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Typical workflow of loop amplitude computations

1 Draw all relevant Feynman diagrams:

2 Write down the integrand:

A =
∑

T∈topologies

∫
ddk1d

dk2

∑
i ci ({p})mi ({k, p})∏

j∈T Dj({k, p})

3 Reduce the amplitude onto a set of master integrals:

A =
∑
j

dj (ε, p)×MIj(ε, p)

4 Evaluate the result at a chosen phase-space point
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Complexity

Feynman diagrams

C-number

LARGE
intermediate expressions
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Complexity

• Complexity increases with loop order and multiplicity.

• Current QCD frontier: 2→ 3 scattering at NNLO.

• Massless case: results for all relevant Feynman integrals available.

• One external mass: results for all planar + some non-planar integrals now
available.

one-mass, planar: Nov ’15 [Papadopoulos, Tommasini, Wever] (one penta-box, MPLs)
May ’20 [Abreu, Ita, Moriello, Page, Tschernow, Zeng] (DEs+numerical sols)
Sep ’20 [Canko, Papadopoulos, Syrrakos] (MPLs)
Dec ’20 [Syrrakos] (1L pentagon, MPLs)
Oct ’21 [Chicherin, Sotnikov, Zoia] (2L pentagon functions)

one-mass, non-planar Oct ’19 [Papadopoulos, Wever] (one hexa-box, MPLs)
July ’21 [Abreu, Page, Ita, Tschernow] (hexa-box, DEs+numerical sols)
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Recent work

• pp →W /H + bb̄ at 2L (leading colour, massless b quarks)

W±

[Badger, Hartanto, Zoia, Feb ’21]

H

[Badger, Hartanto, Kryś, Zoia, July ’21]

• W (→ ` ¯̀′) + 4-partons at 2L (leading colour, massless quarks)
[Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, Oct ’21]
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Recent work

• pp →W (→ ēνe)γ + j at 2L (leading colour, massless quarks)

• Detach the leptonic W−boson decay and only compute the W production
amplitudes

γ

νe

ē

W

W

νe

γ

ē

[Badger, Hartanto, Kryś, Zoia, Jan ’22]

• Important for precision SM tests and constraining BSM physics
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Finite fields

• To avoid analytic complexity in intermediate steps, use numerical evaluations
over finite fields

• We work with rational numbers modulo a large prime number:

q =
a

b
−→ q mod p ≡

(
a× (b−1 mod p)

)
mod p

3

7
≡ 2 mod 11

• One can reconstruct the analytic result from its many numerical evaluations

• FiniteFlow [Peraro, ’19]
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W γ + j

• Generate the amplitudes starting from Feynman diagrams:

• Compute two kinds of W−production amplitudes:
• A6,u/d(p1, p2, p3, p4, p5, p6) = Aµ5,u/d(p1, p2, p3, p4, pW ) LA,µ(p5, p6)

• A6,e/W (p1, p2, p3, p4, p5, p6) = Aµ4 (p2, p3, p4, p̃W ) L
e/W
B,µ (p1, p5, p6)

• Decompose the amplitudes in the basis of external momenta and define
contracted amplitudes:

Aµ5 = pµ1 a1 + pµ2 a2 + pµ3 a3 + pµ4 a4

Ã5,i = pi · A5
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W γ + j

• Perform the 4D tensor decomposition on Ã5,i using physical projectors
[Peraro, Tancredi, ’19], [Peraro, Tancredi, ’21]

• The contracted amplitudes can be written as:

Ã5,i =
∑

T∈topologies

∫
ddk1d

dk2

∑
i ci ({p})mi ({k , p})∏

j∈T Dj({k , p})

• Coefficients ci are functions of external kinematics only and are expressed
through the five-point Mandelstam invariants:

~s5 = {s12, s23, s34, s123, s234, s56} ,

as well as the pseudo-scalar invariant tr5 = 4iεµνρσp
µ
1 p

ν
2p

ρ
3p

σ
4 .

(Begin finite field sampling)

• The amplitude is mapped onto scalar integrals within 15 maximal topologies
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W γ + j

×2
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W γ + j

• Scalar integrals are IBP-reduced onto a master integral basis
[Laporta, ’01], [Lee, ’13]

Ã5,i =
∑
j

dj (ε, p)×MIj(ε, p)

• We work with MIs that satisfy canonical DEs [Henn, ’13]:

d
→
MI = ε

(
58∑
i=1

ai × d logwi

)
→
MI ,

where the ‘letters’ wi are algebraic functions of external kinematics
[Abreu, Ita, Moriello, Page, Tschernow, Zeng, ’20]
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W γ + j

• Laurent expand the coefficients and map the MIs onto square roots and a
basis of special functions {f } related to the letters

