Misalignment Mechanism Solver

Dimitrios Karamitros

Manchester U.

Recent Progress in Axion Theory and Experiment IPPP, Durham
05/09/2022

Outline

(1) Axion Dark Matter

- Why particle dark matter
- The dark matter particle
- The axion (like) particle
(2) Calculating the Relic Abundance
- The axion EOM
- How hard can it be?
- Initial conditions
- (Bad) Assumptions
- Is it that bad?
- Need for speed, accuracy, and reproducability

MiMeS

- MiMeS: What is it?
- Mimes: Under the hood
- Sidenote: adiabatic invariant - I
- Sidenote: adiabatic invariant - II
- Using adiabatic invariant
- MiMeS: the solver part

Using MiMeS

- How to get MiMeS
- Configure (and make)
- Classes
- Template arguments
- MiMes from python
- Assumptions
- What MiMeS expects from you
(5) Examples
- python
- C++

6 Outlook

Axion Dark Matter

Axion Dark Matter

- Why particle dark matter
- The dark matter particle
- The axion (like) particle

2 Calculating the Relic AbundanceThe axion EOM
How hard can it be?
-
Initial condítions

- (Bad) AssumptionsIs it that bad?
- Need for speed, accuracy, and reproducability
- mimes: What is it?
- mimes: Under the hood
- Sidenote: adiabatic invariant - I
- Sidenote: adiabatic invariant - II
- Using adiabatic invariant
- mimes: the solver part
(4) Using Mimes
- How to get MiMeS
- Configure (and make)
- Classes
- Template arguments
- Mimes from python
- Assumptions

What MiMes expects from you
(5) Examples

- python
- C++

Why particle dark matter

E. Corbelli and P. Salucci, Mon. Not. Roy. Astron. Soc. 311441 (2000), arXiv:astro-ph/9909252.

M. Markevitch, ESA Spec. Publ. 604 (2006) 723, astro-ph/0511345.Clowe, Bradac, et. al. Astrophys. J. 648, L109 (2006), astro-ph/0608407

$\Omega_{\mathrm{DM}} h^{2} \approx 0.12$

N. Aghanim et al. [Planck Collaboration], Astron. Astrophys. 641 (2020), A6, arXiv:1807.06209 [astro-ph.CO].
"I know one thing, that I know nothing."
-Socrates

- Gravitational interactions.
- Mostly electrically neutral.
- Stable or very slow decay rate.
- Non-Baryonic.
- Cold/Warm and non-relativistic today.

Notably, the original axion was originally introduced in order to solve the strong-CP problem of the SM. Axion-like-particles (ALPs) arise in a number of new physics models, beyond the SM.

Axions and ALPs generally:

- Have suppressed interactions with photons.
- Are (mostly) stable.
- Non-baryonic by definition.
- Light but non-relativistic around the epoch of structure formation.

Notably, the original axion was originally introduced in order to solve the strong-CP problem of the SM. Axion-like-particles (ALPs) arise in a number of new physics models, beyond the SM.

Axions and ALPs generally:

- Have suppressed interactions with photons.
- Are (mostly) stable.
- Non-baryonic by definition.
- Light but non-relativistic around the epoch of structure formation.

Maybe DM has axionic nature!

Calculating the Relic Abundance

Axion Dark Matter

- Why particle dark matter
- The dark matter particle
- The axion (like) particle
(2) Calculating the Relic Abundance
- The axion EOM
- How hard can it be?
- Initial conditions
- (Bad) Assumptions
- Is it that bad?
- Need for speed, accuracy, and reproducabilityMiMes: What is it?
-

mimes: Under the hood
Sidenote: adiabatic invariant - 1

- Sidenote: adiabatic invariant - II
- Using adiabatic invariant
- mimes: the solver part

Using MiMes

- How to get mimes
- Configure (and make)Classes
- Template arguments
- mimes from python
- Assumptions

What MiMes expects from you
(5) Examples

- python
- C++

Axions and ALPs follow a similar equation of motion (EOM):

$$
\left(\frac{d^{2}}{d t^{2}}+3 H(t) \frac{d}{d t}\right) \theta(t)+\tilde{m}_{a}^{2}(t) \sin \theta(t)=0
$$

where $\theta=A / f_{a}$, with A the axion filed, and f_{a} some energy scale that characterises the potential (Peccei-Quinn breaking scale).

Hard (in general).

The classical analogue is the damped pendulum with time-dependent length and friction:

- There is no closed form solution.
- There are no constants of motion during its entire evolution.
- No package/library/program available!

Hard (in general).

The classical analogue is the damped pendulum with time-dependent length and friction:

- There is no closed form solution.
- There are no constants of motion during its entire evolution.
- No package/library/program available!

MiMeS simulates the evolution of the axion/ALP, for (virtually) any cosmological scenario and axion/ALP (thermal) mass.

Some time at the very early Universe, $\tilde{m}_{a} \ll H(T)$, with

$$
\ddot{\theta}+3 H \dot{\theta} \approx 0 .
$$

The solution is

$$
\theta=\theta_{\mathrm{ini}}+C \int_{0}^{t} d t^{\prime}\left(\frac{a\left(t^{\prime}=0\right)}{a\left(t^{\prime}\right)}\right)^{3}
$$

So, $\dot{\theta} \sim a^{-3}$. Since we are interested in θ once the potential becomes relevant (i.e. much later times), $\dot{\theta} \approx 0$. ${ }^{1}$ Therefore, we can begin integration at some point with $3 H \gg \tilde{m}_{a}$, and set $\theta\left(t=t_{\text {ini }}\right)=\theta_{\text {ini }}$ and $\dot{\theta}\left(t=t_{\mathrm{ini}}\right)=0$.

