Two-loop helicity amplitudes for $W \gamma+j$ production (based on hep-ph/2201.04075)

Jakub Kryś

Durham University, Università di Torino

With: Simon Badger, Heribertus Bayu Hartanto and Simone Zoia

HP2 2022 University
erc

Typical workflow of loop amplitude computations
(1) Draw all relevant Feynman diagrams:

$$
A=\sum_{T \in \text { topologies }} \int \mathrm{d}^{d} k_{1} \mathrm{~d}^{d} k_{2} \frac{\sum_{i} c_{i}(\{p\}) m_{i}(\{k, p\})}{\prod_{j \in T} D_{j}(\{k, p\})}
$$

(3) Reduce the amplitude onto a set of master integrals:

$$
A=\sum_{j} d_{j}(\epsilon, p) \times M l_{j}(\epsilon, p)
$$

(4) Evaluate the result at a chosen phase-space point

- Complexity increases with loop order and multiplicity.
- Current QCD frontier: $2 \rightarrow 3$ scattering at NNLO.

- Massless case: results for all relevant Feynman integrals available.
- One external mass: results for all planar + some non-planar integrals now available.

```
(one penta-box, MPLs)
(DEs+numerical sols)
(MPLs)
(1L pentagon, MPLs)
(2L pentagon functions)
(one hexa-box, MPLs)
(hexa-box, DEs+numerical sols)
```

- $p p \rightarrow W / H+b \bar{b}$ at 2 L (leading colour, massless b quarks)

[Badger, Hartanto, Zoia, Feb '21]

[Badger, Hartanto, Kryś, Zoia, July '21]
- $W\left(\rightarrow \ell \bar{\ell}^{\prime}\right)+4$-partons at 2 L (leading colour, massless quarks) [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, Oct '21]
- $p p \rightarrow W\left(\rightarrow \bar{e} \nu_{e}\right) \gamma+j$ at 2 L (leading colour, massless quarks)
- Detach the leptonic W-boson decay and only compute the W production amplitudes

[Badger, Hartanto, Kryś, Zoia, Jan '22]
- Important for precision SM tests and constraining BSM physics

Finite fields

- To avoid analytic complexity in intermediate steps, use numerical evaluations over finite fields
- We work with rational numbers modulo a large prime number:

$$
\begin{aligned}
q=\frac{a}{b} \longrightarrow q \bmod p & \equiv\left(a \times\left(b^{-1} \bmod p\right)\right) \bmod p \\
\frac{3}{7} & \equiv 2 \bmod 11
\end{aligned}
$$

- One can reconstruct the analytic result from its many numerical evaluations
- FiniteFlow [Peraro, '19]
- Generate the amplitudes starting from Feynman diagrams:

- Compute two kinds of W-production amplitudes:
- $A_{6, u / d}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)=A_{5, u / d}^{\mu}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{W}\right) L_{A, \mu}\left(p_{5}, p_{6}\right)$
- $A_{6, e / W}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)=A_{4}^{\mu}\left(p_{2}, p_{3}, p_{4}, \tilde{p}_{W}\right) L_{B, \mu}^{e / W}\left(p_{1}, p_{5}, p_{6}\right)$
- Decompose the amplitudes in the basis of external momenta and define contracted amplitudes:

$$
\begin{aligned}
A_{5}^{\mu} & =p_{1}^{\mu} a_{1}+p_{2}^{\mu} a_{2}+p_{3}^{\mu} a_{3}+p_{4}^{\mu} a_{4} \\
\tilde{A}_{5, i} & =p_{i} \cdot A_{5}
\end{aligned}
$$

$W \gamma+j$

- Perform the $4 D$ tensor decomposition on $\tilde{A}_{5, i}$ using physical projectors [Peraro, Tancredi, '19], [Peraro, Tancredi, '21]
- The contracted amplitudes can be written as:

$$
\tilde{A}_{5, i}=\sum_{T \in \text { topologies }} \int \mathrm{d}^{d} k_{1} \mathrm{~d}^{d} k_{2} \frac{\sum_{i} c_{i}(\{p\}) m_{i}(\{k, p\})}{\prod_{j \in T} D_{j}(\{k, p\})}
$$

