## Two-loop Beam Functions for Jet-veto resummation

## Goutam Das

with G. Bell, K. Brune and M. Wald

> based on arXiv:2207.05578

High Precision for Hard Processess
22 September, 2022

## Plan

- Overview
- Calculational details
- Results
- Outlook


## Motivation

- Resummation is useful to correctly describe observables at colliders



- Often experimental analyses involve cut on extra radiations to enhance signal-background ratio - jet vetoes

See talk by K. Ellis

- Reject events based on transverse momenta $p_{T}^{\text {jet }}<p_{T}^{\text {veto }}$
- Veto is also possible on Rapidity


## Motivation

- Jet-vetoes introduce large logarithms which needs to be resummed

$$
\ln \left(p_{T}^{\text {veto }} / Q\right)
$$

- Measurement at NNLO

$$
\omega_{2}(\{k, l\})=\theta(\Delta-R) \max \left\{\left|\vec{k}_{T}\right|,\left|\vec{l}_{T}\right|\right\}+\theta(R-\Delta)\left|\vec{k}_{T}+\vec{l}_{T}\right|
$$

- State-of-the-art N3LO+N2LL+LLR

Small jet-radius resummation at LL

```
[DasGupta et.al. `14]
```

- Recent explicit computation at NNLO with transverse momentum as a reference




## Factorization

- Factorization in SCET for color-singlet processes

$$
\mathrm{d} \sigma \simeq H\left(\mu_{f}\right) \prod B_{i}\left(\mu_{f}\right) \otimes S\left(\mu_{f}\right)
$$

Hard interaction
ISR
Soft radiation

- Each function can be calculated perturbatively
- Resummation is performed by calculating them at their characteristic scales and evolving them to a common scale.


## Resummation

- Resummation through RGE.
- Hard function RGE :

$$
\mu_{H} \xlongequal{\square} \text { Hard }
$$

$$
\frac{\mathrm{d} \ln H(Q, \mu)}{\mathrm{d} \ln \mu}=\gamma_{\mathrm{H}}(Q, \mu)
$$

- Hard anomalous dimension

$$
\begin{aligned}
\gamma_{\mathrm{H}}(Q, \mu) & =\Gamma_{\text {cusp }}\left(\alpha_{S}\right) \ln \frac{Q}{\mu}+\gamma^{H}\left(\alpha_{S}\right) \\
H(Q, \mu) & =H\left(Q, \mu_{H}\right) U\left(\mu_{H}, \mu\right)
\end{aligned}
$$

Boundary term (free from large logs)

$$
\mu_{H} \simeq Q
$$

Evolution kernel (resums large logs)

$$
\ln ^{n}(Q / \mu)
$$

## Ingredients for Resummation

- Need all the anomalous dimensions \& matching coefficients


Hard anomalous dims are known to 3-loops (some cases 4-loops)

- Beam, Soft quantities are computed on a case-by-case basis
- Need two-loop matching coefficients to achieve NNLL' accuracy

|  | $\Gamma_{\text {cusp }}, \beta$ | $\gamma^{H, B, J, S}$ | Boundary term $\left(c_{H, B, J, S}\right)$ |
| :---: | :---: | :---: | :---: |
| NLL | 2-loop | 1-loop | 1 |
| NLL $^{\prime}$ | 2-loop | 1-loop | $\alpha_{S}$ |
| NNLL | 3-loop | 2-loop | $\alpha_{S}$ |
| NNLL $^{\prime}$ | 3-loop | 2-loop | $\alpha_{S}^{2}$ |

## Automation

- Set up a general framework to automatically calculate general class of observables

$$
\mathrm{d} \sigma \simeq H\left(\mu_{f}\right) \prod_{i} B_{i}\left(\mu_{i}\right) \otimes S\left(\mu_{f}\right)
$$

- Hard function
underlying form factor Litered, Fire, Reduze, Air, Kira ... [Lee, `13, Smirnov, Chukharev, `19, von Manteuffel, Studerus, `12, Anastasiou, Lazopoulos, `10
- Soft functions $\longrightarrow$ 2-particle final state Maierhöfer, Usovitsch, Uwer, `17]
- NNLO di-jet soft functions: SoftSERVE

Thrust, C-parameter, Angularities, Hemisphere masses, Threshold, $\mathrm{P}_{\mathrm{T}}$, Jet-veto resummation ...

