
Kira: Integral Reduction
(common work with: Fabian Lange, Philipp Maierhöfer)

High Precision for Hard Processes (HP2 2022)

Johann Usovitsch

22. September 2022

1 / 18

Outline

1 Introduction of Kira
Introduction of Laporta algorithm
Introduction to Feynman integral reduction language
General seeding procedure in Kira

2 Main bottleneck in Kira 4-loop reductions
Solution 1: improved seeding
Solution 2: sectors are linearly independent

3 Automatic permutation of propagators

4 Premature extension of Kira to 6-loop reductions

5 Construction of the block triangular form

6 Summary and outlook

2 / 18

Introduction of Kira

General features of Kira

MPI support

Finite field support

Reduction of general linear system of equations

Automatic generation of IBPs and symmetry finder for multiple
integral toplogies

3 / 18

Introduction of Kira

General purpose of Kira

Reduction of 2 → 2 doubleboxes (first application in single top
production at t-channel)

Reduction of 1 → 2 three-loop form factors (first application H → gg
3-loop form factor)

Application of user defined systems
Gradient flow formalism [R. V. Harlander, F. Lange, 2022]

Phase-space integrals with Heaviside functions [D. Baranowski, M. Delto,

K. Melnikov, C.-Y. Wang, 2021]

Solving system of differential equations (collaboration with Martijn
Hidding on DiffExp [Hidding, 2020], used by AMFlow [Xiao Liu,Yan-Qing Ma, 2022])

Double-pentagon topology in five-light-parton scattering (solve block
triangular form: [Xin Guan, Xiao Liu, Yan-Qing Ma, 2019])

4 / 18

Introduction of Kira

Double-pentagon topology in five-light-parton scattering
p1 P1

P4

P5

P2 P7

P8

p3

p4

p2 P3 P6
p5

Runtime Memory Probes CPU time
per probe

CPU time
for probes

12 d 540 GiB 38278000 0.37 s 25 %

Including d, the reduction of the double-pentagon topology is a six
variable problem
We use a system of equations which is in block-triangular form
taken from [Xin Guan, Xiao Liu, Yan-Qing Ma, 2019], which is of the size of 72 MB,
best value I could find comparing to other methods. And no
simplifications where yet applied.
We benchmark the reduction of all integrals including five scalar
products

5 / 18

Introduction of Kira

Double-pentagon topology in five-light-parton scattering

Block-triangular form degree of the polynomials is 7

From [JU, 2020] one denominator coefficient in the IBP table
(−8 + d) ∗ (−6 + d)3 ∗ (−5 + d)3 ∗ (−4 + d)3 ∗ (−3 + d)2 ∗ (−2 + d) ∗ (−1 + d) ∗ (−11 + 2 ∗ d) ∗ (−9 + 2 ∗

d) ∗ (−7 + 2 ∗ d) ∗ s152 ∗ (s15 − s23) ∗ s234 ∗ (1 + s15 − s34)5 ∗ (s15 − s23 − s34)4 ∗ (−1 + s34) ∗ s346 ∗

(−1 + s45)4 ∗ s453 ∗ (−1 − s23 + s45)3 ∗ (s15 − s23 + s45)4 ∗ (−1 + s34 + s45)5 ∗ (s34 + s45)2 ∗ (−1 +

s34 + s45 + s34 ∗ s45) ∗ (s15 − s23 + s23 ∗ s34 − s15 ∗ s45 + s34 ∗ s45) ∗ (−s15 + s23 − s23 ∗ s34 − s45 +

s15 ∗ s45 − 2 ∗ s23 ∗ s45 + s452) ∗ (1 + s23 − s34 − 2 ∗ s23 ∗ s34 − 2 ∗ s45 − s23 ∗ s45 + s34 ∗ s45 + s452) ∗