[^0]"Even the finest sword plunged into salt water will eventually rust."

> -Sun Tzu

- Assume $\theta \ll 1$, and linearise the EOM. Not general.
- Assume that at $\tilde{m}_{a}\left(T_{\text {osc }}\right) \approx 3 H\left(T_{\text {osc }}\right)$ we have $\dot{\theta}\left(T_{\text {osc }}\right)=0$. Not very precise.
- For $T<T_{\text {osc }}$ the axion oscillates harmonically. Not good.
- Assume that $\theta_{\text {osc }} \approx \theta_{\text {ini }}$. Generally quite bad.
"Even the finest sword plunged into salt water will eventually rust."

> -Sun Tzu

- Assume $\theta \ll 1$, and linearise the EOM. Not general.
- Assume that at $\tilde{m}_{a}\left(T_{\text {osc }}\right) \approx 3 H\left(T_{\text {osc }}\right)$ we have $\dot{\theta}\left(T_{\text {osc }}\right)=0$. Not very precise.
- For $T<T_{\text {osc }}$ the axion oscillates harmonically. Not good.
- Assume that $\theta_{\text {osc }} \approx \theta_{\text {ini }}$. Generally quite bad.

These result in "WKB"-approximate solution

$$
\theta(t) \approx \theta_{\mathrm{ini}}\left(\frac{3}{4}\right)^{1 / 4} \sqrt{\frac{\tilde{m}_{a}\left(T_{\mathrm{osc}}\right)}{\tilde{m}_{a}(T)}}\left(\frac{a}{a_{\mathrm{osc}}}\right)^{-3 / 2} \cos \left(\int_{t_{\mathrm{osc}}}^{t} d t^{\prime} \tilde{m}_{a}\left(t^{\prime}\right)\right)
$$

which gives us:

$$
\rho_{a, 0}=\gamma^{-1} \frac{s_{0}}{s_{\mathrm{osc}}} \frac{1}{2} f_{a}^{2} m_{a} \tilde{m}_{a, \mathrm{osc}} \theta_{\mathrm{ini}}^{2}
$$

where γ the amount of entropy injection between T_{osc} and today.

Need for speed, accuracy, and reproducability

Life before MiMeS:

- The approximations can be tested against numerical results in a case-by-case basis. No measure of accuracy.
- No available tool that can help us reproduce published results obtained by numerical integration. Reproducing results means reproducing effort.
- Simply checking if an ALP model is compatible with a cosmological scenario is slow or inaccurate.

MiMes

Axion Dark Matter

- Why particle dark matter
- The dark matter particle
- The axion (like) particle
(2) Calculating the Relic AbundanceThe axion EOM
How hard can it be?
- Initial conditions
- (Bad) Assumptions

Is it that bad?

- Need for speed, accuracy, and reproducability

MiMeS
O Mimes: What is it?

- mimes: Under the hood
- Sidenote: adiabatic invariant - I
- Sidenote: adiabatic invariant - II
- Using adiabatic invariant
- MiMeS: the solver part
ing MiMes
- How to get MiMes
- Configure (and make)Classes
- Template arguments
- Mimes from python
- Assumptions

What MiMes expects from you
(5) Examples

- python
- C++

We need accurate code that solves the EOM, but most importantly we need reproducible results!

- MiMeS is a C++ header-only library that contains various templated classes.
- MiMeS comes with a python interface.
- MiMeS is easy to use; anyone can run it and see if their model can work or check against the literature.
- Mimes is reasonably fast; less than $0.05 s$ for the scenarios tested.
- Mimes provides full access to results and their errors, which can help determine if the results are accurate.
- MimeS asks the user to decide when to start, stop, and when adiabaticity is reached.
"It is the empty space that makes a bowl useful."
-Laozi
MiMeS is built as minimally as possible:
- MiMeS relies on NabBodes ${ }^{2}$ and SimpleSplines ${ }^{3}$.
- Guaranteed seamless integration with Mimes.
- There is always going to be a compatible version of these libraries that works with Mimes.
- You only need a C++ compiler. ${ }^{4}$

[^1]Given a system with Hamiltonian $\mathcal{H}(\theta, p ; t)$, the equations of motion are

$$
\dot{p}=-\frac{\partial \mathcal{H}}{\partial \theta}, \quad \dot{\theta}=\frac{\partial \mathcal{H}}{\partial p} .
$$

Also,

$$
d \mathcal{H}=\dot{\theta} d p-\dot{p} d \theta+\frac{\partial \mathcal{H}}{\partial t} d t .
$$

If this system exhibits closed orbits (e.g. if it oscillates), we define

$$
J \equiv C \oint p d \theta
$$

where the integral is over a closed path (e.g. a period, T), and C indicates that J can always be rescaled with a constant. If the Hamiltonian varies slowly during a cycle,

$$
\frac{d J}{d t}=C \oint(\dot{p} d \theta+p d \dot{\theta})=C \int_{t}^{t+T} \frac{\partial \mathcal{H}}{\partial t^{\prime}} d t^{\prime} \approx 0
$$

So, J is an adiabatic invariant!

