#### UCU STRIKE BALLOT: VOTE <u>YES</u> BY 21<sup>ST</sup> OCTOBER

# Astrophysical Constraints on Axions

David J. E. Marsh Recent Progress in Axion Physics, Durham, Sept. 2022



Science and Technology Facilities Council



### **COSMIC STRUCTURES**

# **Axion Cosmology**

Eq. of state,  $w \rightarrow$  homo. pressure. Appears in Friedmann  $\rightarrow$  affects expansion. Sound speed,  $c_s \rightarrow$  pressure perts. Affects growth of structure.

|                             | CDM | Baryons                 | Photons | Λ                        |
|-----------------------------|-----|-------------------------|---------|--------------------------|
| W                           | 0   | 0                       | 1/3     | -1                       |
| C <sub>s</sub> <sup>2</sup> | 0   | 0 (late)<br>1/3 (early) | 1/3     | Does not<br>cluster (-1) |

Cosmology: measure n-point functions on the sky, normally in Fourier space. Compare to theory predictions by Bayesian parameter fitting (typically MCMC).

CMB measures the expansion rate via Sachs Wolfe (late) and Silk Damping (early). Late time observables sensitive to late time expansion + growth of structure.

### **CMB** Constraints

#### Estimate

Consistent w/  $\Lambda$ CDM expansion rate to  $z^{10^5} \rightarrow$  DM formed before this time.

 $m > 2.6 \times 10^{-25} \text{ eV}$  =H(10<sup>5</sup>)

#### Precision

Solve Boltzmann equations & MCMC 8+ parameters with Planck likelihood using cosmosis+axionCAMB.



Also use polarization & lensing anisotropies + correlations. Vary UBDM and CDM density simultaneously.

### **CMB** Constraints

#### Estimate

Consistent w/ LCDM expansion rate to  $z^{10^5} \rightarrow$  DM formed before this time.

#### Precision

Solve Boltzmann equations & MCMC 8+ parameters with Planck likelihood using cosmosis+axionCAMB.



Talk to Johannes Esklit

# Birefringence

 $\beta=0.30^{\rm o}\pm 0.11^{\rm o}$ 

Minami & Komatsu (2020) Planck collab. (2022)

Isotropic birefringence can be caused by an ultralight axion via:

$$\mathcal{L} = g\phi F_{\mu\nu}\tilde{F}^{\mu\nu} \Rightarrow \beta = \int_{\eta_{\rm CMB}}^{\eta_0} g\frac{d\phi}{d\eta}d\eta$$

This fixes the axion mass to a range also probed by primary anisotropies and lensing:

$$10^{-33} \text{ eV} \lesssim m \lesssim 10^{-28} \text{ eV}$$

$$_{\text{H}_0} \qquad \qquad \text{H}_{\text{CMB}}$$

Isocurvature in the ultralight axion also induces anisotropic birefringence and large angle BB with amplitude fixed by scale of inflation.



#### Birefringence constraints can be highly complementary/synergistic to direct searches:



SO opportunities: foregrounds, anisotropic component, ultralight DM bounds...

#### Fig: Planck (2018)



Power spectrum = F.T. of two-point correlation of density perts.



# Estimating Bounds

DJEM & Hoof (2021)



# Power Spectrum Constraints

Example 1: DES lensing (Dentler, DJEM et al, 2021)

- Measure "galaxy shear correlation function" consistent with CDM.
- Compute from P(k) using axionCAMB (linear theory) + "halo model" non-linearities.
- DES-Y1 Bayesian  $\rightarrow$  m>10<sup>-23</sup> eV.
- DES-Y3 forecast 10<sup>-22</sup> eV, Euclid 10<sup>-20</sup> eV.

#### Lensing advantage: directly measure DM



Example 2: BOSS Lyman-alpha forest (Rogers & Peiris, 2020). Measure flux power spectrum consistent with CDM. Non-linear and gas physics using N-body +hydro+"emulator" for parameter dependence. Limit m>2x10<sup>-20</sup> eV.