(−(s15 ∗ s34) + s23 ∗ s34 − s23 ∗ s342 + s15 ∗ s45 − s23 ∗ s45 − 2 ∗ s34 ∗ s45 − s15 ∗ s34 ∗ s45 − s23 ∗

s34 ∗ s45 + s342 ∗ s45 − s15 ∗ s452 + s34 ∗ s452) ∗ (s152 − 2 ∗ s15 ∗ s23 + s232 + 2 ∗ s15 ∗ s23 ∗ s34 −

2 ∗ s232 ∗ s34 + s232 ∗ s342 − 2 ∗ s152 ∗ s45 + 2 ∗ s15 ∗ s23 ∗ s45 + 2 ∗ s15 ∗ s34 ∗ s45 + 2 ∗ s23 ∗ s34 ∗

s45 + 2 ∗ s15 ∗ s23 ∗ s34 ∗ s45 − 2 ∗ s23 ∗ s342 ∗ s45 + s152 ∗ s452 − 2 ∗ s15 ∗ s34 ∗ s452 + s342 ∗ s452)

One term after the expansion: 8d17[l59]s152s235s3421s4531

6 / 18

Introduction of Kira Introduction of Laporta algorithm

Integration-by-parts (IBP) identities
I(a1, . . . , a5) =

∫ dDl1dDl2
[l12−m2

1]a1 [(p1+l1)2]a2 [l22]a3 [(p1+l2)2]a4 [(l2−l1)2]a5∫
dDl1 . . . dDlL

∂

∂(li)µ

(
(qj)µ

1
[P1]a1 . . . [PN]aN

)
[Chetyrkin, Tkachov, 1981] =0

c1({af }, s⃗, D)I(a1, . . . , aN −1) + · · · + cm({af }, s⃗, D)I(a1+1, . . . , aN) =0

qj = p1, . . . , pE , l1, . . . , lL s⃗ = ({si}, {m2
i })

m number of terms generated by one IBP identity

Reduction: express all integrals with the same set of propagators but with different
exponents af as a linear combination of some basis integrals (master integrals)

Gives relations between the scalar integrals with different exponents af

af = integers: Sample a system of equations, Laporta algorithm [Laporta, 2000]

Public tools: Kira [Klappert, Lange, Maierhöfer, Usovitsch, Uwer, 1705.05610, 2008.06494], Reduze2
[von Manteuffel, Studerus, 1201.4330], FIRE [Smirnov, Chuharev, 1901.07808], FiniteFlow [Peraro,

1905.08019]+LiteRed[Lee, 1310.1145]

7 / 18

Introduction of Kira Introduction to Feynman integral reduction language

Integral seeds

Topology is the name of your integral family with a linearly
independent set of propagators
Seeds are integrals with integer power coefficients, e.g:
topo7[1,1,1,1,1,1,2,-2,-1]
To generate system of equations we apply IBP identities to the seeds

r =
N∑

j=1
aj θ(aj − 1

2) sum of positive indices (example 8)

s = −
N∑

j=1
aj θ(−aj − 1

2) sum of negative indices (example 3)

Dots d =
N∑

j=1
aj θ(aj − 3

2) (example 1)

Sector number S =
N∑

j=1
2j−1 θ(aj − 1

2)

"Number of lines" is the number of propagators with positive
exponent power

8 / 18

Introduction of Kira General seeding procedure in Kira

Seeding in Kira

Suppose we are interested in the reduction of the topology topo7 with
s = 4 and r = 7

In Kira we generate seeds for 7-line integrals with sector 127 r = 7,
d = 0, s = 4

We also generate seeds for 6-line integrals with sectors [63, 126,...]
r = 7, d = 1, s = 4

We also generate seeds for 5-line integrals with sectors [62, 124, ...]
r=7, d = 2, s = 4

...

