Making (dark matter) waves: Untangling wave interference for multi-streaming dark matter OJAp (5) 2022; (2206.11918)

Recent Progress in Axion Theory and Experiment Durham, 5-8 Sept 2022 Alex Gough (they/them) with Cora Uhlemann

Big questions

Afterglow of the early universe

Cosmic web of galaxies

nearly uniform

rich structure

Big questions

Afterglow of the early universe

Skeleton of dark matter

Cosmic web of galaxies

nearly uniform

rich structure

Evidence for dark matter

CMB/LSS

Thermal history, structure growth, anisotropies

Galaxies

Rotation curves, mass fraction, distribution

Clusters & collisions

Distribution, separation from collisional matter, self-interaction

Gravitational lensing

Strong lensing, weak lensing, shape, structure

Big Bang Nucleosynthesis

Relative abundance of baryons

Dark matter mass

80 orders of magnitude

GeV		$M_{\rm pl}$	M	M_{\odot}	
ght" DM	WIMP	Composite DM	Primordia	l BHs	

thermal relic

Ferreira A&A Review 2020

The standard picture

- Cold: moves slower than c
- Pressureless: clusters efficiently
- Dark: no/weak electromagnetic interactions
- Collisionless: no/weak self interactions or with baryons

• Abundant: \approx 5x more DM than baryons.

ACDM

Wave dark matter

Spot the difference

• Same large scale network as CDM

• Wave interference "decorates" the cosmic web

Schive ++ Nature Phys. Lett, `15 astrophysical imprints: Hui, Ostriker, Tremaine & Witten `17, Hui `21

Wave dark matter

Schive ++ Nature Phys. Lett, `15 astrophysical imprints: Hui, Ostriker, Tremaine & Witten `17, Hui `21

Wave dark matter

Why do we care?

- True wavelike dark matter (axions etc)
- Rich phenomenology
- Universal features (tool even for CDM)

Schive ++ Nature Phys. Lett, `15 astrophysical imprints: Hui, Ostriker, Tremaine & Witten `17, Hui `21

Scalar field dynamics

- KG + FRW \rightarrow homogeneous oscillations at frequency *m*
- non-relativistic regime

$$\phi = \frac{1}{\sqrt{2m}} (\psi e^{-imt} + \psi^*)$$

• spatial fluctuations in ψ become structures $\psi(x,t) = \sqrt{\rho(x,t)} e^{i\phi_v(x,t)/\hbar}$ Density

models can still be useful!

change cosmological background, doesn't drive collapse

 e^{imt}) complex classical field

Velocity $v(x,t) = \nabla \phi_v(x,t)$

• full dynamics difficult/expensive (state of the art 1-10 Mpc box)...simple

Evolution: Propagation

Simple model: free Schrödinger

$$i\hbar\partial_a\psi = -\frac{\hbar^2}{2}\nabla^2\psi$$

Cold Dark Matter Particles $h \rightarrow 0$

Evolution: Displacement Simple model: Zel'dovich approximation

$$oldsymbol{x} = oldsymbol{q} - a oldsymbol{
abla} arphi_g^{(\mathrm{ini})}$$

Widrow & Kaiser APJ `93 Coles `02, Uhelmann ++ `19

Classical phenomenology

Approximate: shoot particles following initial potential

$$\boldsymbol{v}(\boldsymbol{q},a) = -\boldsymbol{\nabla}\varphi_g^{(\mathrm{ini})}(\boldsymbol{q})$$

$$\boldsymbol{x}(\boldsymbol{q},a) = \boldsymbol{q} - a \boldsymbol{\nabla} \varphi_g^{(\mathrm{ini})}(\boldsymbol{q})$$

Zel'dovich approximation*

*(Lagrangian) perturbation theory: ZA + tidal effects

Zel'dovich A&A 1970

Multi-streaming

animation on wikimedia commons

Multi-streaming

animation on wikimedia commons

Multi-streaming

position

animation on wikimedia commons

Particles to waves

$\psi(x, a)$

Wave toy mode

Evolution

Initial conditions

$$\psi = \sqrt{\rho} e^{i\phi_v/\hbar}$$

Uniform density Sinusoid velocity

$$\rho^{(\text{ini})}(q) = 1$$
$$\phi^{(\text{ini})}_v(q) = \cos(q)$$

$$\psi^{(\text{ini})}(q) = \exp\left(\frac{i}{\hbar}\cos(q)\right)$$
$$i\hbar\partial_a\psi = -\frac{\hbar^2}{2}\partial_x^2\psi$$

Toy Model

Propagator formalism

Solving wavefunction

- Easy! Use your favourite method (e.g. FFT)
- Useful for us to write solution in particular form

$$\psi(x,a) \sim \int \mathrm{d}q \underbrace{K_0(q;x,a)\psi^{(\mathrm{ini})}}_{\exp\left[\frac{i}{\hbar}\zeta(q;x,a)\right]}$$

• $\zeta(q; x, a)$ contains the *action* and the *initial* conditions.

$$\psi(x,a) \propto \int \mathrm{d}q \, \exp\left(\frac{i}{\hbar} \left[\frac{(x-q)^2}{2a} + \cos(q)\right]\right)$$

$$\psi^{(\text{ini})}(q) = \exp\left(\frac{i}{\hbar}\cos(q)\right)$$

 $i\hbar\partial_a\psi = -\frac{\hbar^2}{2}\partial_x^2\psi$

Toy Model

(a)

Free wave evolution

Amplitude: brightness Phase: colour

Features

- Regularised caustic
- Interference

Understanding the caustic

Interference features

Optics

Berry, Nye, Wright `79

Unweaving the wavefunction

Caustic features

Canonical cusp ($\lambda = 1$) $\zeta_{\text{cusp}}(s; C_1, C_2) = \frac{s^4}{4} + C_2 \frac{s^2}{2} + C_1 s$

Universal properties

Can always smoothly transform a stable singularity into one of the standard forms

Some properties of wave field preserved by these smooth transformations

- maximum amplitude
- fringe spacing

Gough & Uhlemann 2022

 $|\psi|^2$

Universal properties

Can always smoothly transform a stable singularity into one of the standard forms

Some properties of wave field preserved by these smooth transformations

- maximum amplitude
- fringe spacing

Gough & Uhlemann 2022

 $|\psi|^2$

Universal properties

Gough & Uhlemann 2022

 $|\psi|^2$

Unravelling the wavefunction

Optics

Optics

Optics

Interference

Wave optics

- What is interfering?
- What are the 'rays'?

Unweaving interference

- Idea: calculate contributions from classical trajectories
- where $\zeta'(q) = 0$, oscillations in integral slow down

Stationary Phase Approximation

q where $\zeta'(q) = 0$ dominate integral

Stream wavefunctions

$$\frac{i\pi/4}{\overline{\pi}(q_*)} \exp\left(\frac{i}{\hbar}\zeta(q_*)\right)$$

Stream wavefunctions

• Stream splitting without constructing phase space! Interference automatically encodes multi-streaming

Allows us to isolate oscillations and associated observables

SPA + caustics

Takeaways

Wave DM presents rich phenomenology, decorating the cosmic web

- caustic structures (fully classified)
- interference \sim multi-streaming
- oscillations/phase jumps \sim beyond perfect fluid + vorticity

Wave models of CDM efficiently capture information beyond fluid models

> prospects for analytic modelling and complementing numerics

