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In this talk | would like to discuss

® universal principles behind the existing
subtraction schemes;

® their similarities and differences at the
technical and the conceptual levels;

® prospects for their further developments;

Kirill Melnikov, PhD
Karlsurhe Institue of Technology
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To describe processes which occur when two protons collide and large momentum is being exchanged between
them, we need to compute partonic cross sections in QCD perturbation theory.

“Hard” Scattering

outgoing parton
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underlying event ! ’
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initial-state
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]
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At next-to-next-to-leading order, we need to account for double-virtual, real-virtual and double-real corrections.

Z Z Z
Z \/ \/
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Virtual corrections Real and virtual Real corrections

dUpp—>X — Z/dwld@ fz‘(llh)fj(@) dUz‘j—>X(CU1P1,£I32P2) Fy
1]

Loop integrations produce explicit divergences Real emission contributions are finite in the bulk
of the phase space.

Ms) = I<2)\Mo> + [(1)|./\/l1>

Integration is not an option because we aim at

72 i4 1) lz fully-differential predictions.
€ €
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here are two main approaches to extracting the singular contributions and making observable- and process-
dependent contributions integrable.

5
Slicing /\M\Q Fj dog = / [ M|? Fy dog) i /|/\/l|2 Fydes + O(9)

0

conceptually simple, straightforward to implement (bulk is NLO);

non-local in phase space;

strong dependence on the slicing parameter and large cancellations between singular and regular terms;
“easy” generalization to N3LO;

Subtraction /\/\/l|2 F;dog = / [|/\/l|2 F;— S} d¢4+/Sdgbd

more difficult conceptually;

local In phase space;

potentially, offers better numerical stability and scalability than slicing;

at least for now, every step to yet higher order (e.g. N2LO — N3LO) is a challenge.
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Subtraction / M2 Fy déy — / M2 Fy — 5] déa + / Sdes
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Subtraction / M2 Fy déy — / M2 Fy — 5] dy + / Sdey

A construction of a subtraction scheme Iinvolves several well-defined steps.

We need to:

e find regions of phase space which lead to non-integrable singularities of the matrix
elements;

o define simplified versions of the matrix element squared to be used in the subtraction terms;
e understanding how to deal with multiple radiators....

e ...and overlapping singularities (first time at NNLO);

e define simplified expressions of a phase space In the subtraction terms;

e find a way to integrate the subtraction terms in d-dimesnsions;
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Subtraction / M2 Fy dy = / M2 Fy — S| dou + / Sdss @
S

A construction of a subtraction scheme involves several well-defined
steps. We need to:

find regions of phase space which lead to non-integrable singulariti

R
of the matrix elements; O\(\X
define simplified versions of the matrix element squ~: @56 Qsed N

R
@\\O

understanding how to deal with mul* S\O‘{ JIS....

the singular limits;

....and overlapping singulari*'((\ra’de.. ne at NNLO);
define simplified exr, G@%‘ U1 a phase space in the singular limits;
N\

O
find a way 1~ Q\(\ ~ the subtraction terms in d-dimesnsions;
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“Sector-improved residue subtraction” [M. Czakon et al.]
“Nested Soft-Collinear subtraction scheme” [F. Caola et al.]
“Local analytic subtraction” [L. Magnea et al.];

“Geometric” [F. Herzog)]

“Colourful subtraction” [Z. Troscanyi et al.]
“Antenna subtraction” [Th. Gehrmann et al. |

“Projection-to-Born” [M. Cacciari et al.]
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Multiple singular limits of scattering amplitudes
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One has to recognise that amplitudes for multi-particle

final states are too complicated objects to be

dealt in their entirety. Hence, we try to split it into simpler “building blocks” and deal with them

separately. To ways of doing this exist:

e partition the phase space into sectors such that at each one has to deal with an “elementary”
singularity structure (at NLO this is Frixione-Kunszt-Signer subtraction scheme);

“Sector-improved residue subtraction” [M. Czakon et al.]

