Next-to-soft-virtual resummed prediction for pseudoscalar Higgs boson production at NNLO+ $\overline{\text{NNLL}}$  In collaboration with M. C. Kumar, Prakash Mathews and V. Ravindran.

#### Arunima Bhattacharya

Saha Institute of Nuclear Physics, Kolkata, India.

Phys.Rev.D 105 (2022) 11, 116015

High Precision for Hard Processes (HP2), 2022

20/09/2022





- 2 Background Check
- 3 Theoretical framework
- 4 Consequences of the Analytical Computation
- 5 Numerical results
- 6 Summary

Inclusive cross-section for pseudoscalar Higgs boson production :

$$\sigma^{A}\left(\tau, m_{A}^{2}\right) = \sigma^{A,(0)}\left(\mu_{R}^{2}\right) \sum_{a,b=q,q,\bar{g}} \int_{\tau}^{1} dy \ \Phi_{ab}\left(y,\mu_{F}^{2}\right) \Delta_{ab}^{A}\left(\frac{\tau}{y}, m_{A}^{2}, \mu_{R}^{2}, \mu_{F}^{2}\right),$$
where  $\Phi_{ab}\left(y,\mu_{F}^{2}\right) = \int_{y}^{1} \frac{dx}{x} f_{a}\left(x,\mu_{F}^{2}\right) f_{b}\left(\frac{y}{x},\mu_{F}^{2}\right).$ 
efinitions :  $\sigma^{A,(0)}\left(\mu_{R}^{2}\right)$  : Born cross-section,  $\Phi_{ab}\left(y,\mu_{F}^{2}\right)$  : Parton flux,

**Definitions** :  $\sigma^{A,(0)}(\mu_R^2)$  : Born cross-section,  $\Phi_{ab}(y, \mu_F^2)$  : Parton flux,  $\Delta^A_{ab}(\tau/y, m_A^2, \mu_R^2, \mu_F^2)$  : Finite Partonic Coefficient Function, *a* and *b* : Initial state partons, *f<sub>a</sub>* and *f<sub>b</sub>* : Parton distribution functions (PDFs).

■ Partonic Coefficient Function near threshold,  $z = \frac{\tau}{y} \rightarrow 1$ :  $\Delta_{ab} \sim a_{i} \left[ \frac{\ln^{i} (1-z)}{(1-z)} \right]_{+} + b\delta(1-z) + \underbrace{c_{i} \ln^{i} (1-z)}_{\text{Next-to-Leading power}} + d.$ Next-to-Leading power (LP)/ Soft-Virtual (SV) corrections
Arming Elattacharge (SINP\_India) NILC+NILL correction to pseudoscalar production 20/09/2022

#### 2 Background Check

- Motivation
- Current state of Work
- 3 Theoretical framework
- 4 Consequences of the Analytical Computation
- 5 Numerical results
- 6 Summary

#### Motivation

- FO QCD predictions experience various irregular logarithms.
  - ► Logs of UV & Collinear origin → Renormalization & PDFs,
  - ► Soft regions → Soft gluon emissions ← those of virtual gluons.
- Still, the soft-gluon-effects can be significant in kinematic configurations where high imbalance persists between real and virtual contributions ⇒ **Threshold Region**.
- NSV logarithmic corrections are numerically sizeable; often comparable or beyond SV ones.
- ► NSV logs contribute  $\approx 25\%$  of the born in gg $\rightarrow$ H at  $a_s^3$  while SV terms contribute -2.25%.

- Anastasiou, Duhr, Dulat et al. (2014)

 NSV logs contribute 1.49% of the born in DY at a<sup>3</sup><sub>s</sub> while SV terms contribute only 0.02%.

(2020)

- A. H. Ajjath, P. Mukherjee, and V. Ravindran

| m <sub>A</sub> (GeV) | NNLL/NNLO (%) | NNLL/NNLO (%) |
|----------------------|---------------|---------------|
| 125                  | 11.8189       | 17.0234       |
| 700                  | 12.8902       | 15.8511       |
| 1000                 | 13.2377       | 16.2727       |
| 1500                 | 14.8419       | 18.4658       |
| 2000                 | 16.5992       | 21.0971       |

 $\mathsf{NNLL} = \mathsf{FO}_{\mathbf{NNLO}} + \mathsf{SV}_{\mathbf{resum}}$ , and

 $\overline{\text{NNLL}} = \text{FO}_{\text{NNLO}} + (\text{SV} + \text{NSV})_{\text{resum}}$ 