The Hamiltonian that results in the EOM
with

$$
\mathcal{H}=\frac{1}{2} \frac{p^{2}}{f_{a}{ }^{2} a^{3}}+V(\theta) a^{3},
$$

$$
p=f_{a}^{2} a^{3} \dot{\theta}, \quad V(\theta)=\tilde{m}_{a}^{2} f_{a}^{2}(1-\cos \theta) .
$$

If \mathcal{H} varies slowly $\left(\dot{\tilde{m}}_{a}(T) / \tilde{m}_{a} \ll \tilde{m}_{a}\right.$ and $\left.H \ll \tilde{m}_{a}\right)$:

$$
\begin{aligned}
J & =\frac{\oint p d \theta}{\pi f_{a}{ }^{2}}=\frac{1}{\pi f_{a}{ }^{2}} \oint \sqrt{2\left(\mathcal{H}(\theta)-V(\theta) a^{3}\right) f_{a}^{2} a^{3}} d \theta \\
& =\frac{2}{\pi f_{a}{ }^{2}} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} \sqrt{2\left(\mathcal{H}\left(\theta_{\text {peak }}\right)-V(\theta) a^{3}\right) f_{a}^{2} a^{3}} d \theta \\
& =\frac{2 \sqrt{2}}{\pi f_{a}} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} \sqrt{V\left(\theta_{\text {peak }}\right)-V(\theta)} a^{3} d \theta \\
& =\frac{2 \sqrt{2}}{\pi} \tilde{m}_{a} a^{3} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} \sqrt{\cos \theta-\cos \theta_{\text {peak }}} d \theta,
\end{aligned}
$$

is the adiabatic invariant - up to a multiplication with a constant.

The Hamiltonian that results in the EOM
with

$$
\mathcal{H}=\frac{1}{2} \frac{p^{2}}{f_{a}{ }^{2} a^{3}}+V(\theta) a^{3},
$$

$$
p=f_{a}^{2} a^{3} \dot{\theta}, \quad V(\theta)=\tilde{m}_{a}^{2} f_{a}^{2}(1-\cos \theta) .
$$

If \mathcal{H} varies slowly $\left(\dot{\tilde{m}}_{a}(T) / \tilde{m}_{a} \ll \tilde{m}_{a}\right.$ and $\left.H \ll \tilde{m}_{a}\right)$:

$$
\begin{aligned}
J & =\frac{\oint p d \theta}{\pi f_{a}^{2}}=\frac{1}{\pi f_{a}{ }^{2}} \oint \sqrt{2\left(\mathcal{H}(\theta)-V(\theta) a^{3}\right) f_{a}^{2} a^{3}} d \theta \\
& =\frac{2}{\pi f_{a}^{2}} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} \sqrt{2\left(\mathcal{H}\left(\theta_{\text {peak }}\right)-V(\theta) a^{3}\right) f_{a}^{2} a^{3}} d \theta \\
& =\frac{2 \sqrt{2}}{\pi f_{a}} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} \sqrt{V\left(\theta_{\text {peak }}\right)-V(\theta)} a^{3} d \theta \\
& =\frac{2 \sqrt{2}}{\pi} \tilde{m}_{a} a^{3} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} \sqrt{\cos \theta-\cos \theta_{\text {peak }}} d \theta,
\end{aligned}
$$

is the adiabatic invariant - up to a multiplication with a constant. Important: $\theta_{\text {peak }}$ is the peak of the oscillation.

We rewrite the adiabatic invariant as

$$
J=a^{3} \tilde{m}_{a} \theta_{\text {peak }}^{2} f\left(\theta_{\text {peak }}\right),
$$

with

$$
f\left(\theta_{\text {peak }}\right)=\frac{2 \sqrt{2}}{\pi \theta_{\text {peak }}{ }^{2}} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} d \theta \sqrt{\cos \theta-\cos \theta_{\text {peak }}}
$$

the so-called anharmonic factor.

We rewrite the adiabatic invariant as

$$
J=a^{3} \tilde{m}_{a} \theta_{\text {peak }}^{2} f\left(\theta_{\text {peak }}\right)
$$

with

$$
f\left(\theta_{\text {peak }}\right)=\frac{2 \sqrt{2}}{\pi \theta_{\text {peak }}{ }^{2}} \int_{-\theta_{\text {peak }}}^{\theta_{\text {peak }}} d \theta \sqrt{\cos \theta-\cos \theta_{\text {peak }}}
$$

the so-called anharmonic factor.
J can be used to determine how $\theta_{\text {peak }}$ changes with time. By definition, at $\theta=\theta_{\text {peak }}, p \sim \dot{\theta}=0$. This means that we can find $\rho_{a, 0}$ on the peak of today's θ, as

$$
\rho_{a, 0}=\gamma^{-1} \frac{s_{0}}{s_{*}} m_{a} \tilde{m}_{a, *} \frac{1}{2} f_{a}^{2} \theta_{\text {peak }, *}^{2} f\left(\theta_{\mathrm{peak}, *}\right)
$$

where T_{*} the temperature at which adiabaticity was reached, and γ the entropy injection between T_{*} and today (i.e. $s_{0}=\gamma a_{*}^{3} s_{*}$).

MiMes: the solver part

MiMeS solves the transformed EOM: ${ }^{5}$

$$
\begin{gathered}
\frac{d \zeta}{d u}+\left[\frac{1}{2} \frac{d \log H^{2}}{d u}+3\right] \zeta+\left(\frac{\tilde{m}_{a}}{H}\right)^{2} \sin \theta=0 . \\
\frac{d \theta}{d u}-\zeta=0 .
\end{gathered}
$$

The parameter u is "time" $u \equiv \log \left(a / a_{\text {ini }}\right)$. ${ }^{6}$
${ }^{5}$ Suitable for Runge-Kutta.
6 With a_{ini} the initial value of the scale factor. It corresponds to T_{ini}.