9 / 18

Main bottleneck in Kira 4-loop reductions

Bottleneck

Important: forward elimination is dominating the run time in a finite
field reduction

Generating system of equations in the style of Kira is a major
bottleneck with growing number of loops

Because we are keeping reduction parameters s and d constant for all
sectors

But: for each bottleneck in Kira we always find a hack

10 / 18

Main bottleneck in Kira 4-loop reductions Solution 1: improved seeding

Improved seeding

Seed integrals in Kira for 7-line integrals with sector 127 r = 7,
d = 0, s = 4

For 6-line integrals with sectors [63, 126,...] r = 7, d = 0, s = 3

For 5-line integrals with sectors [62, 124,...] r = 7, d = 0, s = 2, ...

One reduction sample of the system of equations over one finite field
will give Ñ of {M̃i} master integrals

We generate additional IBP of the seeds which come from
{M̃i}\{Mi}, where {Mi} are the minimal set of master integrals

Perform the reduction again and see if more seeds are required

Right now it is tedious to do these steps in Kira, but we plan to make
this hack a feature based on ideas from Mao Zeng

11 / 18

Main bottleneck in Kira 4-loop reductions Solution 2: sectors are linearly independent

Sectors are linearly independent in the forward elimination

If we do not use the option preferred masters, then the linear
independance of sectors is observed for all topologies, as soon as we
have linearly independent set of equations

This should give a big improvement if we perform the Gaussian
elimination for each sector individually and only perform the backward
substitution to all sectors

I believe the improvement is significant, and the new bottleneck for
the run time of a finite field reduction is the reconstruction of final
coefficients or the backward substitution

This is already implement within the option of run_triangular:
sectorwise

12 / 18

Automatic permutation of propagators

New option

Add permutation_option: 1 in integralfamilies.yaml
Physical propagators first
Propagators with least number of terms first
Zero mass propagators first

Specify your own ordering with
permutation: [3,2,1,4,5,6,7,8,9]

We have 4-loop examples where the perfomance improvement is
measured to be about a factor of 300

13 / 18

Premature extension of Kira to 6-loop reductions

Change of internal limits

Kira soon supports integrals with up to 63 propagtors

We change the limits of the algorithm for the seed integral
compactification

Soon each seed is stored in a unique identification number of 128 bit
size instead of 64, you will find a warning which will remind you, that
some things go slowlier.

Number of equations possible to reduce with Kira increases to 264

from 232

14 / 18

Construction of the block triangular form

Construction of the block triangular form, see
arXiv:1912.09294v3

First step is the Ansatz: I1c1 + · · · + IN cN = 0, where Ii are the
Feynman integrals and the ci are polynomials.
Second step is the Ansatz for the coefficients

cj(d, s⃗) =
dmax∑
i=0

di
kmax∑
l⃗∈Ωkj

ĉi,l1,...,lM
j sl1

1 · · · slM
M

Ωkj
= {⃗l ∈ NM |

M∑
j=0

lj = kj}

We have a linear relation between integrals of different
massdimension, thus ki differ with respect to the integrals of our
choice
The ĉi,l1,...,lM

j are unknown rational numbers and are fixed by
adjusting the kmax and dmax

15 / 18

Construction of the block triangular form

Block-triangular form

To determine the unknowns ĉi,l1,...,lM
j we have to reduce the

IBP-system to N master integrals generated the Laporta way as many
times as the number of the unknowns ĉi,l1,...,lM

j are in the Ansatz.
Each new sample generates N new non trivial equations.
Some unknowns turn out to be ĉi,l1,...,lM

j undetermined and we can
choose them arbitrary.
The result is a system of equations in block triangular form
containing as many equations as integrals, which we would like to
reduce.
The coefficients are polynomials of very low degree
The rational numbers ĉi,l1,...,lM

j will be huge
This system of equations is ideal for the finite field methods applied in
Kira
We have a working general implementation of this algorithm
We are looking for an appropriate hack to address the bottleneck
associated with integrals with dots

16 / 18

Construction of the block triangular form

Upcoming Features in next Kira Version
Kira’s, development release
Get Kira on gitlab: https://gitlab.com/kira-pyred/kira.git