**Solution :** Systematically sum these logs up to all orders  $\Rightarrow$  **Resummation**.

### Developments of Work

- Anastasiou, Duhr, Dulat et al. (2015)  $\Rightarrow$  completed N<sup>3</sup>LO prediction for scalar Higgs boson production *via* gluon fusion in the large top mass limit. The corrections to the cross-section were found to be  $\approx 1\%$  at NNLO, and  $\approx 2\%$  at N<sup>3</sup>LO
- FO cross-section for pseudoscalar Higgs boson production to NNLO accuracy :
  - ▶ R. V. Harlander and W. B. Kilgore (2002), &
    - C. Anastasiou and K. Melnikov (2003)
  - ▶ V. Ravindran, J. Smith and W. van Neerven (2003)
- Development of the resummation formalism :
  - ► G. F. Sterman(1987),
  - ► S. Catani and L. Trentadue (1989),
  - ▶ V. Ravindran (2005, 2006),
  - ► A. H. Ajjath, P. Mukherjee, and V. Ravindran (2020).
- T. Ahmed, M. Bonvini, M. C. Kumar, P. Mathews, N. Rana, V. Ravindran, and L. Rottoli (2016)  $\Rightarrow$  FO computation at NNLO & approx. N<sup>3</sup>LO + all-order threshold resummation.
- T. Ahmed, M.C. Kumar, P. Mathews, N. Rana and V. Ravindran (2015)  $\Rightarrow$  N<sup>3</sup>LO SV corrections to pseudoscalar Higgs boson production through gluon fusion.

- similar but independent works.

alternative method.

### Success of EFT

Calculations become simpler in the infinite quark mass limit  $(m_X \ll 2m_t)$  with increasing complexities at higher orders in the perturbation theory.

- In the case of scalar Higgs boson production, the difference between the exact and EFT results at NNLO were found to be within 1% A Success!
  - R. V. Harlander, K. J. Ozeren (2009),
  - A. Pak, M. Rogal, M. Steinhauser (2009),
  - M. Czakon, R. V. Harlander et al. (2021).
- Eventual observation ⇒ the EFT approach, when rescaled with the exact LO results, provides a reasonably good approximation even at masses outside the region of formal validity.
  - M. Spira, A. Djouadi, et al. (1995),
  - R. Bonciani, G. Degrassi, A. Vicini (2007),
  - C. Anastasiou, C. Duhr, F. Dulat, et al. (2016).
- The difference between the exact and EFT results at NLO reaches  $\approx 10\%$  for  $m_A = 500$  GeV, but does not increase much as  $m_A$  gets larger.
  - R.V. Harlander, S. Liebler, H. Mantler (2013),

R.V. Harlander, S. Liebler, H. Mantler (2016).

#### Background Check

- 3 Theoretical framework
  - The expansion coefficients
  - Resummation in Mellin space
  - 4 Consequences of the Analytical Computation

#### 5 Numerical results

#### 5 Summary

### Sample Feynman Diagrams



### SV+NSV partonic CF near threshold - A. H. Ajjath, P. Mukherjee, and V. Ravindran (2020)

$$\Delta_{ab}^{X}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right) = \underbrace{\Delta_{ab}^{X,SV+NSV}\left(z,q^{2},\mu_{i}^{2}\right)}_{\left[\log^{i}\left(1-z\right),\mathcal{D}_{i}\right]} + \underbrace{\Delta_{ab}^{X,hard}\left(z,q^{2},\mu_{i}^{2}\right)}_{\left[\log^{i}\left(1-z\right)\right]} + \underbrace{\Delta_{ab}^{X,hard}\left(z,q^{2},\mu_{i}^{2}\right)}_{\left[\log^{i}\left(1-z\right)\right]}$$
Regular terms in z  
like  $(1-z)^{i}$ 

Mass factorised SV+NSV coefficient function for diagonal channels (since we will consider terms till NSV) :

$$\Delta_{c}^{X,SV+NSV}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right)=\mathcal{C}\exp\left\{\Psi_{c}^{X}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2},\varepsilon\right)\right\}\mid_{\varepsilon=0}$$

#### The finite distribution for c = g channel :

$$\begin{split} \Psi_{g}^{A}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2},\varepsilon\right) &= \left(\ln\left[Z_{g}^{A}\left(\hat{a}_{s},\mu_{R}^{2},\mu^{2},\varepsilon\right)\right]^{2} + \ln\left|\mathcal{F}_{g}^{A}\left(\hat{a}_{s},Q^{2},\mu^{2},\varepsilon\right)\right|\right)\delta\left(1-z\right) \\ &+ 2\Phi_{g}^{A}\left(\hat{a}_{s},q^{2},\mu^{2},z,\varepsilon\right) - 2\mathcal{C}\ln\Gamma_{gg}\left(\hat{a}_{s},\mu_{F}^{2},\mu^{2},z,\varepsilon\right). \end{split}$$

 $Z_g^A \rightarrow$  overall operator UV renormalization constant,  $\mathcal{F}_g^A \rightarrow$  form factors,  $\Phi_g \rightarrow$  soft collinear distribution,  $\Gamma_{gg} \rightarrow$  mass factorization kernels.

