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Motivation

• Top-quark properties are highly interesting (vacuum stability,
large coupling to Higgs sector)

• Pair production known at NNLO – why do we need more
precision for t̄t?

NNLO study of t̄t with decay in
1901.05407 shows why!
Extrapolation from fiducial to
inclusive phase space is done
using NLO event generators –
desirable to have NNLO+PS
calculations.
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Matching NNLO to parton showers in an event generator

• Several methods available to match NNLO to PS, mostly
formulated for colour-singlet processes.

• Recently, NNLO+PS for t̄t available via MiNNLOPS formalism.
• Higher-order resummation can improve description of
observables, included in NNLO+PS formulation via Geneva.
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NNLO+PS with the Geneva method

What is needed to do NNLO+PS with Geneva?
See also talks by G. Marinelli, D. Napoletano

• NLO calculations for t̄t, t̄t+jet matched to PS
• Resummed calculation at NNLL′ in a resolution variable.

The resummed calculation can come from anywhere! Options?

• qT resummation, either via SCET (NNLL in 1307.2464) or direct
QCD (NNLL in 1408.4564, 1806.01601, NNLL′ ingredients in
1809.01459, 1901.04005)

• Full resummation ingredients not publicly available.
• N-jettiness resummation – used for colour-singlet in Geneva,
must be adapted for t̄t.

1307.2464 Li H.T., Li C.S., Shao D.Y., Yang L.L., Zhu H.X.
1408.4564 S. Catani, M. Grazzini, A. Torre, 1806.01601 S. Catani, M. Grazzini, H. Sargsyan, 1901.04005 S. Catani, S. Devoto, M. Grazzini, S. Kallweit,
J. Mazzitelli, H. Sargsyan
1809.01459 R. Angeles-Martinez, M. Czakon, S. Sapeta
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N-jettiness

• N-jettiness is a global physical observable with definitions for
hadron colliders in terms of beam qa,b and jet-directions qj
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• TN → 0 for N pencil-like jets, TN ≫ 0 spherical limit.
• Definition must be adapted with top-quarks in final state –
when calculating T0, choose to treat them like EW particles and
exclude them from the sum.

1004.2489 I. Stewart, F. Tackmann, W. Waalewijn 4



Resummation from EFT

• Effective field theories such as SCET separate energy scales
• This allows factorisation theorems to be derived, which feature
only single scale objects

• Each single scale object can be evaluated at fixed order, at a
scale where no large logs are present

• RGE running is used to evolve all pieces to a common scale and
resum large logs.
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Factorisation for N-jettiness

For colour-singlet production, the factorisation theorem reads
dσNNLL′

dΦ0dT0
=

∑
ij

∫
dtadtbBi(ta, xa, µ)Bj(tb, xb, µ)

× Hij(Φ0, µ) S(T0 −
ta + tb
Q , µ).

For t̄t, initial- and final-state lines can ‘talk’ to each other through
exchange of soft gluons. Hard and soft functions are matrices in
colour space!

We have derived the t̄t case using soft-collinear effective theory and
heavy-quark effective theory – it reads

dσNNLL′

dΦ0dT0
=

∑
ij

∫
dtadtbBi(ta, xa, µ)Bj(tb, xb, µ)

× Tr
{
Hij(Φ0, µ) S(T0 −

ta + tb
Q ,Φ0, µ)

}
.
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Factorisation for N-jettiness

In Laplace space, convolutions between functions become products,
solving evolution equations is easier. Factorisation formula reads:

L
[

dσNNLL′

dΦ0dT0

]
=

∑
ij

B̃i
(
ln

(
Mκ
µ2

))
B̃j
(
ln

(
Mκ
µ2

))

× Tr
{
Hij S̃

(
ln

κ2

µ2

)}
.

Soft function is a polynomial in L = lnκ2/µ2 with function-valued
coefficients.
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The hard function

The hard function arises from the matching of QCD onto SCET – can
be extracted from colour-decomposed loop amplitudes. At one-loop,
was first computed in 1003.5827.

It obeys the RG equation:

d
d lnµ

H(M, βt, θ, µ) = ΓH(M, βt, θ, µ)H(M, βt, θ, µ) + h.c.

with solution

H(M, βt, θ, µ) = U(M, βt, θ, µh, µ)H(M, βt, θ, µh)U†(M, βt, θ, µh, µ)

where

U(M, βt, θ, µh, µ) = exp

[
2S(µh, µ)− aΓ(µh, µ)

(
ln
M2

µ2h
− iπ

)]
u(M, βt, θ, µh, µ)

1003.5827 V. Ahrens, A. Ferroglia, M. Neubert, B. Pecjak, Yang L.L.
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The hard function

U(M, βt, θ, µh, µ) = exp

[
2S(µh, µ)− aΓ(µh, µ)

(
ln
M2

µ2h
− iπ

)]
u(M, βt, θ, µh, µ)

We have split the anomalous dimension

ΓH(M, βt, θ, µ) = Γcusp(αs)

(
ln
M2

µ2
− iπ

)
+ γh(M, βt, θ, αs)

into cusp and non-cusp parts.

Double and single logarithmic resummation is provided by the
functions

S(µa, µb) = −
∫ αs(µb)

αs(µa)

dαΓcusp(α)

β(α)

∫ α

αs(µa)

dα′

β(α′)
,

aΓ(µa, µb) = −
∫ αs(µb)

αs(µa)

dαΓcusp(α)

β(α)
.
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The hard function

U(M, βt, θ, µh, µ) = exp

[
2S(µh, µ)− aΓ(µh, µ)

(
ln
M2

µ2h
− iπ

)]
u(M, βt, θ, µh, µ)

The off-diagonal, non-cusp evolution is instead provided by the
colour matrix

u(M, βt, θ, µh, µ) = P exp

∫ αs(µ)

αs(µh)

dα
β(α)

γh(M, βt, θ, α) ,

where P specifies the path-ordering operator. We evaluate the
matrix exponential u as a series expansion in αs.
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Evaluating the non-cusp evolution matrices

Diagonalise by finding the matrix Λ s.t.