MiMeS solves the transformed EOM: ${ }^{5}$

$$
\begin{gathered}
\frac{d \zeta}{d u}+\left[\frac{1}{2} \frac{d \log H^{2}}{d u}+3\right] \zeta+\left(\frac{\tilde{m}_{a}}{H}\right)^{2} \sin \theta=0 \\
\frac{d \theta}{d u}-\zeta=0
\end{gathered}
$$

The parameter u is "time" $u \equiv \log \left(a / a_{\text {ini }}\right)$. ${ }^{6}$

- Integration starts at $T_{\text {ini }}$ such that $3 H\left(T_{\mathrm{ini}}\right) / m_{a}\left(T_{\mathrm{ini}}\right)=x \gg 1$, with a user defined x (T_{ini} is automatically determined).
- Initial conditions, set at $T_{\text {ini }}, \zeta\left(T_{\text {ini }}\right)=0$ and $\theta\left(T_{\text {ini }}\right)=\theta_{\text {ini }}$. The initial angle $\theta_{\text {ini }}$ is user defined.
- MiMeS stops integrating when J becomes slowly varying over enough cycles. This is a user defined condition.

[^2]
Using MiMes

Axion Dark Matter

- Why particle dark matter
- The dark matter particle
- The axion (like) particle
(2) Calculating the Relic AbundanceThe axion EOMHow hard can it be?Initial conditions
- (Bad) Assumptions
- Is it that bad?
- Need for speed, accuracy, and reproducability

Mimes

- MiMes:

What is it?

- mimes:

Uncler the hood

- Sidenote: adiabatic invariant - II
- Sidenote: adiabatic invariant - II
- Using adiabatic invariant
- mimes: the solverpart

4
Using MiMes

- How to get mimes
- Configure (and make)
- Classes
- Template arguments
- miMes from python
- Assumptions
- What MiMeS expects from you
(5) Examples
- python
- C++

There are several ways you can get a stable version of MiMes:

```
git clone -b stable https://github.com/dkaramit/MiMeS.git.
```

This is the preferred way, as it is guaranteed to be the latest stable version.
(2) Go to mimes.hepforge.org/downloads, and download it.
(3) Go to github.com/dkaramit/MiMeS/releases, and download a released version.
You can get the most up-to-date code - not always the most stable one - including the latest version of NabBODES and
SimpleSplines, by running

```
git clone https://github.com/dkaramit/MiMeS.git
cd MiMeS
git submodule init
git submodule update --remote
```


Configure (and make)

There is no need to install anything if you are going to use MiMeS in a C++ program. The only thing you must do is run

```
bash configure.sh
```

Alter that, you can include the header file MiMeS/MiMeS.hpp, and you are good to go.
However, you can also run

- make lib, in order to produce the (shared) libraries. This is needed in order to run the python interface.
- make examples, in order to compile the examples in MiMeS/UserSpace/Cpp.
- make exec, in order to produce some test executables (in MiMeS/exec). You just need to run then in order to see if you get any segfaults.

There are three classes useful to the user. ${ }^{7}$

[^3]There are three classes useful to the user. ${ }^{7}$

- mimes: : Cosmo<LD>: interpolation of relativistic degrees of freedom of the plasma. By default it uses the EOS2020 ${ }^{8}$ data. The user can choose another file easily.

[^4]There are three classes useful to the user. ${ }^{7}$

- mimes: : Cosmo<LD>: interpolation of relativistic degrees of freedom of the plasma. By default it uses the EOS2020 ${ }^{8}$ data. The user can choose another file easily.
- mimes: : AxionMass<LD>: definition of axion/ALP mass as a function of the temperature and f_{a}. MiMeS is shipped with data from Lattice calculation ${ }^{9}$ of the QCD axion mass.

[^5]There are three classes useful to the user. ${ }^{7}$

- mimes: : Cosmo<LD>: interpolation of relativistic degrees of freedom of the plasma. By default it uses the EOS2020 ${ }^{8}$ data. The user can choose another file easily.
- mimes::AxionMass<ID>: definition of axion/ALP mass as a function of the temperature and f_{a}. MiMeS is shipped with data from Lattice calculation ${ }^{9}$ of the QCD axion mass.
- mimes: :Axion<LD, Solver, Method>: This is responsible for actually solving the EOM.

[^6]
Template arguments

You need to choose what numeric type to use. This is done by the template argument LD which should be double (fast) or long double (accurate). ${ }^{10}$

You also need to tell MiMeS which integration strategy to use. This is done by choosing template arguments:

- Solver can be set to 1 for Rosenbrock (semi-implicit Runge-Kutta). The Method argument in this case can be:
- RODASPR2<LD> (4th order).
- ROS34PW2<LD> (3rd order).
- ROS3W<LD> (2rd order, very bad).
- Solver can be set to 2 for explicit RK. The Method argument can be:
- DormandPrince<LD> (7th order)
- CashKarpRK45<LD> (5th order, very bad).
- RK45<LD> (5th order, very bad).

[^7]
MiMeS from python

In order to call the python interface of MiMeS, we need to first call make lib in the root directory of MiMeS.

Before that, we can take some time to decide what the template arguments and compilation options should be. In the file MiMeS/Definitions.mk, you can change the variables:

- LONGpy=long will compile the library with long double numeric types. LONGpy= will compile the library with double numeric types.
- SOlVer and method, as in the template arguments.

Also, in the same file, you can change compilation options:

- Compiler:
- $\mathrm{CC}=\mathrm{g}++$ in order to use the GNU C++ compiler.
- $\mathrm{CC}=\mathrm{clang}-1$ stdc++ in order to use the clang $\mathrm{C}++$ compiler.
- Optimization level:
- OPT=O0: No optimization.
- $0=01,02$, or 03: all these perform mostly the same (read the compiler documentation for more information on the optimization).
- OPT=Ofast: full optimization (fast, but dangerous).

MiMeS is designed to make as few assumptions as possible. However, it still assumes that:

MiMeS is designed to make as few assumptions as possible. However, it still assumes that:
(1) H / \tilde{m}_{a} increases monotonically with the temperature.

MiMeS is designed to make as few assumptions as possible. However, it still assumes that:
(0) H / \tilde{m}_{a} increases monotonically with the temperature.
(2) $\zeta(0)=0$. This will be changed in the future.

