Improved Constraints on Cosmic Birefringence Johannes R. Eskilt

Based on

- JRE & Komatsu: arXiv:2205.13962
- JRE: A&A 662, A10 (2022)
- Diego-Palazuelos, JRE, Minami,
 Tristram, Sullivan et al: Phys. Rev. Lett.
 128, 091302 (2022)

Recent Progress in Axion Theory and Experiment 6th September 2022

What is the content of our universe?

Axions or axion-like fields are candidates for

Dark matterDark energyInflation

ENERGY DISTRIBUTION OF THE UNIVERSE

NASA/CXC/K.Divona

An axion-like field can couple to electromagnetism

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \left(\frac{1}{4} F_{\mu\nu} F^{\mu\nu}\right) + \left(\frac{1}{4} g_{\gamma\phi} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}\right) - \frac{1}{4} g_{\gamma\phi} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{4} g_{\mu\nu} \phi F_{\mu\nu} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{4} g_{\mu\nu} \phi F_{\mu\nu} +$$

Electromagnetism Chern-Simons term

Left and right-circular polarization have different phase-velocities Causes a rotation of linear polarization Parity violation!

$$\beta = -\frac{g_{\gamma\phi}}{2} \int_{\text{emission}}^{\text{observer}} \dot{\phi} \, dt$$
$$= -\frac{g_{\gamma\phi}}{2} \left(\phi_{\text{observer}} - \phi_{\text{emission}} \right)$$
$$= -\frac{g_{\gamma\phi}}{2} \Delta \phi$$
Carroll, Field & Jackiw (1990) 3

Birefringence

 Birefringent materials cause linearly polarized light to rotate
 Magnetic fields can also cause rotation of linearized light (Faraday rotation)

The CMB is *not just* the oldest light in the universe

ESA, Planck

The CMB is also the oldest *polarized* light in the universe

The polarized CMB can be used to probe cosmic birefringence!

Spoiler alert

With Planck and WMAP data, we measure this angle to be $\beta = 0.342^{\circ} {}^{+0.094^{\circ}}_{-0.091^{\circ}}$ (68% C.L.)

JRE & Komatsu: arXiv:2205.13962 9

How do we measure isotropic cosmic birefringence?

- The linearly polarized CMB is described by the Q and U Stokes parameters
- These are turned into the so-called Eand B-modes
 - NB: Nothing to do with electric and magnetic fields!

Baumann et al. 2009 - arXiv:0811.3919 10

Amount of E and B-modes are quantified by power spectra in harmonics space

Planck 2015, arXiv:1502.01589

Amount of E and B-modes are quantified by power spectra in harmonics space

Parity symmetry: $C_{\ell}^{EB} = 0$ $C_{\ell}^{TB} = 0$

Parity violation:

$$\begin{aligned} C_\ell^{EB} \neq 0 \\ C_\ell^{TB} \neq 0 \end{aligned}$$

E-modes and B-modes get rotated

- If we had perfect instruments and no galactic foreground, cosmic birefringence analysis would be easy
- $\begin{bmatrix} E^o_{\ell m} \\ B^o_{\ell m} \end{bmatrix} = \begin{bmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{bmatrix} \begin{bmatrix} E^{CMB}_{\ell m} \\ B^{CMB}_{\ell m} \end{bmatrix}$ CMB EB correlation not predicted by LCDM $C_{\varrho}^{EB,CMB} = 0$ $C_{\ell}^{EB,o} = \frac{\sin(2\beta)}{2} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right) + \frac{C_{\ell}^{EB,CMB}}{\cos(2\beta)}$ $E^o_{\ell m}, B^o_{\ell m}$ $E_{\ell m}^{\rm CMB}, B_{\ell m}^{\rm CMB}$

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)

14

'o' = observed from our telescopes

Two problems

1. Miscalibration angles:

Measuring the wrong polarization angle

2. Galactic foreground:

Dust and other stuff in our galaxy 'contaminates' our measurement of the CMB

Miscalibration angles

- α = miscalibration angle (different for each experiment)
- β = cosmic birefringence angle (same for all experiments)