#### **INSIDE GALAXIES**

### Schrödinger-Poisson

Non. relativistic limit of the Klein-Gordon-Einstein equations:

$$\phi = \frac{1}{\sqrt{2m^2}} \left( \psi e^{imt} + \psi^* e^{-imt} \right)$$

Real field  $\rightarrow$  Complex

$$\psi = \sqrt{\rho} e^{iS} , \vec{v} = \nabla S$$

Madelung/fluid interpretation



"Fuzzy DM physics" different from CDM/WDM etc on scales ~ de Broglie. Waves → interference. Gradient pressure → stable solutions & coherence. Challenge: simulate this equation over a wide range of scales. Cosmology covers Gpc  $\rightarrow$  kpc lengths, and overdensities ~ 10<sup>5</sup>.



Soliton+ halo structure also in non-linear optics. Called "incoherent soliton"

Note: this is all classical physics

Fig. Philip Mocz

Dwarf galaxies 10<sup>8</sup> M<sub>sol</sub>, particle mass ~10<sup>-22</sup> eV



Veltmaat et al (2018)

"Inflaton halos" ~ 100g, particle mass ~10<sup>14</sup> GeV





#### Schive et al (2014)





Mixed CDM+gas

Mocz et al (2019)

Lague et al (forthcoming)

Mixed CDM+ FDM

Opportunity/challenge: physics consequences of interference fringes.

Note: this is all classical physics

# Inside a Halo: Dynamics

Velocity field obeys Maxwell-Boltzmann. Coherence length and time:

$$L = \frac{2\pi}{m\langle v \rangle} \qquad \tau = \frac{2\pi}{m\langle v \rangle^2}$$

Coherent patches  $\sim$  quasi-particles  $\rightarrow$  gravitationally scatter and heat/cool.

 $t_{\rm relax} \sim 10^{10} m_{22}^3 v_{100}^2 R_5^4 \text{ yr}$ 

Survival of old star cluster in Eridanus-II → exclude too much heating

 $\rightarrow$  Lower bound m>10<sup>-19</sup> eV

Avoid with mixed DM models, and v low masses.

DJEM & Niemeyer (2019)



#### Movies made with data from Veltmaat et al (2018)

#### **INTENSITY MAPPING**

The future of cosmology...

Bauer, DJEM et al (2020); Hotinli, DJEM & Kamionkowski (2021)

# Neutral Hydrogen: z=1100 to 0

Line intensity of neutral hydrogen gas  $\rightarrow$  possibility to map Universe in 3d. CMB modes ~ L<sup>2</sup> IM tomography modes ~ k<sup>3</sup>  $\rightarrow$  huge increase in available information



Fig: Mao et al (2008)

# Neutral Hydrogen: z=1100 to 0

1100<z<10 "dark ages": neutral hydrogen everywhere, nearly linear.

10<z<0 "post-reionization": neutral hydrogen inside dark matter halos



### **Post-Reion.: Peaks and Halos**

"Halo model"  $\rightarrow$  dark matter distribution and statistics from "peak theory".

"HI halo model": assert a relation between halo mass and hydrogen + density profile.



Two-point stats: correlations between halos versus within. Standard calculation.



## Dark Ages: "VAOs"

Theory: Tseliakhovitch & Hirata (2014) Simulation: 21cmvFAST, Munoz (2019)

DM-baryon relative velocity (vBC): coherent on MPc scales + baryon acoustic oscillations. First stars collapsing HI at Jeans scale ~ kpc. Star formation different in vBC coherence patches  $\rightarrow$  couple small-large scales  $\rightarrow$  "VAO".



## **Bias of Mixed Dark Matter**

Suppressed clustering  $\rightarrow$  fewer halos. But, fixed total amount of hydrogen  $\rightarrow$  increase the bias.

Consequence: increase the HI power spectrum on large scales. Consistent with N-body simulations.