- Beam functions 2-particle final state
- Non-trivial matching onto pdfs!



## Beam function

- Proton matrix element of renormalized operator composed of partonic fields (with additional dependence on measurement)

Contains non-perturbative contribution - match onto PDF!
Matching also holds wrt partonic states!
Quark-Quark kernel

$$
\mathcal{B}_{q q}(x, \tau, \mu)=\sum_{i \in X_{c}} \delta\left((\bar{n} \cdot P)(1-x)-\bar{n} \cdot k_{X_{c}}\right)\langle P| \bar{\chi}\left|X_{c}\right\rangle \frac{\bar{n}}{2}\left\langle X_{c}\right| \chi|P\rangle \mathcal{M}\left(\tau,\left\{k_{i}\right\}\right)
$$

- In the limit $\tau^{-1} \gg \Lambda_{Q C D}$

$$
\mathcal{B}_{q q}(x, \tau, \mu)=\sum_{i} \int \frac{\mathrm{~d} z}{z} \mathcal{I}_{q i}\left(\frac{x}{z}, \tau, \mu\right) f_{i q}(z, \mu)
$$

## Rapidity divergence

## - SCET-II observables

- Suffers from additional rapidity divergences
- Rapidity logs can be resummed to all orders
- Follow the collinear-anomaly approach.
[Becher, Neubert, `10]
- Introduce analytic symmetric regulators at the phase space level
[Becher, Bell, `11]

$$
\begin{gathered}
\text { Modified PSP } \\
\int \frac{d^{d} k}{(2 \pi)^{d}}(2 \pi) \delta_{+}\left(k^{2}\right)\left(\frac{\nu}{k_{-}+k_{+}}\right)^{\alpha}
\end{gathered} \quad \text { Collinear }=\text { Anti-collinear }
$$

## NLO

- An automated framework exists at NLO
- Matrix element - LO splitting kernel

$$
P_{q \rightarrow g q^{*}}^{(0)}\left(x_{1}\right)=C_{F} \frac{1}{x_{1}}\left[1+\bar{x}_{1}^{2}-\epsilon x_{1}^{2}\right]
$$

- Phase space

$$
\begin{aligned}
& x_{1}=\frac{k_{-}}{P_{-}}, \quad k_{T}=\sqrt{k_{+} k_{-}}, \quad t_{k}=\frac{1-\cos \left(\theta_{k}\right)}{2} \\
&\left\{k_{-}, k_{T}, \theta_{k}\right\} \rightarrow\left\{x_{1}, k_{T}, t_{k}\right\}
\end{aligned}
$$

## Measurement-P

- Cumulant Beam function
$\mathcal{M}\left(p_{T}^{\text {veto }} ;\left\{k_{i}\right\}\right)=\theta\left(p_{T}^{\text {veto }}-\omega\left(\left\{k_{i}\right\}\right)\right)$

$$
\begin{aligned}
\omega_{1}(\{k\}) & =\left|\vec{k}_{T}\right| \\
\omega_{2}(\{k, l\}) & =\theta(\Delta-R) \max \left\{\left|\vec{k}_{T}\right|,\left|\vec{l}_{T}\right|\right\}+\theta(R-\Delta)\left|\vec{k}_{T}+\vec{l}_{T}\right|
\end{aligned}
$$

- Measurement function for single emission (in Laplace Space)

$$
\mathcal{M}_{1}\left(x_{1}, \tau ; k\right)=\exp \left[-\tau k_{T}\left(\frac{k_{T}}{x_{1} P_{-}}\right)^{n} f\left(t_{k}\right)\right]
$$