 $\begin{aligned} \alpha + \beta &= -0.36 \pm 1.24 \text{ deg, (WMAP, Hinshaw et al. 2012, Komatsu et al. 2009)} \\ \alpha + \beta &= 0.31 \pm 0.05 \text{ deg, (Planck Collaboration 2016)} \\ \alpha + \beta &= -0.61 \pm 0.22 \text{ deg, (POLARBEAR Collaboration 2020)} \\ \alpha + \beta &= 0.63 \pm 0.04 \text{ deg, (SPT Collaboration, Bianchi et al. 2020)} \\ \alpha + \beta &= 0.07 \pm 0.09 \text{ deg, (ACT Collaboration, Choi et al. 2020)} \end{aligned}$

What is the miscalibration angle and what is the cosmic birefringence angle? Uncertainty of β is unknown

New method was developed

Assumption: Cosmic birefringence has a negligible impact on foreground polarization!

Minami et al. 2019, Minami & Komatsu 2020

$$\begin{bmatrix} E_{\ell m}^{o} \\ B_{\ell m}^{o} \end{bmatrix} = \begin{bmatrix} \cos(2\alpha) & -\sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{bmatrix} \begin{bmatrix} E_{\ell m}^{FG} \\ B_{\ell m}^{FG} \end{bmatrix} + \begin{bmatrix} \cos(2\alpha+2\beta) & -\sin(2\alpha+2\beta) \\ \sin(2\alpha+2\beta) & \cos(2\alpha+2\beta) \end{bmatrix} \begin{bmatrix} E_{\ell m}^{CMB} \\ B_{\ell m}^{CMB} \end{bmatrix}$$

Foreground is rotated by miscalibration only, while the CMB is rotated by miscalibration plus birefringence

$$C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right) + \frac{1}{\cos(4\alpha)} \left(C_{\ell}^{EB,fg} - C_{\ell}^{BB,CMB} \right)$$

CMB dominated frequency band: $\alpha+\beta\,$ is well constrained

Foreground dominated frequency band: α is well constrained

New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data $eta=0.35\pm0.14~{ m deg}~(68\%~{ m C.L.})$

Yuto Minami and Eiichiro Komatsu Phys. Rev. Lett. **125**, 221301 – Published 23 November 2020

Editors' Suggestion

Physics See synopsis: Hints of Cosmic Birefringence?

Article References Citing Articles (33) PDF HTML Export Citation
--

>

Featured in Physics

ABSTRACT

We search for evidence of parity-violating physics in the Planck 2018 polarization data and report on a new measurement of the cosmic birefringence angle β . The previous measurements are limited by the systematic uncertainty in the absolute polarization angles of the Planck detectors. We mitigate this systematic uncertainty completely by simultaneously determining β and the angle miscalibration using the observed cross-correlation of the *E*- and *B*-mode polarization of the cosmic microwave background and the Galactic foreground emission. We show that the systematic errors are effectively mitigated and achieve a factor-of-2 smaller uncertainty than the previous measurement, finding $\beta = 0.35 \pm 0.14$ deg (68% C.L.), which excludes $\beta = 0$ at 99.2% C.L. This corresponds to the statistical significance of 2.4σ .

 2.4σ

$$C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right)$$

Red = foreground + CMB Blue = CMB

2

- 63

$$C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right)$$

Red = alpha * (foreground + CMB) Blue = beta * CMB

Best-fit values for beta and alpha

Minami & Komatsu 2020

Initial response

 2.4 sigma isn't that high
 We don't understand EB of dust well enough

$$\begin{split} C_{\ell}^{EB,\mathrm{o}} &= \frac{\tan(4\alpha)}{2} \left(\begin{array}{cc} C_{\ell}^{EE,\mathrm{o}} &- & C_{\ell}^{BB,\mathrm{o}} \end{array} \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\begin{array}{cc} C_{\ell}^{EE,\mathrm{CMB}} &- & C_{\ell}^{BB,\mathrm{CMB}} \end{array} \right) \\ &+ \frac{1}{\cos(4\alpha)} C_{\ell}^{EB,\mathrm{fg}} + \frac{\cos(4\beta)}{\cos(4\alpha)} C_{\ell}^{EB,\mathrm{CMB}} \end{array} . \end{split}$$