### Constituent elements

•  $\varPhi_{\mathbf{g}}$  : Has pole structure in  $\varepsilon$  similar to the residual divergences

► Functional form : 
$$\begin{split} \varPhi_{\mathbf{g}} = \varPhi_{\mathbf{g}}^{\mathbf{SV}} + \varPhi_{\mathbf{g}}^{\mathbf{NSV}} \\ \varPhi_{g}^{SV} \left( \hat{a}_{s}, q^{2}, \mu^{2}, z, \varepsilon \right) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left( \frac{q^{2} \left( 1 - z \right)^{2}}{\mu^{2}} \right)^{i} \frac{\varepsilon}{2} S_{\varepsilon}^{i} \left( \frac{i\varepsilon}{1 - z} \right) \hat{\phi}_{g}^{SV,(i)} (\varepsilon), \text{ and} \\ \varPhi_{g}^{NSV} \left( \hat{a}_{s}, q^{2}, \mu^{2}, z, \varepsilon \right) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left( \frac{q^{2} \left( 1 - z \right)^{2}}{\mu^{2}} \right)^{i} \frac{\varepsilon}{2} S_{\varepsilon}^{i} \varphi_{g}^{NSV,(i)} (z, \varepsilon). \end{split}$$

 $\begin{array}{l} \mbox{${\rm Isr}$} & \widehat{\phi}_{\rm g}^{{\rm SV},(i)}\left(\varepsilon\right) \Rightarrow \mbox{cusp}\left(A_{g,i}\right) \mbox{ and soft } (f_g) \mbox{ anomalous dimensions,} \\ & \mbox{ z-independent constants, } \overline{C}_{g,i}^{\mathcal{A}}, \mbox{ and } \overline{\mathcal{G}}_{g,i}^{\mathcal{A},k}. \end{array}$ 

4

$$\mathbb{S}\left[\varphi_{g}^{NSV,(i)}\left(z,\varepsilon\right)=\varphi_{s,g}^{NSV,(i)}\left(z,\varepsilon\right)+\varphi_{f,g}^{NSV,(i)}\left(z,\varepsilon\right)\right]$$

### Constituent elements

 $\varphi_{s,r}^{NSV,(i)}(z,\varepsilon) \to \text{these singular coefficients should acquire a definite structure.}$ For  $g + g \rightarrow A$ , we evaluated them to be  $\varphi_{s,g}^{NSV,(1)}(z,\varepsilon) = -\frac{8C_A}{\varepsilon},$  $\varphi_{s,g}^{NSV,(2)}(z,\varepsilon) = \frac{8\beta_0 C_A}{\varepsilon^2} + \frac{1}{\varepsilon} \bigg\{ C_A^2 \left( 8\zeta_2 - \frac{268}{9} \right) + \frac{40C_A n_f}{9} + 16C_A^2 \log(1-z) \bigg\}.$  $\varphi_{f,g}^{NSV,(i)}(z,\varepsilon) \xrightarrow{\text{can be expressed}}_{\text{in terms of}}$  certain finite coefficients  $\mathcal{G}_{L,i}^{g}(z,\varepsilon)$  $\varphi_{f,g}^{NSV,(1)}(z,\varepsilon) = \frac{1}{\varepsilon} \mathcal{G}_{L,1}^{g}(z,\varepsilon),$  $\varphi_{f,g}^{NSV,(2)}\left(z,\varepsilon\right) = \frac{1}{\varepsilon^{2}} \left\{ -\beta_{0}\mathcal{G}_{L,1}^{g}\left(z,\varepsilon\right) \right\} + \frac{1}{2\varepsilon}\mathcal{G}_{L,2}^{g}\left(z,\varepsilon\right),$ 

where  $\mathcal{G}_{L,i}^{g,(j)}(z) \xrightarrow{\text{parameterized}} \mathcal{G}_{L,i}^{g,(j,k)}$  and  $\log^k(1-z), k = 0, 1, \cdots$ .