### Forecasts: SKA+CMB



Fisher matrix = inverse covariance  $F_{ij} = \sum_{\ell} \frac{1}{(\Delta C_{\ell})^2} \frac{\partial C_{\ell}}{\partial p_i} \frac{\partial C_{\ell}}{\partial p_j},$  $(\Delta C_{\ell})^2 = \frac{2}{(2\ell+1)f_{\rm sky}}(C_{\ell} + N_{\ell})^2,$  $m_a = 10^{-28} \,\mathrm{eV}$  $m_a = 10^{-24} \,\mathrm{eV}$ 0.10single dish, full survey interf., linear scales only 0.08 interf., full survey  $\Omega_a/\Omega_d$ 0.040.02 0.00 0.220.240.260.280.22 0.240.26 0.28

 $\Omega_{\rm CDM}$ 

 $\Omega_{\rm CDM}$ 

### VAO Signature & Bias



P(k) cut-off with k<kJ $\rightarrow$  remove first stars  $\rightarrow$  drastically suppress VAO amplitude for m<10<sup>-18</sup> eV.

### **HERA Forecasts**

Detect VAO signature at ~20 $\sigma$  with CDM, thus very sensitive to P(k) cut-off with axions.



Foreground modeling.

Baryonic feedback modeling.

## Summary



Post-reionization  $\rightarrow$  orders of magnitude improvement over CMB. Test GUT scale predictions. Dark ages  $\rightarrow$  increase lower limit on (fuzzy)DM particle mass  $\rightarrow$  close gaps astro – black holes.



Test string theory predictions of Cicoli et al (2021)? Let's go further...

### **AXION STARS/SOLITONS**

# Solitons from Schrödinger

Ground state solutions of the SP equations  $\rightarrow$  one parameter family.

Ansatz

$$\chi'' + \frac{2\chi'}{r} = 2(V - \gamma)\chi$$
 Dimensionless variables with  $\chi(0)=1.$  
$$V'' + \frac{2V'}{r} = \chi^2$$

 $\psi(r,t) = \chi(r)e^{-i\gamma t}$ 

→ Boundary value problem with eigenvalue  $\gamma$ . Solved for:

$$\gamma = -0.69, V_0 = -1.34$$

Zero oscillation, lowest energy solution.



### **Soliton Formation**

Solitons cores of DM halos form during "violent relaxation" from initial coherence. Second formation mechanism: gravitational BEC in "kinetic regime".



Gravitationally stable simulation box.

Condensation and growth time predictable from scattering theory.



Gravitationally unstable: form a DM halo around the nucleated axion star. Virial equilibrium  $\rightarrow$  core size+growth quench.

# **Soliton Distribution**

Soliton dists+merger rates: Du, DJEM et al (in prep)

 $10^{15}$ Equilibrium between core+halo  $\rightarrow$  relation  $10^{11}$ between host mass and soliton:  $M_{\rm sol} \propto M_h^{1/3}$  $F_S [Mpc^ 10^{7}$  $10^{3}$ Compute "halo mass function"  $\rightarrow$ predict soliton mass function.  $10^{-1}$  $F_S := \frac{dn_{\rm sol}}{d\ln M}$  $10^{-5}_{10^{-8}}$ number density  $10^{-6}$  $10^{-2}$  $10^{-4}$ Axion Star Mass,  $M_S \left[ M_{\odot} (10^{-11} \text{ eV}/m_a) \right]$ 

Theory and simulation work around the initial formation in relatively low mass halos → we can do cosmology, merger rates, etc. Challenge: what is the distribution in e.g. the Milky Way?

## **Boson Stars: Full GR**

Spin-0 bosons  $\rightarrow$  oscillating metric on time scale m<sup>-1</sup>  $\rightarrow$  "oscillatons". Simulate in full 3D, with axion interaction potential using GRChombo.

No interactions: BH formation at "Kaup mass":

$$M_{\rm Kaup} \approx \frac{M_{pl}^2}{m} \Rightarrow \phi_0 \sim M_{pl}$$

Finite interactions given by f → explosion in "axion Nova":

$$M_{\rm Nova} \approx \frac{M_{pl} f_a}{m} \Rightarrow \phi_0 \sim f_a$$

Interactions → more instabilities e.g. radio emission by F\*F (in prep.).