11

“Geometric’

“Nested Soft-Collinear subtraction scheme” [F. Caola et al.]
_ocal analyti

c subtraction” [L. Magneal;

F. Herzog]

e make use of the properties of the amplitudes themselves to address this point (at NLO this is

similar to Catani-Seymour subtraction scheme);

“Antenna subtraction” [Gehrmann et al. |
“Colourful subtraction” [Z. Troscanyi

Kirill Melnikov
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FKS-like subtractions introduce explicit partition functions that remove all but the minimal number of
singularities. Partitions should be constructed in such a way that in the singular limits they simpilify.

4 5
/dq5|/\/l|2(1,2,4, 5) = Z do®P
o,

oo — /d¢ M2(1,2,4,5) w*?

1 — 415 4 2425 | 1425 | 15,24

w |

14,15 _ P24P25 (1 | P A ) —> singular when the gluons 4 and 5 are collinear to 1 or to each other;

d4d5 d4521 d4512
w2h2s — P1L15 (1 P P > => singular when the gluons 4 and 5 are collinear to 2 or to each other;
d,ds dgso1 das12
1425 P24015pP45 2015 P14P25 P45 = singular when the gluon 4 is collinear to 1 and the gluon & is collinear to
dydsdysio’ dydsdys01 the gluon 2 and vice versa;
pij =1 —1; -1, dizas = p1i + p2i = 2,  dasa1 = pas + paz + ps1,  dasiz = pas + par + ps2.
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In case of the antenna subtraction, no partitioning is introduced. Instead, color ordering is employed to
rewrite a general scattering amplitude through “partial amplitudes”.

he most iImportant property of a color-ordered amplitude is that a particle can only be emitted off its
neighbours (at least as far as singular contributions are concerned).

The “elementary blocks” in this case are 3- and 4-particle sub-amplitudes of the color-ordered amplitudes;
for particular kinematic configurations, these blocks contain all the relevant singularities and other particles in

the amplitude are just “spectators”.

A(1,2,3,.,N) =) Ciy iy A(l i, 3,04, ..., in)

From lectures by L. Dixon
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Singular regions and singular limits




I remark that multiple infrared configurations which are not soft-collinear can con-

tribute to QCD cross sections beyond next-to-leading order.

S. Frixione, A general approach to jet cross sections in QCD, 1997.

e |t was not obvious that independent soft and collinear subtractions are sufficient and that no
nontrivial correlations between (small) energies and (collinear) angles exist;

e |n fact, such correlations do exist in individual Feynman diagrams but they appear to be absent in
gauge-invariant amplitudes;

e this fact led to a confusion in early formulations of the FKS-like subtraction schemes.
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For the antenna subtraction, one uses exact matrix elements for simple processes (e.9. Z = qg+9g,
H—gg+gg, etc.) to define the antenna functions; no singular limits are taken.

This sidesteps the problem of defining the singular regions etc. since they are fully included in physical matrix
elements. The price to pay — not all spin correlations are correctly accounted for.

Z —qq+ g
H — ggg

Gehrmann et al.
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For FKS-like subtractions, the realisation that independent soft and collinear limits are sufficient to describe
all singularities of the matrix elements is crucial as all these limits are know.

[1MPFsa60= [ [MPFs - 8] dou+{ [ Sa6,

Soft limits, single and double:

lim . ‘M|?L—|—2({p}7 ]{717 k2) ~ Elk({p}, kla k2)|Mn({p})|2

k1,2—>

Collinear, double and triple: @ o ©

lim ‘Mn—I—Q‘Q({p}? kl? kQ) ~ 2
k1| [k2||p; 5 jk1ko

Soft limits of one-loop @ f

Collinear limits, one-loop

Catani, Grazzini, Glover, Campbell, Kosower,
Uwer, Czakon, Mitov
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These limits can be used for a straightforward definition of the subtraction terms, through an iterated
subtraction of infra-red and collinear singularities. The action of operators on the matrix elements and the
phase space requires explicit phase space parameterisation. It chosen properly, the operators commute.