- $\mathrm{P}_{\mathrm{T}}$ - Veto

$$
n=0, f\left(t_{k}\right)=1
$$

Non-zero in singular limits of ME

$$
k_{T} \text { - dependence is trivial! } \quad \text { Perform the integration analytically! }
$$

- Master Formula

$$
\mathcal{B}_{q q}^{(1)}\left(x_{1}, \tau\right) \sim \Gamma\left(\frac{-2 \epsilon}{1+n}\right) x_{1}^{-1-\frac{2 n \epsilon}{1+n}-\alpha}\left[x_{1} P_{q \rightarrow g q^{*}}^{(0)}\left(x_{1}\right)\right] \int_{0}^{1} d t_{k}\left(4 t_{k} \bar{t}_{k}\right)^{-\frac{1}{2}-\epsilon} f\left(t_{k}\right)^{\frac{2 \epsilon}{1+n}} \quad \text { All singularities are fa }
$$

## Real-Virtual

- Matrix Element
related to NLO collinear splitting kernel - $P_{q \rightarrow g q^{*}}^{(1)}(x)$

- Phase space \& measurement function follow NLO type
- Master formula

$$
\mathcal{B}_{q q}^{(2), R V}\left(x_{1}, \tau, \mu\right) \sim V(\epsilon) \Gamma\left(\frac{-4 \epsilon}{1+n}\right) x_{1}^{-1-\frac{4 n \epsilon}{1+n}-\alpha} \mathcal{W}\left(x_{1}\right) \int_{0}^{1} d t_{k}\left(4 t_{k} \bar{t}_{k}\right)^{-\frac{1}{2}-\epsilon} f\left(t_{k}\right)^{\frac{4 \epsilon}{1+n}}
$$

$$
\sim \epsilon^{-2}+\mathcal{O}\left(\epsilon^{-1}\right)
$$

All Phase space singularities are factorised

## Real-Real

- Matrix element - LO triple collinear splitting kernels

$$
P_{q \rightarrow q^{\prime} \bar{q}^{\prime} q^{*}}^{(0), C_{F} T_{F}}, P_{q \rightarrow q \bar{q} q^{*}}^{(0), i d}, P_{q \rightarrow g g q^{*}}^{(0), C_{F}^{2}}, P_{q \rightarrow g g q^{*}}^{(0), C_{A} C_{F}}
$$

- Complicated divergence structures from ME



## Real-Real

- 2-particle phase space

$$
\begin{aligned}
a= & \frac{k_{-} l_{T}}{l_{-} k_{T}}, \quad b=\frac{k_{T}}{l_{T}}, \quad x_{12}=\frac{k_{-}+l_{-}}{P_{-}}, \quad q_{T}=\sqrt{\left(k_{-}+l_{-}\right)\left(k_{+}+l_{+}\right)} \\
& \left\{k_{-}, k_{T}, l_{-}, l_{T}, \theta_{k}, \theta_{l}, \theta_{k l}\right\} \rightarrow\left\{a, b, x_{12}, q_{T}, t_{k}, t_{l}, t_{k l}\right\}
\end{aligned}
$$

- Measurement function - two real emissions

$$
\mathcal{M}_{2}(\tau,\{k, l\})=\exp \left[-\tau q_{T}\left(\frac{q_{T}}{x_{12} P_{-}}\right)^{n} \mathcal{F}\left(x_{12}, a, b, t_{k l}, t_{k}, t_{l}\right)\right]
$$

- Exact form depends on parametrization \& ME divergences

$$
\mathcal{F}\left(x_{12}, a, b, t_{k l}, t_{k}, t_{l}\right) \quad \square \quad \begin{aligned}
& \text { ensure it does NOT vanish in } \\
& \text { the singular limits of ME ! }
\end{aligned}
$$

## Real-Real : $\mathrm{C}_{\mathrm{F}} \mathrm{T}_{\mathrm{F}} \mathrm{n}_{\mathrm{f}}$

$$
\left\{k_{-}, k_{T}, l_{-}, l_{T}, \theta_{k}, \theta_{l}, \theta_{k l}\right\} \rightarrow\left\{a, b, x_{12}, q_{T}, t_{k}, t_{l}, t_{k l}\right\}
$$

- $q_{T}$-dependence is trivial

Perform the integration analytically

- Remap \{a,b\} to unit hypercube 4 sectors

```
Exploit k - 1 symmetry: 2 sectors
```



- Avoid distributions in $x_{12}$ work in Laplace-Mellin space!