### **MINICLUSTERS**



Aesthetic advantage over pre-inflation SSB: no free parameter of initial field value. Disadvantage: very hard computational problem. Little consensus on the relic density. QCD axion axion mass in meV range + miniclusters. Stats: see Riess, DJEM & Hoof (2021)



Fig: Buschmann et al (2022)

#### Largely unknown: role of domain walls.

#### Very similar situation occurs for dark photon DM from isocurvature.

# **Miniclusters**

#### String network $\rightarrow$ enhanced fluctuations:

— Minicluster

- · · Adiabatic

 $P(k) \propto k^{-6.89}$ 

109

1010





0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35  $x \, [\mathrm{pc}/h]$ 

## **Minicluster Pheno**

Possible pheno: microlensing, appearance in haloscopes, collision w/ neutron stars. Vital questions: distribution, density profiles, survival. End-to-end sims impossible.



MCs must be dense and heavy.Earth encounters rare, tidal $m^1 meV$  window?streams possible  $\rightarrow$  astronomy.

M31: NS pops  $\rightarrow$  only low m possible.

### **SUPERRADIANCE!**

# **Black Hole Superradiance**

Review: Brito et al (2015)

Solve for instabilities of KG equation on

Kerr: 
$$\Box \phi - \partial_{\phi} V(\phi) = 0$$

Non-relativistic limit in "tortoise coords", find instability ( $\omega < 0$ ):

$$\frac{d^2\psi_{lm}}{dr^{*2}} = \left[\omega^2 - V(r,\omega)\right]\psi_{lm} \,.$$

Ergo-region Barrier region Potential Well Exponential growth region "Mirror" at r~1/μ Fig: Arvanitaki & Dubovsky (2010) → Black Hole Horizon r\* Physical picture: "Penrose process/ black hole bomb"



Resonant bosons extract spin from astrophysical BHs, if  $\Gamma_{\rm SR}$  >  $\Gamma_{\rm others}$ 

# Spin-0 Fields, No $\phi^4$ Term

#### GIF by Matthew J. Stott



"Exclusion probability" is marginal likelihood. Statistically robust constraints.



#### Stott & DJEM (2018)

# φ<sup>4</sup> Instability: "Bosenova"

Yoshino & Kodama (2012); Arvanitaki+(2014); Stott (2018)

Bose enhanced 2-2 scattering in superradiant cloud can have a rate  $\Gamma_4 > \Gamma_{SR}$ . Shuts off SR by cloud collapse above critical value of  $\lambda \phi^4$  coupling,  $\lambda = m^2/f_{\text{pert.}}^2$ 



advanced rate calcs. Quantitatively similar.

#### **STRING AXIVERSE**

Arvanitaki et al (2009); Mehta, DJEM et al (2021)

# The KS Axiverse

Triangulate (FRST) KS polytopes  $\rightarrow$  CY<sub>3</sub>. 1000's of CYs at large h<sup>11</sup> in laptop-time! Pick point in Kähler cone (no stabilization). Kähler metric and axion potential computed:

$$\mathcal{L} = -\frac{M_{\rm pl}^2}{8\pi^2} K_{ij} g^{\mu\nu} \partial_\mu \theta^i \partial_\nu \theta^j -\sum_{a=1}^\infty \Lambda_a^4 \Big\{ 1 - \cos(\mathcal{Q}^a{}_i \theta^i + \delta^a) \Big\}$$

For an astrophysicist: databases of K,  $\Lambda$ , Q sampling KS, triangulations, and Kähler cone. Aim: rigorously exclude CY's based only on vacuum properties of the axions.

#### Demirtas et al (1808.01282)





## **Axion Spectra**

Find vacua of V(f) in fundamental domain. Expand to quartic order  $\rightarrow$  masses +quartics ("fpert").

Trends: Kähler cones become very narrow at large h I I  $\rightarrow$  cycles in the CY have large volumes  $\rightarrow$  (ultra)light axions and smaller decay constants.



### **Constraints on IIB CY Vacua**

Ensemble of O(10<sup>5</sup>) CYs. All up to h11=5. 100 per h11 up to 176. Up to 100 per h11 to 491.



