{2}-\Delta R_{2 k}^{2}\right)\left[\theta\left(r_{\text {cut }}^{2}-d_{2 k}\right)-\theta\left(r_{\text {cut }}^{2}-d_{1 k}\right)\right]+\omega_{1}\left[\theta\left(r_{\text {cut }}^{2}-d_{1 k}\right)-\theta\left(r_{\text {cut }}^{2}-d_{1 k}^{\|}\right)\right]\right\} \rightarrow \begin{array}{c}
\text { Finite in } d=4 \\
\text { dimensions }
\end{array}
\end{aligned}
$$

- The soft contribution has been computed numerically as a two-folded integral.

$k_{T}^{\text {ness }}$ - subtraction

- $k_{T}^{\text {ness }}$-subtraction has been successfully applied to hadronic collisions @NLO [Buonocore, Grazzini, Haag, Rottoil, Savoin (2022) for dijet and trijet processes and has been implemented in the MATRIX framework.
- Power corrections are linear in $r_{c u t}$ for hadronic processes too.

$k_{T}^{F S R}$ resolution variable

- How to reach a quadratic scaling?
- The idea is to define a variable that has the same properties of q_{T} for colour-singlet production (that scales quadratically).
- It has to coincide with the transverse momentum in the singular limit.
- The soft wide-angle contribution vanishes.
- @ NLO, we consider the reference frame in which q and \bar{q} are back-to-back. $k_{T}^{F S R}$ is defined as the transverse momentum of the emitted gluon in that frame with respect to the $q \bar{q}$ axis.
- This variable is specific for $2 \rightarrow 3$ jet transition.

$k_{T}^{F S R}$ - subtraction

- The counterterm for $k_{T}^{\text {boost }}$ - subtraction is the same as the one for the other two variables.
- Soft wide-angle contribution vanishes:

$$
2 C_{F} \int d \phi_{\text {rad }} \omega_{1}\left[\theta\left(r_{\text {cut }}^{2}-k_{T}^{F S R}\right)-\theta\left(r_{\text {cut }}^{2}-k_{T}^{F S R,\| \|}\right)\right]=0 \text {, since } k_{T}^{F S R}=k_{T}^{F S R, \|}
$$

We observe quadratic power corrections!

Comparison among the variables

Conclusions and outlook

We considered resolution variables that in the collinear limit are: $k_{T}^{a} e^{-b|\eta|}$

Resolution Variable	Dependence on rapidity	Dependence on kT	Soft wide-angle contribution	Scaling
N-Jettiness				Logarithmic en.
$Y_{2,3}$				Linear
$k_{T}^{n e s s}$				Linear
$k_{T}^{F S R}$				Quadratic

$\begin{aligned} \text { Future Goals: } & \text { - Deeper investigation of scaling properties. } \\ & \text { •Extensions to NNLO. }\end{aligned}$