Also possible to keep the distributions in $x_{12}$

## Real-Real : $\mathrm{C}_{\mathrm{r}} \mathrm{T}_{\mathrm{r}} \mathrm{n}_{\mathrm{f}}$

- Collinear divergence $\mathrm{k} \| \mathrm{l}$ still overlaps:

$$
\begin{aligned}
\bar{a} & \Rightarrow u \bar{v} \\
t_{k l} & \Rightarrow u^{2} v /(1-u \bar{v})
\end{aligned} \quad\left(\bar{a}^{2}+4 a t_{k l}\right)^{-1} \stackrel{\text { NLT }}{\Longrightarrow} u^{-1}
$$



## - Master formula:

$$
\begin{gathered}
\mathcal{B}_{q q}^{(2), n f}\left(N_{1}, \tau\right) \sim \mathcal{C}(n, \epsilon)\left(\frac{\nu}{Q}\right)^{2 \alpha} \int_{0}^{1} d x_{12} d b d u d v d t_{l} d t_{5} x_{12}^{-1-2 \alpha-\frac{4 n \epsilon}{1+n}} u^{-1-2 \epsilon} \bar{x}_{12}^{N_{1}-1+2 \alpha+\frac{4 n \epsilon}{1+n}} \times \\
\mathcal{G}\left(x_{12}, b, u, v, t_{l}, t_{5}\right) \mathcal{F}\left(x_{12}, b, u, v, t_{l}, t_{5}\right)^{\frac{4 \epsilon}{1+n}} \\
\text { finite function }
\end{gathered}
$$

## All singularities factorize !

## Real-Real : $\mathrm{C}_{\mathrm{F}}{ }^{2}$

- Divergence structures
$\frac{1}{s_{12} s_{13} \bar{x}_{1} \bar{x}_{3}}, \quad \frac{1}{s_{12} s_{123} \bar{x}_{1} \bar{x}_{3}}, \ldots \frac{1}{s_{13} s_{23} x_{1} x_{2}}, \quad \frac{1}{s_{13} s_{123} x_{1} x_{2}}, \ldots$

- Complications due to many overlapping divergences in ME
- Additional complications from measurements
$\omega_{p_{T}-\text { veto }}=\sqrt{\frac{a}{(a+b)(1+a b)}}\left[\Theta(\Delta-R) \max (1, b)+\Theta(R-\Delta) \sqrt{(1-b)^{2}+4 b\left(1-t_{k l}\right)}\right]$
Must stay non-zero in the physical limits $a \rightarrow 0, b \rightarrow 0$


## - General strategy:

- Use of non-linear transformations
- Sector decomposition


## Real-Real : $\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}}$

- Divergence structures (in addition to all color structures)
$\frac{1}{s_{12} s_{13} x_{2} \bar{x}_{3}}, \quad \frac{1}{s_{12} s_{123} x_{1} x_{2}}, \ldots$

- Calculation follows similar to $C_{F}^{2}$ structures. ~ new 14 sectors
- Implementation:
- Automated Mathematica code
- Laurent expansion \& integration in pySecDec (Cuba)


## Cumulant Measurement

- Revisit measurement $\mathcal{M}\left(p_{T}^{\text {veto }} ;\left\{k_{i}\right\}\right)=\theta\left(p_{T}^{\text {veto }}-\omega\left(\left\{k_{i}\right\}\right)\right)$

$$
\omega_{1}(\{k\})=\left|\vec{k}_{T}\right| \quad \omega_{2}(\{k, l\})=\theta(\Delta-R) \max \left\{\left|\vec{k}_{T}\right|,\left|\vec{l}_{T}\right|\right\}+\theta(R-\Delta)\left|\vec{k}_{T}+\vec{l}_{T}\right|
$$

