Transverse momentum-like resolution variables and power suppressed contributions **High Precision for Hard Processes 2022**

Flavio Guadagni **University of Zurich** Work done in collaboration with with L. Buonocore, M. Grazzini, L. Rottoli

> Universität Zürich

Outline

- Slicing method
- q_T subtraction
- Exploring different jet resolution variables: $Y_{N,N+1}$, k_T^{ness} , k_T^{FSR} .
- Power corrections
- Application to $e^+e^- \rightarrow 2j$ @ NLO
- Conclusions and outlook

Introduction

- infrared divergences that have to be regularized.
- We will focus on slicing/non-local subtraction.
- such that:
 - $N^{k-1}LO$ -type singularities.
 - 2. The $N^k LO$ unresolved limits occur only at X = 0.

Phase space integrals for higher-order corrections to cross-sections have

There are many different subtraction schemes for handling IR divergences.

• The idea of the slicing method @ $N^k LO$ is to define a resolution variable X

1. In the region X > 0 we have 1 resolved emission, there are only

Slicing method

section using the resolution variable:

$$\int d\sigma_{N^{k}LO} = \int d\sigma_{N^{k}LO} \,\theta(r_{cut} - X) + \int d\sigma_{N^{k-1}LO}^{R} \,\theta(X - r_{cut})$$

• We can approximate the integral in the unresolved region by taking the soft and **collinear limits**:

$$\int d\sigma_{N^{k}LO} \,\theta(r_{cut} - X) = \int d\sigma_{N^{k}LO}^{sing} \theta(r_{cut} - X) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} - \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int d\sigma_{N^{k}LO}^{CT} \,\theta(X - r_{cut}) + \mathcal{O}(r_{cut}^{\ell}) = \int \mathcal{H} \otimes d\sigma_{LO} + \int \mathcal{H} \otimes d\sigma_{LO} +$$

• The $N^k LO$ cross-section is then:

$$\int d\sigma_{N^k LO} = \int \mathscr{H} \otimes d\sigma_{LO} +$$

power correction affects the performance of our method.

• For a process with n jets at the Born level we can split the $N^k LO$ correction to cross

$$\left[d\sigma_{N^{k-1}LO}^{R} - d\sigma_{N^{k}LO}^{CT}\right]_{X > r_{cut}} + \mathcal{O}(r_{cut}^{\ell})$$

The computation is performed using a small but finite value of r_{cut}. This means that the size of

q_T - subtraction (0-jet case)

- Born level. [Catani, Grazzini (2007)]
- It can distinguish the transition $0 \rightarrow 1$ jet.
- quark @ NNLO. MATRIX: [Grazzini, Kallweit, Wiesemann (2017)][Catani, Devoto, Grazzini, Kallweit, Mazzitelli (2019, 2020)]
- It has been applied @ N³LO for Drell-Yan [Chen, Gehrmann, Glover, Huss, Yang, Zhu (2021)][Camarda, Higgs [Billis, Dehnadi, Ebert, Michel, Tackmann (2021)] production.
- **Drawback:** it cannot regularize final-state **collinear** singularities, i.e. it cannot distinguish the transition $N \rightarrow N + 1$ jets for $N \neq 0$.

• q_T can be used as resolution variable for processes that **do not involve jets** at the

• q_T - subtraction has been applied for the production of color-singlet and heavy-

Cieri, Ferrera (2021)][Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Torrielli (2022)][Neumann, Campbell (2022)] and

q_T - subtraction (0-jet case): power corrections

- q_T subtraction for colourless final-state.
- an emission from massive final-state quarks.
- Drell-Yan, Higgs 2-body decay.
- r_{cut} , $r_{cut} \log r_{cut}$. Examples: vector boson pair production involving photons.
- NLO EW, mixed QCD-EW to Drell-Yan.

• Various analytical calculations confirmed quadratic power corrections ($r_{cut}^2 \log r_{cut}$) of

• However, power corrections may get worse if we apply fiducial cuts or if we consider

• **2-body fiducial cuts**: linear power corrections in r_{cut} . Examples: symmetric cuts on

• Photon isolation: linear and logarithmic enhanced power corrections: proportional to

• Massive final-state emitters: linear power corrections in r_{cut}. Example: heavy quarks,

N-Jet resolution variable

 $X < r_{cut}$: 2 Jet

- It has been successfully applied as resolution variable in hadronic collisions for processes with 1 jet up to NNLO [Boughezal, Focke, Giele, Liu, Petriello (2015)] [Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (2016)].