γ
h(0)
D = Λ−1γh(0)Λ

Expanding in αs then gives

uNNLL(βt, θ, µh, µ) =
[
Λ

(
1+ αs(µ)

4π K
)[

αs(µh)

αs(µ)

] γ⃗h(0)
2β0


D(

1− αs(µh)

4π K
)
Λ−1

]
O(αs)

Matrix K has entries given by

Kij = δijγ⃗
h(0)
i

β1
2β20

−
[Λ−1γh(1)Λ]ij

2β0 + γ⃗
h(0)
i − γ⃗

h(0)
j

.

9512380 G. Buchalla, A .Buras, M. Lautenbacher
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The soft function

Our factorisation formula defines a new soft function which must be
computed to at least one-loop.

1307.2464 Li H.T., Li C.S., Shao D.Y., Yang L.L., Zhu H.X.
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The soft function

Soft function RG equation in Laplace space given by

d
d lnµ

S̃B(L, βt, θ, µ) =
[
ΓcuspL − γs

†
]
S̃B(L, βt, θ, µ) + h.c.

Given the one-loop soft function, we can solve this at fixed order to
obtain the logarithmic terms of the two-loop function. The boundary
term remains undetermined and must be computed separately.

All-order solution in momentum space given by

SB(l+, βt, θ, µ) = exp
[
4S(µs, µ) + 2aγB(µs, µ)

]
× u†(βt, θ, µ, µs) S̃B(∂ηs , βt, θ, µs)u(βt, θ, µ, µs)

× 1
l+

(
l+
µs

)2ηs e−2γEηs
Γ(2ηs)

where ηs ≡ −2aΓ(µs, µ).
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The beam function

Beam functions are given by convolutions of perturbative kernels
with the normal PDFs fi(x, µ):

Bi(t, z, µ) =
∑
j

Iij(t, z, µ)⊗ fj(z, µ)

The Iij are available up to N3LO and are process independent.

RG equation in Laplace space given by
d

d lnµ
B̃i(Lc, z, µ) =

[
− 2 Γcusp(αs) Lc + γBi (αs)

]
B̃i(Lc, z, µ) ,

with solution in momentum space

B(t, z, µ) = exp
[
−4S(µB, µ)− aγB(µB, µ)

]
B̃(∂ηB , z, µB)

1
t

(
t
µ2B

)ηB e−γEηB

Γ(ηB)

where ηB ≡ 2aΓ(µB, µ) and the collinear log is given by
Lc = ln(Mκ/µ2).
1401.5478,1405.1044 J. Gaunt, M. Stahlhofen, F. Tackmann
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Resummed T0 distribution

We can combine our solutions for the hard, soft and beam functions
to obtain:

dσ
dΦ0dT0

= U(µh, µB, µs, Lh, Ls)

× Tr
{
u(βt, θ, µh, µs)H(M, βt, θ, µh)u†(βt, θ, µh, µs)

S̃B(∂ηs + Ls, βt, θ, µs)
}

× B̃a(∂ηB + LB, za, µB)B̃b(∂η′
B
+ LB, zb, µB)

1
T 1−ηtot
0

e−γEηtot

Γ(ηtot)

where Ls = ln(M2/µ2s), Lh = ln(M2/µ2h), LB = ln(M2/µ2B),
ηtot = 2ηs + ηB + η′B. Valid at arbitrary logarithmic order.

13



Resummed T0 distribution

We have:

• The hard function at 1-loop (some 2-loop ingredients in
principle known but not included)

• The soft function at 1-loop, with logarithmic 2-loop terms
• The beam function at 2-loops.

This is enough to resum large logarithms at NNLL. Including the
known 2-loop terms of the soft function, we miss only terms in the
hard and soft at 2-loops ∝ δ(T0) – we call this NNLL′a.
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Constructing approximate NNLO distributions

By evaluating our master formula with fixed scales, we can construct
an approximate (N)NLO formula which should reproduce the FO
behaviour for T0 > 0 in the small T0 limit.
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Numerical results for resummed T0
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Matching to fixed order

We use an additive matching to the fixed order calculation:
dσmatch

dT0
=

dσresum

dT0
+

dσFO

dT0
−
[

dσresum

dT0

]
FO

Profile scales are used to smoothly turn off the resummation.
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Conclusions

• We have derived a factorisation formula for the 0-jettiness
observable in t̄t production using SCET+HQET.

• We have calculated the relevant soft function at 1-loop order
with partial 2-loop information.

• Using this and known hard and beam functions, we are able to
resum large logs up to approximate NNLL′ accuracy.

• Our matched calculation is the most accurate available for a jet
resolution variable in t̄t production.

• Future knowledge of the 2-loop hard and soft functions will
allow a full NNLL′ resummation.

• Applications to NNLO+PS event generation in Geneva as well as
NNLO slicing computations in MCFM.
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Backup slides
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Numerical results for resummed T0

We evaluate u by expansion – should we also expand U?



Profile scales

• Resummation is switched
off via profile scales – when
hard, beam and soft scales
become equal, RGE
evolution stops.

• Scales are continuous
functions of the resolution
variable.

• Transition points
determined by examination
of size of singular vs
nonsingular contribution as
a function of τ .


	Appendix