- Our framework calculates in Laplace space

$$
\int_{0}^{\infty} d p_{T}^{\text {veto }} e^{-\tau p_{T}^{\text {veto }}} \theta\left(p_{T}^{\text {veto }}-\omega\left(\left\{k_{i}\right\}\right)\right)=\frac{1}{\tau} \exp \left(-\tau \omega\left(\left\{k_{i}\right\}\right)\right)
$$

- Revert back to Momentum space

$$
\begin{aligned}
& \mathcal{S}_{R}^{\text {bare }} \Rightarrow \frac{e^{\gamma_{E}(2 \epsilon+\alpha)}}{\Gamma(1-2 \epsilon-\alpha)} \mathcal{S}_{R}^{\text {bare }}, \quad \mathcal{S}_{R V}^{\text {bare }} \Rightarrow \frac{e^{\gamma_{E}(4 \epsilon+\alpha)}}{\Gamma(1-4 \epsilon-\alpha)} \mathcal{S}_{R V}^{\text {bare }}, \quad \mathcal{S}_{R R}^{\text {bare }} \Rightarrow \frac{e^{\gamma_{E}(4 \epsilon+2 \alpha)}}{\Gamma(1-4 \epsilon-2 \alpha)} \mathcal{S}_{R R}^{\text {bare }} \\
& \mathcal{B}_{R}^{\text {bare }} \Rightarrow \frac{e^{\gamma_{E}(2 \epsilon)}}{\Gamma(1-2 \epsilon)} \mathcal{B}_{R}^{\text {bare }}, \quad \mathcal{B}_{R V}^{\text {bare }} \Rightarrow \frac{e^{\gamma_{E}(4 \epsilon)}}{\Gamma(1-4 \epsilon)} \mathcal{B}_{R V}^{\text {bare }}, \quad \mathcal{B}_{R R}^{\text {bare }} \Rightarrow \frac{e^{\gamma_{E}(4 \epsilon)}}{\Gamma(1-4 \epsilon)} \mathcal{B}_{R R}^{\text {bare }}
\end{aligned}
$$

## SCET-II renormalization

- Collinear anomaly approach

$$
\left[\mathcal{S}(\tau, \mu, \nu) \mathcal{I}_{q q}\left(N_{1}, \tau, \mu, \nu\right) \mathcal{I}_{\bar{q} \bar{q}}\left(N_{2}, \tau, \mu, \nu\right)\right]_{q^{2}} \stackrel{\alpha \equiv 0}{=}\left(\bar{\tau}^{2} q^{2}\right)^{-F_{q \bar{q}}(\tau, \mu)} \widehat{I}_{q q}\left(N_{1}, \tau, \mu\right) \widehat{I}_{\bar{q} \bar{q}}\left(N_{2}, \tau, \mu\right)
$$

[Becher, Neubert, `10]

- RGE : Anomaly coefficients $\frac{\mathrm{d}}{\mathrm{d} \ln \mu} F_{q \bar{q}}(\tau, \mu)=2 \Gamma_{\text {cusp }}\left(\alpha_{S}\right)$

Finite non-logarithmic coefficient

- RGE: Matching coefficients

$$
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu} \widehat{I}_{q q}\left(N_{1}, \tau, \mu\right)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{S}\right) L+2 \gamma^{B}\left(\alpha_{S}\right)\right] \widehat{I}_{q q}\left(N_{1}, \tau, \mu\right)-2 \sum_{i} \widehat{I}_{q i}\left(N_{1}, \tau, \mu\right) \widehat{P}_{i q}\left(N_{1}, \mu\right)
$$

$$
L=\ln (\bar{\tau} \mu)
$$

- Solution


## renormalized matching coefficients

Finite remainder coefficient $\widehat{\mathrm{I}}_{q q}\left(N_{1}\right) \quad$ Non-logarithmic piece

