Jet substructure and jet flavour

Daniel Reichelt

Institute for Particle Physics Phenomenology, Durham University

[Caletti, Larkoski, Marzani, DR in EPJ C 82 (2022) 7, 632]

- ▷ experiments measure heavy flavour jet, e.g. Z+b production [CMS '17]
 - ▷ jet with anti-kt algorithm, tag as heavy by presence of b hadron
- ▷ potentially compared to high accuracy calculations
 - ▷ e.g. NNLO Z+jets calculation, cluster with anti-kt algorithm, tag as presence of b parton, e.g. [Gauld, Gehrmann-De Ridder, Glover, Huss, Majer '20]
 - ▷ problem: not irc safe starting from NNLO

Motivation: problems in naive flavour definition

- starting at NNLO, consider configuration where a soft gluon splits into two quarks
- arphi singularities in the limit where $p_q, p_{ar q}
 ightarrow 0$
- might belong to "gluon-jet" or "quark-jet" phases-space, depending on clustering
- virtual correction clearly in "quark-jet" phase-space
- $\,\vartriangleright\, \Rightarrow \mathsf{IRC} \text{ unsafe}$

traditional solution:

- use algorithm to with well defined flavour
- achieved by modifying distance measure
 - \Rightarrow will tend to cluster soft quarks together first
- "unfold" to experimental procedure using MC

from [Banfi, Salam, Zanderighi '06]

Several proposed algorithms, defining ...

...new jets with well defined flavour

▷ original BSZ

[Banfi, Salam, Zanderighi '06]

anti-kt variant

[Czakon, Mitov, Poncelet '22]

...flavour of jet(s) within event

▷ iteration of BSZ

[Caletti, Fedkevych, Marzani, DR, Schumann '21]

▷ dressing of jets

[Gauld, Huss, Stagnitto '22]

...flavour of an isolated jet

soft drop groomed jets [Caletti, Larkoski,

Marzani, DR '22]

iteration of BSZ

 R_0

mmmm

 p_g

- background: matching in NLO + NLL' matched calculation
- need to match jet flavour in NLL and FO precisely

Working solution: Iterative application of BSZ:

mmmm

- 0. Start w/ list ${\mathcal O}$ of coloured final-state objects
- 1. Run the standard IR-safe algorithm with radius parameter R_0 on \mathcal{O} , and obtain the objects in the leading jet $J \subset \mathcal{O}$.
- 2. If $J = \{j \in \mathcal{O}\}$, terminate. The flavour is that of j.

 R_0

- 3. Determine the pair $\{i, k\} \subset O$ that minimises the BSZ measures, and combine them.
- ^{GeV]} Go to step 1 and repeat.

Several proposed algorithms, defining ...

...new jets with well defined flavour

▷ original BSZ

[Banfi, Salam, Zanderighi '06]

anti-kt variant

[Czakon, Mitov, Poncelet '22]

...flavour of jet(s) within event

▷ iteration of BSZ

[Caletti, Fedkevych, Marzani, DR, Schumann '21]

▷ dressing of jets

[Gauld, Huss, Stagnitto '22]

...flavour of an isolated jet

▷ soft drop groomed jets (? \Rightarrow this talk)

[Caletti, Larkoski, Marzani, DR

'22

idea of method

- ▷ soft drop [Larkoski, Marzani, Soyez, Thaler '14] well knwon method to eliminate soft-wide angle contributions
- ▷ in particular, shown to eliminate nonglobal logs
 - \Rightarrow should also eliminate configurations critical here!
- k_1 k_2 k_2 k_3 k_4 k_2 k_3 k_4 k_2 k_3 k_4 k_2 k_3 k_4 k_4

- ▷ remainder of this talk:
 - \triangleright explore this idea
 - establish (conditions for) irc safety at adapted from [Dasgupta, Salam '01] least through NNLO

soft-drop algorithm

method:

- \triangleright re-cluster given jet to establish splitting sequence \Rightarrow usually Cambridge/Aachen, e.g. angular ordered
- stop if both branches are "hard enough" (or only one remaining)

here:

 \vartriangleright count flavours of remaining particles \equiv flavour of jet

idea of method

Critical configuration in Lund plane

 \Rightarrow can check this indeed works shields singularities e.g. of triple-collinear / double soft splitting functions

subtlety I: sd with $\beta = 0$?

- close to collinear region: may groom away "hard" quark instead of gluon
- \triangleright logarithmic region for $\beta = 0 \Rightarrow$ spoils flavour already at LO!
- \triangleright but power suppressed for $\beta > 0$

subtlety II: which cluster algorithm?

- soft drop involves re-clustering step to establish "splitting sequence"
- ▷ traditional: Cambridge/Aachen (i.e. angular ordered)
- ▷ but: consider jet with 3 particles $(g \ q \ \bar{q})$ → potentially assigned as quark jet, even if both quarks are soft
- \triangleright need to make sure $q\bar{q}$ pair clustered together in this case
- can be achieved by using JADE algorithm (i.e. virtuality ordering)

final numerical checks

- ▷ works only through NNLO (higher orders → clustering can "protect" soft quarks)
 ⇒ maybe acceptable for purpose of FO calculations? ⇒ iterative procedures?
 - several extension of SD possible,

e.g. [Frye, Larkoski, Thaler, Zhou '17], [Dreyer, Necib, Soyez, Thaler '18] [Mehtar-Tani, Soto-Ontoso, Tywoniuk '19]

- \triangleright is it bad to use JADE?
- ▷ check hadronisation corrections / realistic setups

overview

Several proposed algorithms, defining ...

...new jets with well defined flavour

▷ original BSZ

[Banfi, Salam, Zanderighi '06]

anti-kt variant

[Czakon, Mitov, Poncelet '22]

...flavour of jet(s) within event

▷ iteration of BSZ

[Caletti, Fedkevych, Marzani, DR, Schumann '21]

▷ dressing of jets

[Gauld, Huss, Stagnitto '22]

...flavour of an isolated jet

 soft drop groomed jets

[Caletti, Larkoski, Marzani, DR

'22]

Backup