o Double-soft: Es, Es = O
| , S- Single-soft: Es = 0
> T Triple-collinear: 4||5||1 and 4|
Cui C Double-collinear 4||i, 5[, i=1,2

N - - Clys Double-collinear 4/|5
d&1245,fafb = Z < ([ — 05])([ — 042) [[ — ES} [[ — 35} X

(ij)€Edc

0" Fuse,(1,2:4,5))

+ Z < _e(a) [[ — @z} [1 — 052'] + 69 [I — @Z] [[ — 045}

1€t -

19 I —@;||I - Cy| + pL4) [ —@;||I - Cys]

x [T — S| | — Ss|[dfalldfs)w* Fim s, 5, (1,2, 4, 5)>.
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Phase space In the singular limits and in the subtraction terms
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The antenna subtraction uses exact 123 and 1—4 phase spaces (NLO and NNLO, respectively) to
integrate exact matrix elements used as subtraction terms.

Gehrmann et al.
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For FKS-like subtraction schemes, phase spaces in the subtraction terms are usually simplified.

However, there is a lore that says that admissible simplifications are subtle, that Lorentz-invariant
factorisation is important and that analytic integration of the subtraction terms is essential.
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s the analytic integration of the subtraction terms important ?

The answer, of course, is no. What we need is an integration in d-dimensions, but such an integration

can be performed both analytically and numerically.

For a numerical integration in d-dimensions, one needs to find a parametrisation of the phase space
which factorises all the singularities explicitly. Such a parametrisation is known.

(d—2) (d
(ae) d€), “dfl, dA . >
dihis” = 26¢(27r)2d -2 AN — N))V/2+e b Fo z3m =
1 (dn)e | 1 [de, anl.

X

_872 F(l — 6)_ F(l — 26)_ Qd_g Qd_g

drs dxy dA _
200F.) "¢ 4F]
8 r3 2 T m(AN(1 — X))/ ( ) @

(1 — 23)(1 — 2324/2)(1 — 24/2)° _ (1 — x4/2)
2N (3, 14/2, N)? ’ 2N (z3,14/2, )’

I = £,

M. Czakon et al.

Kirill Melnikov

F(x3,24) = 2574| M|? (23, 74)

1
dCIL‘g d$4 1
0/ o1 gre Fonms) =55 10,0

_ %/% (F(z3,0) — F(0,0))

X3

-
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Does one need Lorentz-invariant phase-space factorisation for an analytic integration®

The answer Is again no. Lorentz invariance helps, of course, but it is definitely not necessary. In fact, modern
methods for multi-loop computations and reverse unitarity allows us to perform complex computations even
INn predefined and not optimal reference frames.

$99 = / (ks [dk5)0( Ermax — k2)O(KS — k2) Sy (ka, ks), S _ 251 [ 1 (4n)° ] {L L1 [g ) 1n<32>]
g o 8m2T(1 — ¢) 2¢t €3 |12
y 1 , 11 11 72 16
; —|—€—2[2L12(C2)—|—1H( )—Fln(s2)+§ln2—z—§]
57;7(]@47 ks) = 25;;(ka, ks) — Sii(ka, ks) — Sj;(ky, ks), + % [6Li3(82) + 2Lig(c?) + (2 In(s%) + %) Liz(c®) — §1ﬂ3(82)
: + (3111(02) 11)111 (s%) — <§1n2—|—ﬂ—2—§> In(s?) 0.
G D 6 3 29 5= Y
T o s R B M z—Eﬂ—&?mzﬂ”] ).
s - D, 3 36" 18 54 ]
Sij(ka, ks) = 857 (ka, ks) — ’ . 1 2
k4 . k5 [pz . (k4 + k5)] [pj . (k4 —+ k5)] + 4G_1,070,1(8 ) — 7G071,071(S ) -+ €C13(26) —+ 3 an(5> 812(25) ew
4 (pzk4)(p]k5)+(p’bk5)(pjk4) (1_6) _lsso(k L ) . .9 . 5 _ 1 . 1 — g2 CZCOS?
[pz ) (k4 _|_ k5)] [pj ) (k4 _|_ k5)] (k4 . /{35)2 2 1) 445 V5 —+ 2L14<C ) — 14L14<S ) —|—4L14 (1 I S2> - 2L14 (1 T 82)
+ 2L1 (i +_si> + Lig(1 — s*) + [10 In(s*) — 41n (1 + 52)
5 (Z) _ (Lin(eiz) T Lin(e_iz)) G (Z) _ (Lin<€iz) - Lin(e_iz)) 131]L13( ) + [141n(62) 4+ 21In(s?) 4+ 41n (1 + s ) 232] Lis(s%)
" 2 7 " 21
2 . 2 9 2/ 9 . 2 . 2 2 2
M. Delto et al. + 41In(c”)Lig(—s") + §L12(c ) — 4Lis(c”)Lig(—s7) + [7ln(c ) In(s?)
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Slicing