- Coefficients c_{i} are functions of external kinematics only and are expressed through the five-point Mandelstam invariants:

$$
\overrightarrow{s_{5}}=\left\{s_{12}, s_{23}, s_{34}, s_{123}, s_{234}, s_{56}\right\},
$$

as well as the pseudo-scalar invariant $\operatorname{tr}_{5}=4 i \epsilon_{\mu \nu \rho \sigma} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\rho} p_{4}^{\sigma}$.
(Begin finite field sampling)

- The amplitude is mapped onto scalar integrals within 15 maximal topologies

膡口 $W_{\gamma}+j$

Introduction
Background
Complexity Recent work Finite fields

Results
Computation Evaluation Conclusion

$W \gamma+j$

- Scalar integrals are IBP-reduced onto a master integral basis [Laporta, '01], [Lee, '13]

$$
\tilde{A}_{5, i}=\sum_{j} d_{j}(\epsilon, p) \times M I_{j}(\epsilon, p)
$$

- We work with MIs that satisfy canonical DEs [Henn, '13]:

$$
\mathrm{d} \overrightarrow{M I}=\epsilon\left(\sum_{i=1}^{58} a_{i} \times \mathrm{d} \log w_{i}\right) \vec{M} I
$$

where the 'letters' w_{i} are algebraic functions of external kinematics [Abreu, Ita, Moriello, Page, Tschernow, Zeng, '20]

$W \gamma+j$

- Laurent expand the coefficients and map the MIs onto square roots and a basis of special functions $\{f\}$ related to the letters
- Subtract the poles to get the finite remainder:

$$
\tilde{F}_{5, i}=\sum_{j} u_{i, j}(p) \times \operatorname{mon}_{j}\left(\operatorname{tr}_{5}, \sqrt{\Delta_{3}},\{f\}\right),
$$

- Reconstruct the coefficients, now free of ϵ

(End finite field sampling)

- The reconstructed finite remainders need to be evaluated at many phase-space points and their permutations
- Translate the basis of iterated integrals $\left\{f_{i}\right\}$ into pentagon functions $\left\{g_{i}\right\}$:

$$
f_{i}=\sum_{j} \beta_{i j} \operatorname{mon}_{j}\left(\left\{g_{k}\right\}\right), \quad \beta_{i j} \in \mathbb{Q}
$$

- Pentagon function basis is closed under permutations:

$$
\left(\sigma \circ g_{i}\right)\left(\vec{s}_{5}, \operatorname{tr}_{5}\right)=\sum_{j} \lambda_{i j}^{(\sigma)} \operatorname{mon}_{j}\left[\left\{g_{k}\left(\vec{s}_{5}, \operatorname{tr}_{5}\right)\right\}\right], \quad \lambda_{i j}^{(\sigma)} \in \mathbb{Q}
$$

- Efficient evaluation in PentagonFunctions++ [Chicherin, Sotnikov, Zoia, Oct '21]
- Switch from \vec{S}_{5} and tr_{5} to momentum twistors \vec{z} :

$$
\begin{aligned}
& z_{1}=s_{12} \\
& z_{3}=\frac{\operatorname{tr}_{+}(1341(5+6) 2)}{s_{13} \operatorname{tr}_{+}(14(5+6) 2)} \\
& z_{5}=-\frac{\operatorname{tr}_{-}(1(2+3)(1+5+6)(5+6) 23)}{s_{23} \operatorname{tr}_{-}(1(5+6) 23)}
\end{aligned}
$$

$$
\begin{aligned}
& z_{2}=-\frac{\operatorname{tr}_{+}(1234)}{s_{12} s_{34}} \\
& z_{4}=\frac{s_{23}}{s_{12}} \\
& z_{6}=\frac{s_{456}}{s_{12}}
\end{aligned}
$$