Follow up work

Diego-Palazuelos, JRE, Minami, Tristram et al. Phys. Rev. Lett. **128**, 091302 2022

We used Planck Data Release 4 rather than 3
 O Higher signal-to-noise
 O Excluding EB of dust: β = 0.30° ± 0.11°

Accounted for EB by using a dust model, but the approach is generic
 We take EB/EE to be proportional to TB/TE
 Accounted for EB by using a dust for the proportional to TB/TE

 $\circ \quad \beta = 0.36^{\circ} \pm 0.11^{\circ}$ (it increases by including dust EB)

$$C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right) + \frac{1}{\cos(4\alpha)} C_{\ell}^{EB,fg} + \frac{\cos(4\beta)}{\cos(4\alpha)} C_{\ell}^{EB,CMB}.$$

$\begin{array}{ll} \mbox{Measured by Planck} & \mbox{Measured by Planck} \\ CEB, \mbox{dust} & \mbox{CTB}, \mbox{dust} \\ \hline CEE, \mbox{dust} & \mbox{Measured by Planck} \\ \end{array}$

Measured by Planck

Measured by Planck

More explicitly

 $C^{EB,\text{dust}} = A_{\ell} C^{EE,\text{dust}} \sin\left(4\psi_{\ell}\right)$

$$\psi_{\ell} = \frac{1}{2} \arctan\left(\frac{C^{TB,\text{dust}}}{C^{TE,\text{dust}}}\right)$$

Our ansatz is motivated by the works of Clark et al. (2020)

We calculate ψ_{ℓ} from 353 GHz channel of Planck where dust dominates.

We fit for A_ℓ in 4 ell-bins simultaneously with β and $\pmb{\alpha}$

What happens if we include all Planck maps?

- So far we have only looked at HFI where dust dominates
- Content of the second secon
- Synchrotron EB has been found to be consistent with zero (Martire et al. 2021)

What is the origin of the signal? (if real)

- ◎ We can look at the frequency dependence!
- $\ \ \beta_{\nu} = \beta_0 (\nu/\nu_0)^n$
 - n = 0 for an axion-like field!
 - \circ n = -2 for Faraday rotation
 - n = 1, 2 for quantum gravity theories/Lorentz violating theories

Signal is consistent with being frequency-independent

Adding LFI increased the significance!

LFI contains little dust, and synchrotron EB has been found to be consistent with zero.

What happens if we also add WMAP?

Adding WMAP increases the significance

We are seeing something!

$$\chi^2 = 125.5$$
 for DOF=72

Miscalibration angles

Miscalibration angles cancel: The beauty of adding independent datasets

A total of 22 miscalibration angles

- 8 HFI
- 4 LFI
- 10 WMAP

Current status

1. We are at 3.6 sigma

2. Dust EB has been taken into account, and we get consistent results for large and small sky masks

- When will the statistical significance improve/worsen?
 - When we get better data. We hope ground-based telescopes will search for isotropic CB by calibrating their instruments well.
 - Are ultra-light axions the best explanation?
 - We measure the CB signal to be consistent with frequency independence, which is the signature of axions. Other theories where there is little-to-no frequency dependence could also be valid models.

Conclusion

- O The past 2 years we have gone from 2.4 sigma to 3.6 sigma by including less noisy and more data.
- © EB of dust is much better understood now.
- O No evidence of instrumental systematics that would bias our measurement.

Signal is consistent with being frequency-independent. • Good news for axion-like fields.