")

/\M\Q Fj dgg = / M? Fy déa) g,

0

1
+ / ‘M‘Q Fjydos + O(9)
)
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Slicing

/‘M‘Q Fy d¢d — / [|M|2 by dgbd}simp

0

")

1
+ / |./\/l|2 Fjydos + O(0)
)
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) 1
Slicing /\M\2 Fy dog = / M Fy da) g, + / M|? Fy doy + O(6)
0

0

One of the main reasons for the slicing comeback is the increase in computing power available for such computations.
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4
Slicing /\M\Q Fy dog = / IM* Fy da) g, /|M|2 Fy dos + O(9)

0

“or slicing” [S. Catani and M. Grazzini]

Modern slicing parameters: “Jettiness slicing” [R. Boughezal et al., J. Gaunt et al.]
1) transverse momentum of a colorless or colored (but massive) system; o 2q.k; quk; 2qn k;
: . — 111111
2) jettiness; N Z 02 ' Q2 Q2
1

Computation of singular contribution is helped by an understanding how the cross sections behave in the limit of
small slicing parameter.
IP hmdcfpp_>X~B®B®S®H®J®d(fpp_>X

T—0

Jettiness Is applicable to final states with jets; beam and jet functions are universal and known, soft
functions are always challenging.

gt slicing is venturing in the direction of jet physics using new interpretation of the slicing parameter.
L. Buonocore et al.

ransverse momentum slicing does not receive linear corrections in the slicing parameter if done properly.

L. Buonocore et al.
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4 1

Slicing /\M\Q Fy dgg = / M Fy da) g, + / M|? Fy dgs + O(6)
0 0

“or slicing” [S. Catani and M. Grazzini]
Modern slicing parameters: “Jettiness slicing” [R. Boughezal et al., J. Gaunt et al

1) transverse momentum of a colorless or colored (but massive) system;

2) jettiness; . [ 2qaki @ki  2qnk;
TN:me 0Z 0T QP

The slicing schemes can be generalised to N3LO in a straightforward way; many ingredients are known and
many calculations for 2 = 1 have been done (Drell-Yan, Higgs).

Similar to NNLO with multi-jets, calculation of jettiness soft functions is an obstacle for extending the N3LO
slicing computations to final states with jets.
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Summary:

® fixed order computations in general and NNLO QCD computations in particular are very important

for the LHC physics program;

® there exists a large number of working NNLO QCD subtraction and slicing schemes;

® some of these schemes can do (more or less) everything that we can dream of, in the context of

the LHC p
HCisac
® in spite of

principles;

nysics and a recent computation of NNLO QCD corrections to 3-jet production at the

ear confirmation of this point;

the differences In details, existing subtraction schemes are based on similar ideas and

® It seems that none of the newly proposed subtraction schemes has lbeen a game-changer;

® analytic refinements of the subtraction schemes and their improvements are probably less
important than their efficient implementations in numerical programs. In my opinion, this is what
will make the difference in the future.
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