### Expansion coefficients

The parameterized finite coefficients,  $\mathcal{G}_{L,i}^{g,(j,k)}$ , are related to certain expansion coefficients,  $\varphi_{f,g}^{NSV,(i)}$ , as below :

$$\begin{split} \varphi_{g,1}^{(k)} = & \mathcal{G}_{L,1}^{g,(1,k)}, \qquad k = 0, 1 \\ \varphi_{g,2}^{(k)} = & \frac{1}{2} \mathcal{G}_{L,2}^{g,(1,k)} + \beta_0 \mathcal{G}_{L,1}^{g,(2,k)}, \qquad k = 0, 1, 2. \end{split}$$

**Our Observation :** The  $\varphi_{g,i}^{(k)}$ 's, for the scalar and the pseudoscalar Higgs boson productions in gluon fusion, are identical to each other till the two-loop level.

Earlier Observations :

- A. H. Ajjath, P. Mukherjee, and V. Ravindran (2020)

- Same was noticed for the DY process and scalar Higgs production *via* bottom quark annihilation up to two-loop level.
- This failed for the quark annihilation process at third order for k = 0, 1.

Hence, this behaviour at third order for the pseudoscalar Higgs boson production can be checked only when the corresponding explicit  $N^3LO$  results are available.

### Resummation in Mellin space



- $\blacksquare Convolutions \Rightarrow Simple products.$ 
  - $z \to 1$  translates to  $N \to \infty$  near threshold.
  - Keep  $\mathcal{O}(1/N)$  corrections.

$$\begin{split} \Delta_{g,N}(q^{2},\mu_{R}^{2},\mu_{F}^{2}) &= C_{0}(q^{2},\mu_{R}^{2},\mu_{F}^{2})\exp\left(\Psi_{N}^{g}(q^{2},\mu_{F}^{2})\right) \\ \Psi_{N}^{g} &= \Psi_{SV,N}^{g} + \Psi_{NSV,N}^{g} \\ \Psi_{SV,N}^{g} &= \log(g_{0}^{g}(a_{s}(\mu_{R}^{2}))) + g_{1}^{g}(\omega)\log(N) + \sum_{i=0}^{\infty}a_{s}^{i}(\mu_{R}^{2})g_{i+2}^{g}(\omega); \\ \Psi_{NSV,N}^{g} &= \frac{1}{N}\sum_{i=0}^{\infty}a_{s}^{i}(\mu_{R}^{2})\left(\bar{g}_{i+1}^{g}(\omega) + h_{i}^{g}(\omega,N)\right), \text{ with } h_{i}^{g}(\omega,N) = \sum_{k=0}^{i}h_{ik}^{g}(\omega)\log^{k}(N). \end{split}$$

Coefficients  $g_i^g$ ,  $\overline{g}_i^g$  and  $h_i^g$  are available;  $C_0 \rightarrow$  process-dependent coefficients.

20/09/2022

- 2 Background Check
- 3 Theoretical framework
- Onsequences of the Analytical Computation
  - Computing the Coefficient function
  - Predicting higher logs
  - Relevance of pseudoscalars

#### 5 Numerical results

#### Summary

### Determining the expansion coefficients

By exploiting the similarity between pseudoscalar and scalar Higgs !

- T. Ahmed, M. Bonvini, M. C. Kumar, P. Mathews, N. Rana, V. Ravindran, L. Rottoli (2016)

 $\textbf{Conclusion} \Rightarrow \mathsf{The}\ \mathsf{pseudoscalar}\ \mathsf{result}\ \mathsf{can}\ \mathsf{be}\ \mathsf{approximated}\ \mathsf{from}\ \mathsf{the}\ \mathsf{available}\ \mathsf{scalar}\ \mathsf{Higgs}\ \mathsf{results}$ 

$$\Delta_{gg}^{A}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right) = \frac{g_{0}\left(a_{s}\right)}{g_{0}^{H}\left(a_{s}\right)} \left[\Delta_{gg}^{H}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right) + \delta\Delta_{gg}^{A}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right)\right].$$

- $\delta\Delta_{gg}^{A,NSV}(z,q^2,\mu_R^2,\mu_F^2) \rightarrow \text{correction to the scalar Higgs coefficient functions,}$
- $g_0(a_s)$  and  $g_0^H(a_s) \rightarrow \text{constant functions of resummation for pseudoscalar and scalar Higgs, respectively.$
- Ratio :

$$\frac{g_0(a_s)}{g_0^H(a_s)} = 1 + a_s (8C_A) + a_s^2 \left[ \frac{1}{3} \left\{ -215C_A^2 \dots \right\} \right] + a_s^3 \left[ \frac{1}{81} \left\{ 68309C_A^3 + \dots \right\} \right].$$