• Subtract the poles to get the finite remainder:

F̃5,i =
∑
j

ui ,j(p)×monj

(
tr5,

√
∆3, {f }

)
,

• Reconstruct the coefficients, now free of ε

(End finite field sampling)
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Special functions

• The reconstructed finite remainders need to be evaluated at many
phase-space points and their permutations

• Translate the basis of iterated integrals {fi} into pentagon functions {gi}:

fi =
∑
j

βij monj ({gk}) , βij ∈ Q

• Pentagon function basis is closed under permutations:

(σ ◦ gi ) (~s5, tr5) =
∑
j

λ
(σ)
ij monj [{gk (~s5, tr5)}] , λ

(σ)
ij ∈ Q

• Efficient evaluation in PentagonFunctions++ [Chicherin, Sotnikov, Zoia, Oct ’21]
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Simplifying rational coefficients

• Switch from ~s5 and tr5 to momentum twistors ~z :

z1 = s12 , z2 = −tr+(1234)

s12s34
,

z3 =
tr+(1341(5 + 6)2)

s13 tr+ (14(5 + 6)2)
, z4 =

s23

s12
,

z5 = −tr−(1(2 + 3)(1 + 5 + 6)(5 + 6)23)

s23 tr−(1(5 + 6)23)
, z6 =

s456

s12
.

• For each helicity amplitude, look for the most optimal re-parametrisation
based on permuting external momenta

• Choose the one that leads to the lowest polynomial degrees

• Achieved compression of O(102) for the most complicated coefficients
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Results
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2Re{H(1)}+

(
αs

4π

)2
2Re{H(2)}

H(0) +
(
αs

4π

)
2Re{H(1)}

H(0)

The finite remainders of
the ud̄ channel interfered
with tree-level amplitudes,
evaluated at a univariate
phase-space slice.

pµ
1 = u1

√
s

2
(1, 1, 0, 0) pµ

3 = u2

√
s

2
(1, cos θ,− sinφ sin θ,− cosφ sin θ)

pµ
2 =

√
s

2
(−1, 0, 0,−1) pµ

4 =

√
s

2
(−1, 0, 0, 1) (p5 + p6)

2 = M2
ll

pµ
5 = u3

√
s

2
(1, cos θll ,− sinφll sin θll ,− cosφll sin θll)
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Conclusion

• Calculated two-loop QCD amplitudes for pp →W γ + j

• Implemented several tools to reduce the complexity of the reconstructed
finite remainders

• The results are suitable for phenomenology

• Integrals for non-planar topologies needed to go beyond leading colour
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Thank you!
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Details of reconstruction

F̃5,i =
∑

j ui ,j(p)×monj
(
tr5,
√

∆3, f
)

1 Linear relations between rational coefficients:
• Coefficients ui,j are not independent
• Find relations between them and choose the independent ones based on the

lowest polynomial degree

2 Factor matching:
• Aid the reconstruction by providing an ansatz of factors related to the letters
• All denominator factors guessed + some of the numerator
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Details of reconstruction

3 Simplifying the reconstructed coefficients:
• For each helicity configuration, search for an optimal re-parametrisation of

momentum twistors to lower the polynomial degree of the coefficients
• Then, apply univariate partial fractioning, followed by MultivariateApart

[Heller, von Manteuffel, ’21] and Singular [Decker, Greuel, Pfister,
Schönemann]

s12 = 1 linear relations factor matching

F̃
(2),1 h1h2h3h4

5,i 48/47 42/42 42/0

F̃
(2),nf h1h2h3h4

5,i 39/38 26/24 26/0

Maximal numerator/denominator polynomial
degrees of the finite remainder coefficients. F̃5,i =

∑
j

ui,j(p)monj×
(
tr5,

√
∆3, f

)
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4D Tensor decomposition

Perform the 4D tensor decomposition on Ã5,i :

• Parametrise the amplitude as a combination of form factors and tensor
structures compatible with the symmetries of the process:

Ã5,i =
∑
j

αi ,jTj

• Form factors can be extracted by applying suitable projectors

• To reduce their number, work with helicity amplitudes and 4D projectors
[Peraro, Tancredi, ’19], [Peraro, Tancredi, ’21]

• The number of physical projectors corresponds to the number of
independent helicity amplitudes

16 / 16



Introduction

Background

Complexity

Recent work

Finite fields

Results

Computation

Evaluation

Conclusion

Our workflow

Feynman diagrams Colour decomposition Tensor decomposition

Map onto
maximal topologies

IBP reduction
Expansion of MIs onto
special function basis

Pole subtraction Finite remainder

QGRAF Mathematica/FORM

finite fields

ε→ 0
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