• An N-jet resolution variable has to smoothly capture the transition from N to N + 1 jet configuration.

• The first proposal for such a variable is N-Jettiness (τ_N). [Stewart, Tackmann, Waalewijn (2010)]

N-Jettiness exhibits linear logarithmic enhanced power corrections already @ NLO.

Exploring jet resolution variables

- We want to explore other jet resolution variables.
- We would like to have linear or even quadratic power corrections.
- We want to investigate why resolution variables have different power correction scaling.
- In this talk we will discuss and compare three jet resolution variables for e^+e^- collisions: Y_{23} , k_T^{ness} , k_T^{FSR} .

$Y_{N,N+1}$ resolution variable Definition of the variable

- From now on we will focus on e^+e^- collisions.
- Consider the (dimensionless) distance between final-state partons and among final-state partons and the beam normalized to $Q^2 = (p_a + p_b)^2$:

$$d_{ij} = 2 \min($$

- Run the k_T jet-clustering algorithm until N + 1 proto-jets are left.
- the d_{iB} : $Y_{N,N+1} =$

 $m(E_i^2, E_j^2) \frac{(1 - \cos \theta_{ij})}{Q^2}$ $d_{iB} = \frac{p_{i,T}^2}{O^2}$

• When N + 1 proto-jets are left, $Y_{N,N+1}$ is the square root of the minimum among all the d_{ij} and

$$= \sqrt{\min_{i,j} \{d_{ij}, d_{iB}\}}$$

• In the collinear limit this variable coincides with the transverse momentum w.r.t. the collinear axis.

$Y_{2,3}$ - subtraction Counterterm and finite piece, $e^+e^- \rightarrow q\bar{q} @ NLO$

$$8\pi\alpha_{s}\mu^{2\epsilon} |\mathcal{M}_{B}|^{2} \int d\phi_{rad} \frac{1}{s_{ij}} P_{qq}(z,\epsilon) \theta(r_{cut} - Y_{2,3}) = -d\sigma^{CT} + \text{finite term} + \epsilon - \text{poles} + \mathcal{O}(r_{cut})$$
$$d\sigma^{CT} = d\sigma_{LO} \frac{\alpha_{S}}{\pi} C_{F} \left(2\log^{2} r_{cut} + 3\log r_{cut}\right)$$

$$8\pi\alpha_{S}C_{F}|\mathscr{M}_{B}|^{2}\int d\phi_{rad}\left[\left(-\mathsf{T}_{1}\cdot\mathsf{T}_{2}\right)\omega_{12}-\mathsf{T}_{1}^{2}\omega_{1}-\mathsf{T}_{2}^{2}\omega_{2}\right]\theta(r_{cut}-Y_{23}) = |\mathscr{M}_{B}|C_{F}\frac{\alpha_{s}}{2\pi}\frac{\pi^{2}}{6}$$

$$\omega_1 = \frac{p_1 \cdot p_2}{(p_1 \cdot k)(p_1 + p_2) \cdot k} \qquad \omega_2 = \frac{p_1 \cdot p_2}{(p_2 \cdot k)(p_1 + p_2) \cdot k} \qquad \omega_{12} = \frac{p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \qquad \omega_{12} = \omega_1 + \omega_2$$

scaling.

• The counterterm can be obtained considering the divergent part of the integral over the radiation variables of the real matrix element below the cut in the collinear limit:

• To obtain the correct finite piece we have to add the **soft wide-angle contribution**:

Since the soft wide angle contribution does not vanish, we expect a linear

$Y_{2,3}$ - subtraction

Power corrections

• Slicing using Y_{23} variable has linear power correction in r_{cut} . This can be seen by analytically integrating the real matrix element (not approximated) above the cut:

$$d\sigma_{LO}C_F \frac{\alpha_S}{2\pi} \int_0^1 dx_1 \int_{1-x_1}^1 dx_2 \frac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)} \theta(Y_{23} - r_{cut}) \qquad x_i = \frac{2E_i}{Q}$$

- Power corrections up to $\mathcal{O}(r_{cut})$ are:

$$d\sigma_{LO}C_F \frac{\alpha_S}{\pi} \left(\frac{5}{4} - \frac{\pi^2}{12} + 3\log 2 + 3\log r_{cut}\right)$$

Cancelled by the counterterm

• We computed this integral obtaining the complete dependence on r_{cut} of the power corrections.