### Borrowing this Idea

- T. Ahmed, M. Bonvini, et. al. arXiv :1606.00837 [hep-ph]

#### A Conjecture to all higher orders.

- $\delta \Delta_{gg}^{A}(z, q^{2}, \mu_{R}^{2}, \mu_{F}^{2})$  corrections vanish at the one-loop level.
- At two-loop level, these  $\delta\Delta_{gg}^A(z,q^2,\mu_R^2,\mu_F^2)$  corrections contain only the next-to-next-to-soft terms.
- These observations  $\stackrel{\text{lead to the}}{\xrightarrow[conclusion]{conclusion}} \delta \Delta^A_{gg}(z, q^2, \mu^2_R, \mu^2_F)$  corrections do not contain any NSV terms at  $\mathcal{O}(a_s^3)$ .

#### **Consequence :**

•  $\delta \Delta_{gg}^{A}(z, q^{2}, \mu_{R}^{2}, \mu_{F}^{2}) = 0 \xrightarrow{\text{leads to}}$  the approximate N<sup>3</sup>LO cross-sections denoted by N<sup>3</sup>LO<sub>A</sub>.

### Implications on our Analysis

Hence, we simply rescale the Higgs  $\mathsf{SV}+\mathsf{NSV}$  CF to obtain the corresponding one for the pseudoscalar using

$$\Delta_{gg}^{A,NSV}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right) = \frac{g_{0}\left(a_{s}\right)}{g_{0}^{H}\left(a_{s}\right)} \left[\Delta_{gg}^{H,NSV}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right)\right]$$

The ratio and the CF's are known up to NNLO  $\xrightarrow{\text{leading to}}$  successful computation of  $\Delta_{gg}^{\mathcal{A}}(z, q^2, \mu_R^2, \mu_F^2)$  up to two-loop level.

To evaluate the SV+NSV CFs for pseudoscalar higgs boson production from gluon fusion, we follow the following procedure :

O Using the analytical formalism.
 A. H. Ajjath, P. Mukherjee, and V. Ravindran (2020)
 Wing the ratio, g<sub>0</sub> (a<sub>s</sub>) /g<sub>0</sub><sup>H</sup> (a<sub>s</sub>), and combining it with the available scalar Higgs SV+NSV CFs.
 T. Ahmed, M. Bonvini, M. C. Kumar, et. al. (2016)

() yields the corresponding pseudoscalar Higgs SV+NSV CFs in terms of the  $\varphi_{g,i}^{(k)}$ 's which are evaluated by comparison with the result from (2).

### Predicting higher logs

#### Significance of this method of computation :

- Obtained the SV+NSV CFs for pseudoscalar production up to  $\mathcal{O}(a_s^3)$ .
- Predicting coefficients of three highest logarithms of  $\Delta_{gg}^{A,SV+NSV}$ , from  $\mathcal{O}(a_s^4)$  to  $\mathcal{O}(a_s^7)$ .

| <b>a</b> _{s}^{+} | log²(1-z)                               | logº(1-z)                                                   | log⁵(1-z)                                                                                                                                                  |  |
|-------------------|-----------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | - 4096/3 C <sub>A</sub> <sup>4</sup>    | 98560/9 $C_{A}^{4}$ – 7168/9 $n_{f}^{3} C_{a}^{3}$          | -335104/9 C $_a^{~4}$ + 174208/27 n $_f$ C $_a^{~3}$ - 4096/ 27 n $_f^2$ C $_a^{~2}$ + 23552 $\zeta_2$ C $_a^{~4}$                                         |  |
| <b>a</b> _{s}^{5} | logº(1-z)                               | log <sup>®</sup> (1-z)                                      | log <sup>7</sup> (1-z)                                                                                                                                     |  |
|                   | - 8192/3 C <sub>a</sub> <sup>5</sup>    | 96256/3 $C_a^{5}$ – 8192/3 $n_f C_a^{4}$                    | - 131685640/81 C_a^{5} + 569216/81 n_f C_a^{4} - 81920/81 n_f^2 C_a^{-3} + 262144/3 $\zeta_2 C_a^{-5}$                                                     |  |
| <b>a</b> _s^6     | log11(1-z)                              | log10(1-z)                                                  | logº(1-z)                                                                                                                                                  |  |
|                   | - 65536/15 C <sub>a</sub> <sup>6</sup>  | 9490432/135 $C_{a}^{6}$ – 180224/27 $C_{a}^{5}$ $n_{f}^{}$  | - 4458496/9 C_a^6 + 8493056/81 C_a^5 n_f - 327680/81 C_a^4 n_f^2 + 671744/3 $\zeta_2$ C_a^6                                                                |  |
| a,                | log <sup>13</sup> (1-z)                 | log <sup>12</sup> (1-z)                                     | log11(1-z)                                                                                                                                                 |  |
|                   | - 262144/45 C <sub>a</sub> <sup>7</sup> | 3309568/27 C $_{a}^{7}$ – 1703936/135 C $_{a}^{6}$ n $_{f}$ | - 92717056/81 $\rm C_a^{-7}$ + 115835488/45 $\rm C_a^{-6}$ n <sub>f</sub> - 917504/81 $\rm C_a^{-5}$ n <sub>f</sub> ^2 + 1310720/3 $\rm \zeta_2  C_a^{-7}$ |  |