- For each helicity amplitude, look for the most optimal re-parametrisation based on permuting external momenta
- Choose the one that leads to the lowest polynomial degrees
- Achieved compression of $\mathcal{O}\left(10^{2}\right)$ for the most complicated coefficients

$$
\begin{aligned}
& \text { The finite remainders of } \\
& \text { the } u \bar{d} \text { channel interfered } \\
& \text { with tree-level amplitudes, } \\
& \text { evaluated at a univariate } \\
& \text { phase-space slice. } \\
& p_{1}^{\mu}=u_{1} \frac{\sqrt{s}}{2}(1,1,0,0) \quad p_{3}^{\mu}=u_{2} \frac{\sqrt{s}}{2}(1, \cos \theta,-\sin \phi \sin \theta,-\cos \phi \sin \theta) \\
& p_{2}^{\mu}=\frac{\sqrt{s}}{2}(-1,0,0,-1) \quad p_{4}^{\mu}=\frac{\sqrt{s}}{2}(-1,0,0,1) \quad\left(p_{5}+p_{6}\right)^{2}=M_{\|}^{2} \\
& p_{5}^{\mu}=u_{3} \frac{\sqrt{s}}{2}\left(1, \cos \theta_{\| I},-\sin \phi_{\|} \sin \theta_{\| I},-\cos \phi_{\|} \sin \theta_{\| I}\right)
\end{aligned}
$$

Conclusion

- Calculated two-loop QCD amplitudes for $p p \rightarrow W \gamma+j$
- Implemented several tools to reduce the complexity of the reconstructed finite remainders
- The results are suitable for phenomenology
- Integrals for non-planar topologies needed to go beyond leading colour

Thank you!

Details of reconstruction

$$
\tilde{F}_{5, i}=\sum_{j} u_{i, j}(p) \times \operatorname{mon}_{j}\left(\operatorname{tr}_{5}, \sqrt{\Delta_{3}}, f\right)
$$

(1) Linear relations between rational coefficients:

- Coefficients $u_{i, j}$ are not independent
- Find relations between them and choose the independent ones based on the lowest polynomial degree

Details of reconstruction

$$
\tilde{F}_{5, i}=\sum_{j} u_{i, j}(p) \times \operatorname{mon}_{j}\left(\operatorname{tr}_{5}, \sqrt{\Delta_{3}}, f\right)
$$

(1) Linear relations between rational coefficients:

- Coefficients $u_{i, j}$ are not independent
- Find relations between them and choose the independent ones based on the lowest polynomial degree
(2) Factor matching:
- Aid the reconstruction by providing an ansatz of factors related to the letters
- All denominator factors guessed + some of the numerator
(3) Simplifying the reconstructed coefficients:
- For each helicity configuration, search for an optimal re-parametrisation of momentum twistors to lower the polynomial degree of the coefficients
- Then, apply univariate partial fractioning, followed by MultivariateApart [Heller, von Manteuffel, '21] and Singular [Decker, Greuel, Pfister, Schönemann]

	$s_{12}=1$	linear relations	factor matching
$\tilde{F}_{5, i}^{(2), 1 h_{1} h_{2} h_{3} h_{4}}$	$48 / 47$	$42 / 42$	$42 / 0$
$\tilde{F}_{5, i}^{(2), n_{f} h_{1} h_{2} h_{3} h_{4}}$	$39 / 38$	$26 / 24$	$26 / 0$

Maximal numerator/denominator polynomial degrees of the finite remainder coefficients.

$$
\tilde{F}_{5, i}=\sum_{j} u_{i, j}(p) \operatorname{mon}_{j} \times\left(\operatorname{tr}_{5}, \sqrt{\Delta_{3}}, f\right)
$$

Perform the $4 D$ tensor decomposition on $\tilde{A}_{5, i}$:

- Parametrise the amplitude as a combination of form factors and tensor structures compatible with the symmetries of the process:

$$
\tilde{A}_{5, i}=\sum_{j} \alpha_{i, j} T_{j}
$$

- Form factors can be extracted by applying suitable projectors
- To reduce their number, work with helicity amplitudes and $4 D$ projectors [Peraro, Tancredi, '19], [Peraro, Tancredi, '21]
- The number of physical projectors corresponds to the number of independent helicity amplitudes

Our workflow

Feynman diagrams

Mathematica/FORM