On https://hepforge.kira.org we provide a static linked Kira
executable
We have a Wiki and a best practice summary on gitlab
We plan to go for the block triangular form: run_triangular:
block, which finds a small and fast to evaluate system of equations
for general topologies [Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]!
We have automated the permutation of propagators to accelerate the
reduction time permutation_option: 1
We improved the speed for the export of the results into the FORM
output
More dedicated improved seeding

17 / 18

https://gitlab.com/kira-pyred/kira.git
https://hepforge.kira.org

Summary and outlook

Summary and Outlook

Kira is an all-rounder for multi-scale as well as for multi-loop
computations
Kira utilize the finite field methods and helps to tailor it to your needs
Computing the block triangular form will allow us to tackle new
interesting state of the art problems!
Explained few bottlenecks in 4-loop computations

18 / 18

Main feature: finite field reconstruction

Finite field reconstruction: Kira + FireFly

Reconstruction of multivariate rational functions from samples over
finite integer fields [Schabinger, von Manteuffel, 2014][Peraro, 2016]

Public implementations available: FireFly [Klappert, Lange, 2019][Klappert, Klein, Lange,

2020], FIRE 6 [Smirnov, Chukharev, 2019] and FiniteFlow [Peraro, 2019]

FireFly has been combined with Kira’s native finite field linear
solver
Furthermore Kira supports MPI: to utilize the new parallelization
opportunities now available with finite field methods
Side note: the collaboration [Dominik Bendle, Janko Boehm, Murray Hey-

mann, Rourou Ma, Mirko Rahn, Lukas Ristau, Marcel Wittmann, Zihao Wu, Yang Zhang, 2021] implements
semi-numeric row reduced echelon form. They play with Laporta
ordering in intermediate steps to improve the reduction time for the
forward elimination!

19 / 18

Main feature: finite field reconstruction Run time examples

Run time examples

P1 = k
2
1, P2 = k

2
2, P3 = k

2
3, P4 = (p1 − k1)2

, P5 = (p1 − k2)2
, P6 = (p1 − k3)2

, P7 = (p2 − k1)2
,

P8 = (p2 − k2)2
, P9 = (p2 − k3)2

, P10 = (k1 − k2)2
, P11 = (k1 − k3)2

, P12 = (k2 − k3)2
,

p
2
1 = zzb, p

2
2 = 1, p1p2 = (1 − z)(1 − zb)

We chose r = 17 and s = 0 for the benchmark

Mode Runtime Memory Probes CPU time
per probe

CPU time
for probes

run_initiate 5 h 20 min 128 GiB - - -

run_triangular +
run_back_substitution

> 14 d ~ 540 GB - - -

run_firefly: true 6 d 3 h 670 GiB 108500 370 s 100 %

run_triangular:
sectorwise

36 min 4 GiB - - -

run_firefly: back 4 h 54 min 35 GiB 108500 12.2 s 100 %

20 / 18

Main feature: finite field reconstruction Reducing the memory footprint with iterative reduction

Reducing the memory footprint with iterative reduction
p2 P6

P7

P2

P1

P5 q1

p1 P4 P3
q2

r = 7 and s = 4

Mode Iterative Runtime Memory

Kira ⊕ FireFly
- 18 h 40 GiB

sectorwise 33 h 15 min 9 GiB

iterative_reduction: sectorwise — one sector at a time
iterative_reduction: masterwise — one master integral at a
time
Works well with the options run_back_substitution and
run_firefly
Independent study confirms the efficiency of this method
[Chawdhry, Lim, Mitov, 2018]

Sacrifice the CPU time for 4 times less main memory consumption
21 / 18

Main feature: finite field reconstruction Runtime reduction with coefficient arrays