Mimes is designed to make as few assumptions as possible. However, it still assumes that:
(c) H / \tilde{m}_{a} increases monotonically with the temperature.
(2) $\zeta(0)=0$. This will be changed in the future.
(3) The energy density of the axion/ALP is always subdominant.

MiMeS is designed to make as few assumptions as possible. However, it still assumes that:
(1) H / \tilde{m}_{a} increases monotonically with the temperature.
(2) $\zeta(0)=0$. This will be changed in the future.
(3) The energy density of the axion/ALP is always subdominant.
(9) Only the EOM determines the energy density (no annihilations, no strings, etc.).

Apart from $\theta_{\text {ini }}$ and f_{a}, keep in mind that MiMeS needs:

Apart from $\theta_{\text {ini }}$ and f_{a}, keep in mind that MiMeS needs:
(1) The mass of the axion/ALP. A data file or an actual function.

Apart from $\theta_{\text {ini }}$ and f_{a}, keep in mind that MiMes needs:
(1) The mass of the axion/ALP. A data file or an actual function.
(2) Data file with $\log a / a_{i}$ (a_{i} is some arbitrary value; MiMeS rescales it appropriately), T, and $\log H$ of the underlying cosmology.

Apart from $\theta_{\text {ini }}$ and f_{a}, keep in mind that MiMeS needs:
(1) The mass of the axion/ALP. A data file or an actual function.
(2) Data file with $\log a / a_{i}$ (a_{i} is some arbitrary value; MiMeS rescales it appropriately), T, and $\log H$ of the underlying cosmology.
(3) Value for $3 H / \tilde{m}_{a} \gg 1$, which defines the point where integration begins.

Apart from $\theta_{\text {ini }}$ and f_{a}, keep in mind that MiMeS needs:
(1) The mass of the axion/ALP. A data file or an actual function.
(2) Data file with $\log a / a_{i}$ (a_{i} is some arbitrary value; MiMeS rescales it appropriately), T, and $\log H$ of the underlying cosmology.
(3) Value for $3 H / \tilde{m}_{a} \gg 1$, which defines the point where integration begins.
(9) Relative difference of J between a given number of peaks at which we consider adiabaticity to have been reached.

Apart from $\theta_{\text {ini }}$ and f_{a}, keep in mind that MiMeS needs:
(1) The mass of the axion/ALP. A data file or an actual function.
(2) Data file with $\log a / a_{i}$ (a_{i} is some arbitrary value; MiMeS rescales it appropriately), T, and $\log H$ of the underlying cosmology.
(3) Value for $3 H / \tilde{m}_{a} \gg 1$, which defines the point where integration begins.
(9) Relative difference of J between a given number of peaks at which we consider adiabaticity to have been reached.
(5) Other input, such as the temperature at which integration exits.

Examples

Axion Dark Matter

- Why particle dark matter
- The dark matter particle
- The axion (like) particle

Calculating the Relic Abundance

- The axion EOM

How hard can it be?

- Initial conditions
- (Bad) Assumptions

Is it that bad?
Need for speed, accuracy, and reproducability
MiMeSMiMes: What is it?

- mimes: Under the hood
- Sidenote: adiabatic invariant - I
- Sidenote: adiabatic invariant - II
- Using adiabatic invariant
- mimes: the solver part

Using MiMes

- How to get mimes
- Configure (and make)
- Classes
- Template arguments
- Mimes from python
- Assumptions
- What MiMes expects from you

Examples
O python

- $\mathrm{C}++$

Define everything and solve in just a few lines of code!

```
from time import time; from sys import stderr #you need these in order to print the time in stderr
#add the relative path for MiMeS/src
from sys import path as sysPath; sysPath.append('../src')
from interfacePy.AxionMass import AxionMass #import the AxionMass class
from interfacePy.Axion import Axion #import the Axion class
from interfacePy.Cosmo import mP #import the Planck mass
def main():
    # AxionMass instance
    axionMass = AxionMass(r'../src/data/chi.dat',0,mP)
    # define \tilde{m}}\mp@subsup{\tilde{m}}{a}{2}\mathrm{ for T}<\mp@subsup{T}{\mathrm{ min}}{
    TMin, chiMin=axionMass.get }\dagger\textrm{Min}(),\mathrm{ axionMass.getChiMin()
    axionMass.set_ma2_MIN( lambda T,fa: chiMin/fa/fa )
    # define }\mp@subsup{\tilde{m}}{a}{2}\mathrm{ for T > T T max
    TMax, chiMax=axionMass.getTMax(), axionMass.getChiMax()
    axionMass.set_ma2_MAX( lambda T,fa: chiMax/fa/fa*pow(TMax/T,8.16))
    #in python it is more convenient to use relative paths
    inputFile="../UserSpace/InputExamples/MatterInput.dat"
    ax = Axion(0.1, 1e16, 500,1e-4,1e3,10,1e-2, inputFile, axionMass,
    1e-2,1e-8,1e-2,1e-10,1e-10, 0.85,1.5,0.85, int(1e7))
    ax.solveAxion()
    print("theta i=",ax.theta i,"\ttt\ttt","f a=",ax.fa,"GeV\n","theta_osc~=",
        ax.theta_osc,"\t","T_osc~=",ax.T_osc,"GeV_\n","Omega_h^2=",ax.relic)
    #once we are done we should run the destructor
    del ax,axionMass
if ____=time\overline{e()}
```