Still we are left with certain other logarithms that cannot be predicted from previous order informations.

#### Relevance of Pseudoscalar studies

- Will prove beneficial if/when the pseudoscalar Higgs is discovered.
- Contribute towards establishing the CP properties of the discovered Higgs boson.

## **Speculations** : The observed Higgs boson at the LHC can be an admixture of scalar-pseudoscalar states.

Exploring such possibilities had already started some time back :

- Y. Gao, A. V. Gritsan et al. (2010),
- P. Artoisenet et al. (2013),
- F. Maltoni, K. Mawatari, and M. Zaro (2014),
- M. Jaquier and R. Röntsch (2019).

#### Solution for the problems in the SM $\xrightarrow{\text{may lead to}}$ Possible new physics.

Requirement from theoretical physicists :

Precision calculations of the relevant observable corresponding to both scalar and pseudoscalar production processes to the same order of precision.

Arunima Bhattacharya (SINP, India) NNLO+NNLL correction to pseudoscalar production

20 / 40

- 2 Background Check
- 3 Theoretical framework
- 4 Consequences of the Analytical Computation
- 5 Numerical results
  - 6 Summary

#### Assumptions :

- Based on EFT.
- 13 TeV C.O.M. energy at the LHC.
- $\cot \beta = 1$  (other values can be obtained by rescaling).
- $C_J^{(2)} = 0$  because of non-availability.
- PDF's : Corresponding MMHT 2014 up to NNLO; MMHT 2014 NNLO at N<sup>3</sup>LO (for non-availability).
- $\bullet~\mbox{For NSV}$  resummation  $\Rightarrow$  Resum threshold logs only for gluon fusion channel.
- Theoretical uncertainties computed at  $m_A = 125$  GeV, 700 GeV for seven point scale uncertainties, and by varying one scale & keeping the other fixed.
  - ► { $\mu_R/m_A, \mu_F/m_A$ } = (0.5, 0.5), (0.5, 1.0), (1.0, 0.5), (1.0, 1.0), (1.0, 2.0), (2.0, 1.0) and (2.0, 2.0).
  - { $\mu_R/m_A$  or  $\mu_F/m_A$ } = {0.5, 1.0, 2.0} and the other scale fixed at  $m_A$ .

### Resummed K-factor plot at NLO $(K_1)$ and NNLO $(K_2)$



- The NLL results increase the NLL results by about 30% (40%) in the low (high) mass region.
- The NNLL results, in a similar behavior, enhances the NNLL results by about 10% (30%) in the low (high) mass region.

Arunima Bhattacharya (SINP, India) NNLO+NNLL correction to pseudoscalar production

### 7-point scale uncertainty plot for $m_A = 125$ GeV



### 7-point scale uncertainty plot for $m_A = 700 \text{ GeV}$



Arunima Bhattacharya (SINP, India)

NNLO+NNLL correction to pseudoscalar production

### Uncertainty plot for $\mu_F$ scale fixed at $m_A = 125$ GeV

To comprehend this unexpected behaviour  $\xrightarrow{\text{we study}}$  scale variations due to  $\mu_R$  and  $\mu_F$  separately by varying one and keeping the other fixed at  $m_A$ .



### Uncertainty plot for $\mu_F$ scale fixed at $m_A = 700$ GeV



### Uncertainty plot for $\mu_R$ scale fixed at $m_A = 125$ GeV



28 / 40

### Uncertainty plot for $\mu_R$ scale fixed at $m_A = 700$ GeV



Conclusion : Contributions from other partonic channels for resummation because different partonic

channels are expected to mix when the  $\mu_F$  scale varies.

