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@- Typical workflow of loop amplitude computations

" @ Draw all relevant Feynman diagrams:

-

Complexity

® Write down the integrand:

B i e, Sral{p)mil{k p})
A= Y ekt [Ler Di((k.p})

T etopologies

©® Reduce the amplitude onto a set of master integrals:

A= di(e.p) x Mije,p)

O Evaluate the result at a chosen phase-space point
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@ . Complexity

‘ ' EFeynman diagrams}

= LARGE

intermediate expressions

C-number




Complexity

AR
\ 14

Background

Complexity

Complexity increases with loop order and multiplicity.
Current QCD frontier: 2 — 3 scattering at NNLO.

® Massless case: results for all relevant Feynman integrals available.

® One external mass: results for all planar + some non-planar integrals now

available.

one-mass, planar: Nov '15
May '20
Sep '20
Dec '20
Oct 21
one-mass, non-planar Oct '19
July 21

[Papadopoulos, Tommasini, Wever]

[Abreu, Ita, Moriello, Page, Tschernow, Zeng]
[Canko, Papadopoulos, Syrrakos]

[Syrrakos]

[Chicherin, Sotnikov, Zoia]

[Papadopoulos, Wever]

[Abreu, Page, Ita, Tschernow]

(one penta-box, MPLs)
(DEs+numerical sols)

(MPLs)

(1L pentagon, MPLs)

(2L pentagon functions)

(one hexa-box, MPLs)
(hexa-box, DEs+numerical sols)
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ﬁ . Recent work

W

® pp — W/H + bb at 2L (leading colour, massless b quarks)
Wi

[Badger, Hartanto, Zoia, Feb '21] [Badger, Hartanto, Kry$, Zoia, July '21]

o W(— €0') + 4-partons at 2L (leading colour, massless quarks)
[Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, Oct '21]
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@ . Recent work

\ | 4

Recent work

® pp — W(— éve)y + at 2L (leading colour, massless quarks)

® Detach the leptonic W —boson decay and only compute the W production

amplitudes
’Y
Ve
Ve Y
w
W e
e
[Badger, Hartanto, Kry$, Zoia, Jan '22]
® Important for precision SM tests and constraining BSM physics

6/16



@ - Finite fields

\ | 4

Finite fields

To avoid analytic complexity in intermediate steps, use numerical evaluation
over finite fields

We work with rational numbers modulo a large prime number:

q:Z—>qmodpE(a><(b_1 modp)) mod p

§:2mod11
7

One can reconstruct the analytic result from its many numerical evaluations
FiniteFlow [Peraro, '19]

S
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W~ +

® Generate the amplitudes starting from Feynman diagrams:

y
W

Computation

-

® Compute two kinds of W —production amplitudes:
® As,usa(P1; P2, P3; Pa; Ps, pe) = Ag ,/4(P1, P2, P3; P4, Pw) La,u(ps, pe)
~ w
® As.e/w(p1, P2, P3, P4, Ps, Ps) = Ay (P2, P3, Pa, Pw) LZ/,# (P1, Ps, Ps)

® Decompose the amplitudes in the basis of external momenta and define
contracted amplitudes:

AL = pi'ay + phay + pyaz + pyas
Asi=pi-As
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W

Computation

-

W~ +

® Perform the 4D tensor decomposition on /2\5,,- using physical projectors
[Peraro, Tancredi, '19], [Peraro, Tancredi, '21]

® The contracted amplitudes can be written as:

2. ci{p)mi({k, p})
[Ljer Di({k, p})

Asi= > d9%;d%k,

T etopologies

e Coefficients ¢; are functions of external kinematics only and are expressed
through the five-point Mandelstam invariants:

S5 = {512, 523, 534, 5123, 5234, S56 )
as well as the pseudo-scalar invariant trs = 4i€,p0 P} Py P5 P -

(Begin finite field sampling)

® The amplitude is mapped onto scalar integrals within 15 maximal topologies
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Computation




W~ +J

y
W

® Scalar integrals are IBP-reduced onto a master integral basis
[Laporta, '01], [Lee, '13]

A~5,i = Zdj(evp) X MIJ(€7P)
J

Computation

-

® We work with Mls that satisfy canonical DEs [Henn, "13]:

— 58 —
dMI = ¢ (Za,- X d|ogw,-> M,

i=1

where the ‘letters’ w; are algebraic functions of external kinematics
[Abreu, Ita, Moriello, Page, Tschernow, Zeng, '20]
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W~ +

y
W

® Laurent expand the coefficients and map the Mls onto square roots and a
basis of special functions {f} related to the letters

e Subtract the poles to get the finite remainder:

Foi =Y uij(p) x mon; (trs, /s, {f}) .