\qquad

``` ':
    main()
    print(round(time() __,3),file=stderr)
```


Notice: C++ and python are quite similar!

```
#include<iomanip>
#include"MiMeS.hpp"
using numeric = long double;//make life easier if you want to change to double
int main(){
    mimes::util::Timer _timer_;//use this to time it!
    // use chi PATH to interpolate the axion mass.
    mimes::AxionMass<numeric> axionMass(chi_PATH,0,mimes::Cosmo<numeric>::mP);
    /*set }\mp@subsup{\tilde{m}}{a}{2
    numeric TMax=axionMass.getTMax(), chiMax=axionMass.getChiMax();
    axionMass.set ma2_MAX(
        [&chiMax,\overline{&TMax](numeric T, numeric fa){ return chiMax/fa/fa*std::pow(T/TMax,-8.16);}}
    );
    /* set }\mp@subsup{\tilde{m}}{a}{2}\mathrm{ for T }\leq\mp@subsup{T}{\operatorname{min}}{*/
    numeric TMin=axionMass.getTMin(), chiMin=axionMass.getChiMin();
    axionMass.set ma2 MIN(
        [&chiMin,&TMin](numeric T, numeric fa){ return chiMin/fa/fa;}
    );
    /*this path contains the cosmology*/
    std::string inputFile = std::string(rootDir)+
            std::string("/UserSpace/InputExamples/MatterInput.dat");
    /*declare an instance of Axion*/
    mimes::Axion<numeric, 1, RODASPR2<numeric> > ax(0.1, 1e16, 500, 1e-4, 1e3,10,1e-2,
                        inputFile, &axionMass,1e-2,1e-8,1e-2,1e-10,1e-10, 0.85,1.5,0.85,
                        int(1e7) );
    /*solve the.EOM!*/
    ax.solveAxion();
    std::cout<<std::setprecision(5)
    <<"theta_i="<<ax.theta_i<<std::setw(25)<<"f_a="<<ax.fa<<<"_GeV\n"<<"theta_osc~="<<ax.theta_osc
    <<std::sètw(20)<<"T_o\sc~="<<ax.T_osc<<"GeV_\n"<<"Omega_h^2="<<ax.rēlic<<"\n";
    return 0;
}
```


Outlook

Axion Dark Matter

- Why particle dark matter
- The dark matter particle
- The axion (like) particle

Calculating the Relic Abundance

- The axion EOM
- How hard can it be?
- Initial conditions
- (Bad) Assumptions
- Is it that bad?
- Need for speed, accuracy, and reproducability

M M M S
Mimes: What is it?
Mimes: Under the hood

- Sidenote: adiabatic invariant - I
- Sidenote: adiabatic invariant - II
- Using adiabatic invariant
- MiMes: the solver part
(4) Using MiMeS
- How to get MiMeS
- Configure (and make)Classes
-

Template argumentsMiMes from python

- Assumptions
- What MiMes expects from you

Examples
(1)
python

- C+

What we saw:

- MiMeS solves the axion/ALP EOM.
- MiMeS treats both the mass and the underlying cosmology as user inputs.
- MimeS allows the user to change a number of other things, from the plasma RDOFs to the convergence conditions.

MiMeS may be amended in the future because:

- Mimes should allow the user to consider other flavours of missalignment.
- MiMeS should be able to handle non-vanishing RHS; i.e. solve the "driven" dumped time-dependent pendulum.
- MiMeS should be able to compare against searches on the fly.

Thank you!

Breakdown of MiMeS

Backup
 (equations, derivations, tables)

$$
\left(\frac{d^{2}}{d t^{2}}+3 H(t) \frac{d}{d t}+\tilde{m}_{a}^{2}(t)\right) \theta(t)=0
$$

Reparametrize by introducing

$$
\theta_{\text {trial }}=\exp \left[i \int d t(\psi(t)+3 / 2 i H(t))\right] .
$$

The Eome, then becomes just

$$
\psi^{2}=\Omega^{2}+i \dot{\psi},
$$

with $\Omega^{2}=\tilde{m}_{a}{ }^{2}-\frac{9}{4} H^{2}-\frac{3}{2} \dot{H}$. The solution takes the form $\psi= \pm \sqrt{\Omega^{2}+i \dot{\psi}}$. However, for $\dot{\psi} \ll \Omega^{2}$ and $\dot{\Omega} \ll \Omega^{2}$, it can be approximated as

$$
\psi \approx \pm \Omega+\frac{i}{2} \frac{d \log \Omega}{d t} .
$$

So, after applying the initial conditions, the EOM is solved by

$$
\theta(t) \approx \theta_{\mathrm{ini}} \sqrt{\frac{\Omega_{\mathrm{ini}}}{\Omega(t)}}\left(\frac{a}{a_{\mathrm{ini}}}\right)^{-3 / 2} \cos \left(\int_{t_{\mathrm{ini}}}^{t} d t^{\prime} \Omega\left(t^{\prime}\right)\right) .
$$

Taking $t_{\text {ini }}=t_{\text {osc }}$ (i.e. $\dot{\theta}\left(t_{\text {osc }}\right)=0$, which is not generally good), have
where $\theta_{\text {osc }}=\left.\theta\right|_{t=t_{\text {osc }}}$. This equation is further simplified if we assume that $\theta_{\text {osc }} \approx \theta_{\text {ini }}$ (again not really good), i.e.

$$
\theta(t) \approx \theta_{\mathrm{ini}}\left(\frac{3}{4}\right)^{1 / 4} \sqrt{\frac{\left.\tilde{m}_{a}\right|_{t=t_{\mathrm{osc}}}}{\tilde{m}_{a}(t)}}\left(\frac{a}{a_{\mathrm{osc}}}\right)^{-3 / 2} \cos \left(\int_{t_{\mathrm{osc}}}^{t} d t^{\prime} \tilde{m}_{a}\left(t^{\prime}\right)\right)
$$