## Results : Anomalies

- Anomaly coefficients
- depends on the jet radius at 2-loop

- Non-cusp anomalous dimensions

| $\gamma_{1}^{B}$ | Analytical[1] | This Work |
| :---: | :---: | :---: |
| $\gamma_{1}^{n_{f}}$ | -11.395 | $-11.395(2)$ |
| $\gamma_{1}^{C}$ | 10.610 | $10.611(19)$ |
| $\gamma_{1}^{C} A$ | 4.637 | $4.640(17)$ |

## Results : Matching Kernels

- Matching coefficients at two loops also depend on the Jet radius R
- Seven independent kernels for the quark case

$$
\begin{aligned}
& \widehat{I}_{q \leftarrow q}^{(2)}(N)=C_{F}^{2} \widehat{I}_{q \leftarrow q}^{\left(2, C_{F}\right)}(N)+C_{F} C_{A} \widehat{I}_{q \leftarrow q}^{\left(2, C_{A}\right)}(N)+C_{F} T_{F} n_{f} \hat{T}_{q<q}^{\left(2, n_{f}\right)}(N)+C_{F} T_{F} \widehat{I}_{q \leftarrow q}^{\left(2, T_{F}\right)}(N) \text {, } \\
& \widehat{I}_{q \leftarrow g}^{(2)}(N)=C_{F} T_{F} \hat{I}_{q \leftarrow g}^{\left(2, C_{F}\right)}(N)+C_{A} T_{F} \hat{I}_{q \leftarrow g}^{\left(2, C_{A}\right)}(N), \\
& \widehat{I}_{q \leftarrow \bar{q}}^{(2)}(N)=C_{F}\left(C_{A}-2 C_{F}\right) \hat{I}_{q \leftarrow \bar{q}}^{\left(2, C_{A F}\right)}(N)+C_{F} T_{F} \widehat{I}_{q \leftarrow q}^{\left(2, T_{F}\right)}(N), \\
& \widehat{I}_{q \leftarrow q^{\prime}}^{(2)}(N)=\hat{I}_{q \leftarrow \bar{q}^{\prime}}^{(2)}(N)=C_{F} T_{F} \widehat{I}_{q \leftarrow q}^{\left(2, T_{F}\right)}(N) . \\
& \text { [G. Bell, GD, K. Brune, M. Wald `22] }
\end{aligned}
$$

- Six kernels for the gluon case

$$
\begin{aligned}
& \widehat{I}_{g \leftarrow g}^{(2)}(N)=C_{A}^{2} \hat{I}_{g<g}^{\left(2, C_{A}^{( }\right)}(N)+C_{A} T_{F} n_{f} \hat{I}_{g<g}^{\left(2, C_{A} T_{F} n_{f}\right)}(N)+C_{F} T_{F} n_{f} \hat{T}_{g<g}^{\left(2, C_{F} T_{F} n_{f}\right)}(N), \\
& \hat{I}_{g<q}^{(2)}(N)=C_{F}^{2} \hat{I}_{g<q}^{\left(2, C_{F}^{2}\right)}(N)+C_{F} C_{A} \hat{I}_{g<q}^{\left(2, C_{F} C_{A}\right)}(N)+C_{F} T_{F} n_{f} \hat{I}_{g<q}^{\left(2, C_{F} T_{F} n_{f}\right)}(N) \text {. }
\end{aligned}
$$

## Results : Matching Kernels

## - Quark matching kernels






## Results : Matching Kernels

## - Quark matching kernels



## Outlook

- An automated framework to calculate Beam functions for a wide class of obervables at NNLO.
- New results for $\mathrm{P}_{\mathrm{T}}$-veto
- Future plans:
- Implementation in a C++ code - BeamSERVE to be integrated with resummed framework e.g. SCETlib - GENEVA
- Application to phenomenology!

Thank you for your attention!