• The final result is a large expression involving function of r_{cut} that contains logarithms up to weight 2.

Power corrections

Numerical application

k_T^{ness} resolution variable

$$d_{ij} = \min(k_{i,T}^2, k_{j,T}^2) -$$

- Since $Y_{2,3}$ and k_T^{ness} coincide in the collinear limit, the counterterm is the same as the one for $Y_{2,3}$.
- We have a non-vanishing soft wide-angle contribution:

$$\int d\phi_{rad} \left\{ \omega_{12} [\theta(\Delta R_{1k}^2 - \Delta R_{2k}^2) \theta(r_{cut}^2 - d_{2k}) + \theta(\Delta R_{2k}^2 - \Delta R_{1k}^2) \theta(r_{cut}^2 - d_{1k})] - \omega_1 (r_{cut}^2 - d_{1k}^{\parallel}) - \omega_2 (r_{cut}^2 - d_{2k}^{\parallel})] \right\} =$$

$$= 2 \int d\phi_{rad} \left\{ \omega_1 \theta(\Delta R_{1k}^2 - \Delta R_{2k}^2) [\theta(r_{cut}^2 - d_{2k}) - \theta(r_{cut}^2 - d_{1k})] + \omega_1 [\theta(r_{cut}^2 - d_{1k}) - \theta(r_{cut}^2 - d_{1k}^{\parallel})] \right\} \longrightarrow \begin{bmatrix} \text{Finite in } d = d_{1k} \\ \text{dimensions} \end{bmatrix}$$

• The soft contribution has been computed numerically as a two-folded integral.

• The definition of k_T^{ness} is similar to the one of $Y_{2,3}$ but we use the distance among partons: $\frac{\Delta R_{ij}^2}{O^2} \qquad \Delta R_{ij}^2 = \Delta \eta_{ij}^2 + \Delta \phi_{ij}^2$

- Power corrections are linear in r_{cut} for hadronic processes too.

Numerical application

• k_T^{ness} -subtraction has been successfully applied to hadronic collisions @NLO [Buonocore, Grazzini, Haag, Rottoli, Savoini (2022)] for dijet and trijet processes and has been implemented in the MATRIX framework.

k_T^{FSR} resolution variable

- How to reach a quadratic scaling?
- The idea is to define a variable that has the same properties of q_T for colour-singlet production (that scales quadratically).
- It has to coincide with the transverse momentum in the singular limit.
- The soft wide-angle contribution vanishes.
- This variable is specific for $2 \rightarrow 3$ jet transition.

• @ NLO, we consider the reference frame in which q and \bar{q} are back-to-back. k_T^{FSR} is defined as the transverse momentum of the emitted gluon in that frame with respect to the $q\bar{q}$ axis.

- The counterterm for k_T^{boost} subtraction is the same as the one for the other two variables.
- Soft wide-angle contribution vanishes:

$$2C_F \int d\phi_{rad} \,\omega_1 \left[\theta(r_{cut}^2 - k_T^{FSR}) - \theta(r_{cut}^2 - k_T^{FSR})\right] = 0$$

We observe quadratic power corrections!

Comparison among the variables

 $e^+e^- \rightarrow q\bar{q}$

Conclusions and outlook

We considered resolution variables that in the collinear limit are: $k_T^a e^{-b|\eta|}$

Resolution Variable	Dependence on rapidity	Dependence on kT	Soft wide-angle contribution	Scaling
N-Jettiness				Logarithmic en.
<i>Y</i> _{2,3}				Linear
k _T ness				Linear
k _T ^{FSR}				Quadratic

Future Goals: • Deeper investigation of scaling properties. • Extensions to NNLO.