C++ Input

In order to define an instance of the AxionMass class that interpolates the \tilde{m}_{a}, use the constructor:
template<class LD>
2
mimes::AxionMass<LD>(std::string chi_PATH, LD minT=0, LD maxT=mimes::Cosmo::mP)
The arguments are:
(1) chi_Path: Relative or absolute path to data file with T (in GeV), $\chi(T)$ (in GeV^{4}).
(2) minT, maxT: Interpolation limits. These are used in order to stop the interpolation at the closest temperatures that exist in the data file. This means that the actual interpolation limits are $T_{\min } \geq \operatorname{minT}$ and $T_{\max } \leq \operatorname{maxT}$. Beyond these limits hat axion mass is assumed to be constant.
The definition of \tilde{m}_{a}^{2} beyond $T_{\min }$ and $T_{\max }$ can be changed to realistic function, using mimes::AxionMass<LD>::set_ma2_MIN(std::function<LD(LD,LD)> ma2_MIN) and mimes::AxionMass<LD>::set_ma2_MAX(std::function<LD(LD,LD)> ma2_MAX). These definitions may need the actual values of $T_{\min , \max }$ and $\chi\left(T_{\min , \max }\right)$. These are obtained from

- template<class LD> LD mimes::AxionMass<LD>::getTMin(): This function returns the minimum interpolation temperature, $T_{\min }$.
- template<class LD> LD mimes::AxionMass<LD>::getTMax(): This function returns the maximum interpolation temperature, $T_{\text {max }}$.
- template<class LD> LD mimes::AxionMass<LD>::getChiMin(): This function returns $\chi\left(T_{\text {min }}\right)$.
- template<class LD> LD mimes::AxionMass<LD>::getChiMax(): This function returns $\chi\left(T_{\max }\right)$.
Note that all std::function<LD(LD,LD)> can be any callable object that takes T and f_{a} and returns $\tilde{m}_{a}{ }^{2}$.

In order to define an instance of the AxionMass class via a function, use the constructor:

1 template<class LD>
2 mimes::AxionMass<LD>(std::function<LD(LD,LD)> ma2)
Here, ma2 can be any callable object that takes T and f_{a} and returns $\tilde{m}_{a}{ }^{2}$.

class - Expected input

The constructor of the Axion class is

```
template<class LD, const int Solver, class Method>
mimes::Axion<LD,Solver, Method>(LD theta_i, LD fa, LD umax, LD TSTOP,
    LD ratio_ini, unsigned int N_convergence_max, LD convergence_lim,
    std::string inputFile, AxionMass<LD> *axiōnMass, LD initial_step_size=1e-2,
    LD minimum_step_size=1e-8, LD maximum step_size=1e-2,
    LD absolute_tolerance=1e-8, LD relative_to`rance= =1e-8, LD beta=0.9,
    LD fac_max=1.2, LD fac_min=0.8, unsignēd int maximum_No_steps=10000000)
```

The input that MimeS expects is:
(1) theta_i: Initial angle.
(2) fa The PQ scale.
(3) umax: Once $u=\log a / a_{i}>$ umax, the integration stops. Typical value: ~ 500.
(4) TSTOP: Once $T<$ TSTOP, integration stops. Typical value: $10^{-4} \mathrm{GeV}$.
(5) ratio_ini: Integration starts at u with $3 H / \tilde{m}_{a} \approx r a t i o _i n i$. Typical value: $\sim 10^{3}$.
(6)

N_convergence_max, convergence_lim: Integration stops when the relative difference between two consecutive peaks is less than convergence_lim for N_convergence_max consecutive peaks.
(7) inputFile: Relative (or absolute) path to a file that describes the cosmology. The columns should be: $u T[\mathrm{GeV}] \log H$, with acceding u. Entropy injection should have stopped before the lowest temperature of given in inputFile.
(8) axionMass: Instance of mimes: : AxionMass<LD> class. In C++ this instance is passed as a pointer to the constructor of the mimes: : Axion<LD, Solver, Method> class, while in python it is simply passed as a variable.

The optional input, relative to the RK algorithm, is:
(1) initial_stepsize: Initial step-size of the solver. Default value: 10^{-2}.
(2) minimum_stepsize: Lower limit of the step-size. Default value: 10^{-8}.
(3) maximum_stepsize: Upper limit of the step-size. Default value: 10^{-2}.
(4) absolute_tolerance: Absolute tolerance of the RK solver. Default value: 10^{-8}.
(5) relative_tolerance: Relative tolerance of the RK solver. Default value: 10^{-8}.
(6) beta: Aggressiveness of the adaptation strategy. Default value: 0.9.
(7) fac_max, fac_min: The step-size does not change more than fac_max and less than fac_min within a trial step. Default values: 1.2 and 0.8 , respectively.
(8) maximum_No_steps: If integration needs more than maximum_No_steps integration stops. Default value: 10^{7}.
python Input

The actual constructor of the AxionMass in the python interface is
AxionMass(*args). However, it is intended to be used in only two ways.
In order to define an instance of the AxionMass class that interpolates the \tilde{m}_{a}, use the constructor as:

1 AxionMass(chi_PATH, $\operatorname{minT}=0, \operatorname{maxT}=$ Cosmo.mP)
The arguments are the same as in the C++ case.

The definition of \tilde{m}_{a}^{2} beyond $T_{\min }$ and $T_{\max }$ can be changed using AxionMass.set_ma2_MIN(ma2_MIN) and AxionMass.set_ma2_MAX(ma2_MAX). These definitions may need the actual values of $T_{\min , \max }$ and $\chi\left(T_{\min , \max }\right)$. These are obtained from

- AxionMass.getTMin(): This function returns the minimum interpolation temperature, $T_{\text {min }}$.
- AxionMass.getTMax(): This function returns the maximum interpolation temperature, $T_{\text {max }}$.
- AxionMass.getChiMin(): This function returns $\chi\left(T_{\min }\right)$.
- AxionMass.getChiMax (): This function returns $\chi\left(T_{\max }\right)$.