### Possibility of scalar-pseudoscalar Higgs boson mixed state

#### **<u>Parameter</u>** : Mixing angle $\alpha$ .

- M. Jaquier, R. Röntsch (2019)

#### Consider a Higgs boson production, while neglecting its decay,

 $\begin{array}{c} \mbox{for any arbitrary value of $\alpha$,} \\ \mbox{the results up to NNLO} \end{array} \mbox{may be obtained by the simple rescaling formula below.} \end{array}$ 

$$\boldsymbol{\sigma} = \cos^2 \boldsymbol{\alpha} \cdot \boldsymbol{\sigma}_{\mathsf{H}} + \sin^2 \boldsymbol{\alpha} \cdot \boldsymbol{\sigma}_{\mathsf{A}}$$

| K-Factor                          | lpha= 0<br>(pure<br>scalar) | $lpha=\pi/2$ (pure pseu-<br>doscalar) | $lpha=\pi/4$ (mixed state) | $lpha=\pi/6$ (mixed state) |
|-----------------------------------|-----------------------------|---------------------------------------|----------------------------|----------------------------|
| K <sub>(1)</sub>                  | 1.6990                      | 1.7124                                | 1.7083                     | 1.7048                     |
| K <sub>(2)</sub>                  | 2.1571                      | 2.1814                                | 2.1741                     | 2.1677                     |
| K <sup>resum</sup> <sub>(1)</sub> | 2.0033                      | 2.0803                                | 2.0570                     | 2.0368                     |
| K <sup>resum</sup><br>(2)         | 2.2785                      | 2.4392                                | 2.3907                     | 2.3485                     |
| $\overline{K}_{(1)}^{resum}$      | 2.3425                      | 2.4284                                | 2.4025                     | 2.3799                     |
| $\overline{K}_{(2)}^{resum}$      | 2.4737                      | 2.5966                                | 2.5595                     | 2.5272                     |

### **Our Observation**

# Changing the mixing angle $\alpha$ modifies the corresponding QCD corrections only by a few percent.

**Consequence** : Availibility of the pseudoscalar Higgs boson production cross-section to a precision comparable to that of the scalar Higgs  $\downarrow \downarrow$ In extracting the mixing angle,  $\alpha$ , to a better accuracy.

While studying Higgs decay processes, the simple reweighting formula above fails. Hence, the corresponding K-factors, similar to those given in the above table, get modified slightly why? Number of angular observables get involved.

- M. Jaquier, R. Röntsch (2019)

### N<sup>3</sup>LO results : Cross-sections



#### substantially increase the cross-sections.

Arunima Bhattacharya (SINP, India)

NNLO+NNLL correction to pseudoscalar production

### N<sup>3</sup>LO results : K-factors



- 2 Background Check
- 3 Theoretical framework
- 4 Consequences of the Analytical Computation
- 5 Numerical results



### Summary

# <u>Aim</u> : NSV resummation for pseudoscalar Higgs boson production *via* gluon fusion to NNLL accuracy.

- Compute the NSV corrections up to second order, and compare them with the corresponding FO corrections.
  - Conclude These corrections significantly impact the pseudoscalar production cross-section compared to the conventional SV logarithms.

#### e Estimate theory uncertainties.

- ► The 7-point scale uncertainties do not improve much after NSV resummation.
- The  $\mu_F$  scale variations increase the uncertainties.
- For  $\mu_R$  scale variations, the uncertainties reduce significantly.

 $\underline{Conclude} \rightarrow$  The need of NSV contributions from other parton channels, & beyond NSV contributions in the gluon fusion channel.

- Evaluate the production cross-sections for mixed scalar-pseudoscalar states.
  - Study their behavior for different values of the mixing angle,  $\alpha$ .
  - **<u>Conclude</u>**  $\Rightarrow$  QCD corrections change with  $\alpha$  by a few percent.

Summary





#### Summary

#### ]Threshold Limit

Threshold region corresponds to the limit  $z \rightarrow 1$ :  $z \equiv \frac{q^2}{\hat{s}} = \frac{\tau}{y}$  and  $\tau = \frac{q^2}{S}$ . Emission of **soft and collinear gluons**  $\Rightarrow$  large logarithmic contributions.

- q<sup>2</sup> : invariant mass,
- S : Hadronic COM energy,
- $\hat{s}$  : partonic COM energy,
- y ≡ x<sub>1</sub>, x<sub>2</sub> : partonic scaling variables.