# **Beyond Superradiance**

- Why superrradiance? Vacuum process, no cosmological assumptions. Only need the axion potential.
- Why go further? Large h11, and moduli space away from Kahler cone tip  $\rightarrow$  larger volume  $\rightarrow$  lower decay constants  $\rightarrow$  superradiance shuts off.
- What observables will be best? Ideally vacuum processes, cosmology independent, exploit massless fields.
- What is a bad observable? Unfortunately, axion DM from realignment: too many cosmological assumptions.

Demirtas et al (2021)

# Visible Sector Couplings

- Choose divisor for QCD. Dilate V until divisor volume  $\rightarrow \alpha_{\rm QCD}$ . Demand geometric.
- Axion masses and f's by using hierarchy of instanton scales + Kähler metric.
- Strong-CP:  $\Sigma_i \theta_i$  in front of CS must be small.
- Assuming a GUT you can find  $g_{a\gamma}$ :

$$\mathcal{L}_{\rm EM,CS} = \sum_{i} c_i \frac{\alpha_{\rm EM}}{2\pi f_i} \theta_i F \tilde{F} \equiv \sum_{i} g_i \theta_i F \tilde{F}$$
(ci's known)

Effective axion-photon coupling for massless  $g_{\rm eff}$  = linear combination

$$= \sqrt{\sum_{i \in \{m=0\}} g_i^2}$$

3e4 random CYs Computationally limited at large h11



**Axion-Like PROpagation** 

# X-ray Spectrum Oscillations

e.g. Matthews et al (2022); Reynolds et al (2020) "other David Marsh"

Photon-axion conversion in cluster B-fields  $\rightarrow$  spectrum oscillations. Vanishing if  $m_a > \omega_p$ . Need to marginalize random magnetic field models. Fit Chandra satellite data.





### Freeze-in DM & Decays

Axion production via Primakoff process off SM charged particles from vacuum initial state. Irreducible contribution to DM, all fields with m<reheat temperature. Must not "overclose".



Perturbative decay  $\rightarrow$  photodissociation of elements, cosmic reionization etc. even for  $\xi \sim 10^{-10}$ .

$$\Gamma_a = \frac{g_{a\gamma}^2 m_a^3}{64\pi} = \frac{1}{1.32 \times 10^8 \text{ s}} \left(\frac{g_{a\gamma}}{10^{-12} \text{ GeV}^{-1}}\right)^2 \left(\frac{m_a}{10 \text{ MeV}}\right)^3 \,.$$

# (very) Preliminary Results

String Datasets:

- PQAxiverse: conditioned on correct QCD coupling and strong-CP. Masses and visible sector couplings estimated. O(10) CYs at h11=491.
- h11=491: exploratory dataset, O(10<sup>5</sup>) CYs. Zeroth order assumption: massless axions, estimate couplings from Kähler eigs only. Tip of Kähler cone → smaller couplings than the bulk → limits conservative.

Astrophysical Datasets:

- Chandra: X-rays effective likelihood for single massless axion. Ignore CYs with any resonant axions. Future: modify ALPro for one axion in resonant region + massless.
- Freeze-in DM: crude cuts on overclosure and decaying DM (PQAxiverse only). Future: build cosmological likelihoods using micrOMEGAS and GAMBIT.





20% favoured if  $h^{11}$ <200. Spectrum overfitting. Zero allowed manifolds  $h^{11}$ >250.



All randomly sampled CYs at 491 are strongly excluded (saturate likelihood). Recall: tip of SKC  $\rightarrow$  limits are likely conservative over moduli space (!)

## **Speculations and Hopes**

- Triangulations (CYs) of 491 polytope obeying constraints are VERY rare. Probably true of most of moduli space. Astrophysics prefers "boundaries" of KS axiverse.
- Can we use ML techniques to find allowed models at 491?
- Is there a symmetry underlying this? Can we use to ML to find it?
- If there is a symmetry  $\rightarrow$  restrict combinatorics that count the CYs at 491  $\rightarrow$  make a brute force exploration of remaining 491 landscape possible?

# LEVERHULME TRUST\_\_\_\_\_

Topology from cosmology: axions, astrophysics, and machine learning



Seeking two postdocs. Two year positions in London (KCL and LIMS). Extended visits to Cornell and Northeastern. Please enquire/tell your colleagues!