Runtime reduction with coefficient arrays

--bunch_size= Runtime Memory
CPU time
per probe

CPU time
for probes

1 18 h 40 GiB 1.73 s 95 %
2 14 h 41 GiB 1.30 s 94 %
4 11 h 46 GiB 1.00 s 93 %
8 10 h 15 min 51 GiB 0.91 s 92 %
16 9 h 45 min 63 GiB 0.85 s 92 %
32 9 h 30 min 82 GiB 0.84 s 92 %
64 9 h 30 min 116 GiB 0.83 s 92 %

Kira ⊕ Fermat 82 h 147 GiB - -

The runtime of the probes is dominated by the forward elimination
48 cores each with hyper-threading disabled
Coefficient arrays bring sizeable effects in exchange for main memory

22 / 18

Main feature: finite field reconstruction Runtime reduction with MPI

Runtime reduction with MPI

nodes Runtime Speed-up CPU efficiency

1 18 h 1.0 95 %
2 10 h 15 min 1.8 87 %
3 7 h 15 min 2.5 82 %
4 5 h 45 min 3.1 76 %
5 5 h 30 min 3.3 65 %

Kira ⊕ Fermat 82 h - -

Option run_firefly: true and Intel® MPI is used
The first prime number suffers in the performance because FireFly
cannot process arbitrary probes
New probes are scheduled based on intermediate results
Remark: the user should use less nodes for the first prime number

23 / 18

Main feature: finite field reconstruction User defined systems

Double-pentagon topology in five-light-parton scattering I
p1 P1

P4

P5

P2 P7

P8

p3

p4

p2 P3 P6
p5

Runtime Memory Probes CPU time
per probe

CPU time
for probes

12 d 540 GiB 38278000 0.37 s 25 %

Including d, the reduction of the double-pentagon topology is a six
variable problem
We use a system of equations which is in block-triangular form
taken from [Xin Guan, Xiao Liu, Yan-Qing Ma, 2019], which is of the size of 72 MB,
best value I could find comparing to other methods. And no
simplifications where yet applied.
We benchmark the reduction of all integrals including five scalar
products

24 / 18

Main feature: finite field reconstruction User defined systems

Double-pentagon topology in five-light-parton scattering II

FireFly’s factor scan improves the denominators
–bunch_size = 128 option is used to improve the speed
40 cores with hyperthreading enabled
The most complicated master integral coefficient has a maximum
degree in the numerator of 87 and in the denominator of 50
The database of the reduction occupies 25 GiB of disk space
The number of required probes 107 is computed fast due to the block
triangular structure of the system of equations
[Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]

Main memory reduction can be achieved with the options
iterative_reduction or by reducing the –bunch_size option
We use Horner form to accelerate the parsing for the coefficients

25 / 18

Main feature: finite field reconstruction User defined systems

Double-pentagon topology in five-light-parton scattering III

The new option insert_prefactors would give a factor of 2
improvement in an overall performance if we use the denominators
from [J.U, arXiv:2002.08173]. The method to compute these denominators is
explained shortly in the summary of [J.U, arXiv:2002.08173], which relies on
algebraic reconstruction methods pioneered in
[arXiv:1805.01873, arXiv:1712.09737, arXiv:1511.01071]. A second approach to compute the
denominator functions should be possible with finite field methods
[Heller, von Manteuffel, arXiv:2101.0828].
The block triangular form is much better suited for the reduction
than a naïv IBP system of equations as generated by Kira
Reduction tables are available upon request

26 / 18

	Introduction of Kira
	Introduction of Laporta algorithm
	Introduction to Feynman integral reduction language
	General seeding procedure in Kira

	Main bottleneck in Kira 4-loop reductions
	Solution 1: improved seeding
	Solution 2: sectors are linearly independent

	Automatic permutation of propagators
	Premature extension of Kira to 6-loop reductions
	Construction of the block triangular form
	Summary and outlook
	Appendix
	Main feature: finite field reconstruction
	Run time examples
	Reducing the memory footprint with iterative reduction
	Runtime reduction with coefficient arrays
	Runtime reduction with MPI
	User defined systems