Computation

-

® Reconstruct the coefficients, now free of €

(End finite field sampling)
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@ - Special functions
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The reconstructed finite remainders need to be evaluated at many
phase-space points and their permutations

Translate the basis of iterated integrals {f;} into pentagon functions {g;}:

fi=> Bimon;({e}), BjeQ
J

Pentagon function basis is closed under permutations:

(0 087) (3, trs) = 3 A mon; [{gi (5, t15)}], A €@
J

Efficient evaluation in PentagonFunctions++ [Chicherin, Sotnikov, Zoia, Oct '21]
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@. Simplifying rational coefficients
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e Switch from s5 and trs to momentum twistors Z:

21

z3 =

512,

tr o (1341(5 + 6)2)

s13try (14(5 + 6)2) ’

tr_(1(2 +3)(1 + 5 + 6)(5 + 6)23)

53 tr_(1(5 + 6)23)

Y

tr+(1234)
Zp = ——m——
512534
523
Z4 = —,
512
5456
Z6g = —— .
512

® For each helicity amplitude, look for the most optimal re-parametrisation
based on permuting external momenta

® Choose the one that leads to the lowest polynomial degrees

* Achieved compression of O(102) for the most complicated coefficients
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W; - Results
‘ ' 1074
T HO + () Re{HO} + (3)” 2Re(HC)}
Lo HO 4 (%2) 2Re{H M} ]
1.5 () N .. .
- s The flplte remainders of
- :f;5 the ud channel interfered

with tree-level amplitudes,
| evaluated at a univariate
i phase-space slice.

Evaluation

Finite Remainder [GeV 4]

S T T T S T Y S N L
051 052 053 054 055 056 057
us [GeV]

pl=u ? (1,1,0,0) Py = ? (1, cos @, —sin ¢sin 6, — cos ¢ sin 0)

S S
p= VT (1,001 pf =Y (-1001)  (ptp) =M

2
u3 ﬁ (1, cos @y, — sin ¢y sin 0y, — cos ¢y sin Oyy)
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ﬁ - Conclusion
\ | 4

Calculated two-loop QCD amplitudes for pp — W~ + j

Implemented several tools to reduce the complexity of the reconstructed
finite remainders

E

Conclusion

The results are suitable for phenomenology

Integrals for non-planar topologies needed to go beyond leading colour
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Conclusion

Thank you!



ﬁ- Details of reconstruction

I-:57,- = ZJ- uj j(p) x mon; (tr5, VA ,f)

@ Linear relations between rational coefficients:

B ® Coefficients u; ; are not independent
Candusien ® Find relations between them and choose the independent ones based on the
lowest polynomial degree
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ﬁ- Details of reconstruction

I-:57,- = ZJ- uj j(p) x mon; (tr5, VA ,f)

@ Linear relations between rational coefficients:
A * Coefficients u; ; are not independent
Conclusion ® Find relations between them and choose the independent ones based on the
lowest polynomial degree
® Factor matching:

® Aid the reconstruction by providing an ansatz of factors related to the letters
® All denominator factors guessed + some of the numerator
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E

Conclusion

Details of reconstruction

© Simplifying the reconstructed coefficients:

® For each helicity configuration, search for an optimal re-parametrisation of
momentum twistors to lower the polynomial degree of the coefficients

® Then, apply univariate partial fractioning, followed by MultivariateApart
[Heller, von Manteuffel, '21] and Singular [Decker, Greuel, Pfister,

Schénemann]

‘ sip=1 ‘ linear relations ‘ factor matching

I:_5(2I),1 hy1hohshg 48/47 42/42 42/0
'ES(?i),nf hi1hahzhy 39/38 26/24 26/0

Maximal numerator/denominator polynomial
degrees of the finite remainder coefficients.

:E5,,' = Z u,-yj(p)monjx (tI‘5, \ As, f)
J
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4D Tensor decomposition
AR P
Perform the 4D tensor decomposition on As ;:

® Parametrise the amplitude as a combination of form factors and tensor
Recen structures compatible with the symmetries of the process:

Asj = aijTj
j

Evalua

Conclusion

® Form factors can be extracted by applying suitable projectors

® To reduce their number, work with helicity amplitudes and 4D projectors
[Peraro, Tancredi, '19], [Peraro, Tancredi, '21]

® The number of physical projectors corresponds to the number of
independent helicity amplitudes
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ﬁ - Our workflow

[Feynman diagrams}—){ Colour decomposition }—»{ Tensor decomposition

o Mathematica/FORM
conclusion Expansion of Mls onto : Map onto
; . . IBP reduction : .
special function basis maximal topologies
finite fields

: e—0 .. :
‘ Pole subtraction }—>{ Finite remainder
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