The difference between the C++ case is that ma2 cannot be any callable object; it has to be a regular function that takes T and f_{a} and returns $\tilde{m}_{a}{ }^{2}$.

In order to define an instance of the AxionMass class via a function, use the constructor as:

1 AxionMass(ma2)
The difference between the C++ case is that ma2 cannot be any callable object; it has to be a regular function that takes T and f_{a} and returns $\tilde{m}_{a}{ }^{2}$.

The constructor of the Axion class is

```
Axion(theta_i, fa, umax, TSTOP, ratio_ini, N_convergence_max, convergence_lim, inputFile,
    axionMass, initial_step_size \(=1 \mathrm{e}-2\), minimum_step_size \(=1 \mathrm{e}-8\), maximum_step_size \(=1 \mathrm{e}-2\),
    absolute_tolerance \(=1 \mathrm{e}-8\), relative_tolerance \(=1 \mathrm{e}-\overline{8}\), beta \(=0.9\), fac_max \(=1.2\), fac_min \(=0.8\),
    maximum_No_steps=10000000)
```

All the arguments are the same as in the C++ case. The only difference is that the AxionMass instance (axionMass) is not passed as a pointer, as there is no direct way to do it in python. However, the underlying object is the same, as it is converted internally using ctypes.

Files and compilation variables

There are some paths to file that the user can provide in order to use different data for the RDOF, anharmonic factor, and χ (optional).
These paths are stored as strings in MiMeS/src/misc_dir/path.hpp when bash configure.sh is run.
These paths can be changed by changing the following variables in
MiMeS/Paths.mk:

- cosmoDat: Relative path to data file with T (in GeV), $h_{\text {eff }}, g_{\text {eff }}$.
- axMDat: Relative path to data file with T (in GeV), $h_{\text {eff }}, g_{\text {eff }}$. This variable can be ommitted if the user indents to define all masses via functions.
- anFDat: Relative path to data file with $\theta_{\text {peak }}, f\left(\theta_{\text {peak }}\right)$.

It is advisable that if the paths change bash configure. sh and make should be run.

You need to choose what numeric type to use. This is done by the template argument ID which should be double (fast) or long double (accurate). ${ }^{11}$

You also need to tell MiMeS which integration strategy to use. This is done by choosing template arguments:

- Solver can be set to 1 for Rosenbrock (semi-implicit Runge-Kutta). The Method argument in this case can be:
- RODASPR2<LD> (4th order).
- ROS34PW2<LD> (3rd order).
- ROS3W<LD> (2rd order, very bad).
- Solver can be set to 2 for explicit RK. The Method argument can be:
- DormandPrinceRK45<LD> (7th order)
- CashKarpRK45<LD> (5th order, very bad).
- RK45<LD> (5th order, verybad).

[^8]In order to call the python interface of MiMeS, we need to first call make lib in the root directory of MiMeS.

Before that, we can take some time to decide what the template arguments and compilation options should be. In the file MiMeS/Definitions.mk, you can change the variables:

- LONGpy=long will compile the library with long double numeric types. LONGpy= will compile the library with double numeric types.
- SOLVER and Method, as in the template arguments.

Also, in the same file, you can change compilation options:

- Compiler:
- $\mathrm{CC}=\mathrm{g}++$ in order to use the GNU C++ compiler.
- $\mathrm{CC}=\mathrm{clang}-$ lstdc++ in order to use the clang $\mathrm{C}++$ compiler.
- Optimization level:
- OPT=O0: No optimization.
- $0=01,02$, or 03: all these perform mostly the same (read the compiler documentation for more information on the optimization).
- OPT=Ofast: full optimization (fast, but dangerous).

[^0]: ${ }^{1}$ Extensions of this are the "Kinetic misalignment mechanism" R. T. Co, L. J. Hall and K. Harigaya, Phys. Rev. Lett. 124 (2020) no.25, 251802 [arXiv:1910.14152 [hep-ph]], C. F. Chang and Y. Cui, Phys. Rev. D 102 (2020) no.1, 015003 [arXiv:1911.11885 [hep-ph]], and "Frictional misalignment" A. Papageorgiou, P. Quílez and K. Schmitz, [arXiv:2206.01129 [hep-ph]].

[^1]: 2 https://github.com/dkaramit/NaBBODES.
 3 https://github.com/dkaramit/SimpleSplines.
 ${ }^{4}$ Support of $\mathrm{C}++17$ for full functionality.

[^2]: ${ }^{5}$ Suitable for Runge-Kutta.
 6 With a_{ini} the initial value of the scale factor. It corresponds to T_{ini}.

[^3]: 7 There are various arguments that need to be passed to the constructors, and the are all listed and explained in the Appendix of the documentation.

 8 K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
 9 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

[^4]: 7 There are various arguments that need to be passed to the constructors, and the are all listed and explained in the Appendix of the documentation.

 8 K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
 9 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

[^5]: 7 There are various arguments that need to be passed to the constructors, and the are all listed and explained in the Appendix of the documentation.
 ${ }^{8}$ K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
 9 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

[^6]: 7 There are various arguments that need to be passed to the constructors, and the are all listed and explained in the Appendix of the documentation.
 ${ }^{8}$ K. Saikawa and S. Shirai, JCAP 08 (2020), 011 [arXiv:2005.03544 [hep-ph]].
 9 S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, A. Pasztor and F. Pittler, et al. Nature 539 (2016) no.7627, 69-71 [arXiv:1606.07494 [hep-lat]].

[^7]: 10 You could choose float, but we live in 2022

[^8]: 11 You could choose float, but we live in 2021.