### Physics in the threshold limit

#### Partonic Coefficient Function near threshold :

$$\begin{split} \Delta_{ab} &\sim a_i \mathcal{D}_i + b \; \delta \left(1 - z\right) + c_i \ln^i \left(1 - z\right) + d \\ \text{where } \mathcal{D}_i &= \left[\frac{\ln^i \left(1 - z\right)}{\left(1 - z\right)}\right]_+. \end{split}$$

#### Constituent elements

•  $Z_g^A$  : Removes UV divergences

$$\blacktriangleright \text{ Functional form : } \left| \mu_{\mathsf{R}}^{2} \frac{\mathsf{d}}{\mathsf{d}\mu_{\mathsf{R}}^{2}} \ln \mathsf{Z}_{\mathsf{g}}^{\mathsf{A}} \left( \widehat{\mathsf{a}}_{\mathsf{s}}, \mu_{\mathsf{R}}^{2}, \mu^{2}, \varepsilon \right) = \sum_{\mathsf{i}=1}^{\infty} \mathsf{a}_{\mathsf{s}}^{\mathsf{i}} \gamma_{\mathsf{g},\mathsf{i}}^{\mathsf{A}} \right|$$

•  $\mathcal{F}_{g}^{A}$  : deals with virtual corrections

Functional form : 
$$\ln \mathcal{F}_{g}^{A}\left(\widehat{a}_{s}, \mathbf{Q}^{2}, \mu^{2}, \varepsilon\right) = \sum_{i=1}^{\infty} \widehat{a}_{s}^{i} \left(\frac{\mathbf{Q}^{2}}{\mu^{2}}\right)^{i\frac{\varepsilon}{2}} \mathbf{S}_{\varepsilon}^{i} \widehat{\mathcal{L}}_{g,i}^{A}(\varepsilon)$$

#### **Dependents**:

- $\blacksquare \ \gamma_{g,i} \rightarrow \mathsf{UV} \text{ anomalous dimensions,}$
- $\blacksquare A_{g,i} \rightarrow \text{cusp anomalous dimensions,}$
- $\blacksquare \quad \overline{G_{g,i}^{A}}(\varepsilon) \rightarrow \text{resummation functions which decompose into}$ 
  - process dependent  $g_{g,i}^{A,i}$ , and
  - 2 collinear  $(B_g)$ , soft  $(f_g)$  and UV  $(\gamma_g)$  anomalous dimensions.

#### Constituent elements

•  $\Gamma_{gg}$  : Removes soft and collinear (IR) divergences

Functional form : 
$$\Gamma_{gg}\left(\mathbf{z}, \mu_{\mathsf{F}}^{2}, \varepsilon\right) = \delta\left(\mathbf{1} - \mathbf{z}\right) + \sum_{i=1}^{\infty} \widehat{\mathbf{a}}_{s}^{i}\left(\frac{\mu_{\mathsf{F}}^{2}}{\mu^{2}}\right) \mathbf{S}_{\varepsilon}^{i} \Gamma_{gg}^{(i)}\left(\mathbf{z}, \varepsilon\right) ,$$

where

the mass factorization kernels,  $\Gamma_{gg}^{(i)}(z,\varepsilon)$ 's, are expanded in negative powers of  $\varepsilon$  and the AP splitting kernels,  $P_{gg}^{(i)}$ 's.

•  $\Phi_{\mathbf{g}}$  : Has pole structure in  $\varepsilon$  similar to the residual divergences

Functional form : 
$$\Phi_{g} = \Phi_{g}^{SV} + \Phi_{g}^{NSV}$$
 where  

$$\Phi_{g}^{SV} \left( \hat{a}_{s}, q^{2}, \mu^{2}, z, \varepsilon \right) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left( \frac{q^{2} \left( 1 - z \right)^{2}}{\mu^{2}} \right)^{i} \frac{\varepsilon}{2} S_{\varepsilon}^{i} \left( \frac{i\varepsilon}{1 - z} \right) \hat{\phi}_{g}^{SV,(i)} (\varepsilon), \text{ and}$$

$$\Phi_{g}^{NSV} \left( \hat{a}_{s}, q^{2}, \mu^{2}, z, \varepsilon \right) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left( \frac{q^{2} \left( 1 - z \right)^{2}}{\mu^{2}} \right)^{i} \frac{\varepsilon}{2} S_{\varepsilon}^{i} \varphi_{g}^{NSV,(i)} (z, \varepsilon).$$

$$\mathbb{ISF} \left( \hat{\phi}_{g}^{SV,(i)} (\varepsilon) \Rightarrow \text{ cusp } (A_{g,i}) \text{ and soft } (f_{g}) \text{ anomalous dimensions,}$$

$$z\text{-independent constants, } \overline{C}_{g,i}^{A}, \text{ and } \overline{\mathcal{G}}_{g,i}^{A,k}.$$