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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction ' QCD axion as a dark matter candidate

QCD axion as a dark matter candidate

m CP violating term in QCD

2
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NDM experiments constrain |§] < 10710

0 promoted to field in PQ mechanism that contains a symmetry that
is broken in the early Universe.

m Axion becomes massive in the QCD phase transition.
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction ' QCD axion as a dark matter candidate

QCD axion as a dark matter candidate

Set Q,h? = Qcpyh? = 0.12 (Planck Collaboration, 2018)
Assumption — Axion is produced non-thermally

m Misalignment: m, ~ 20 pueV

m String decay 100 peV < m, < 400 peV
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction = Resonant conversion
Axion Electrodynamics

V-E=p— g B-Va,

V x B—E =J+ guy,3B — gay,E x Va,
V-B=0,

B+VxE=0.

Assume background is dominated by B-field

B=B,+B,
E=0+B (Ey=0),
J=0E.

where ¢ is conductivity set by plasma.
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction = Resonant conversion

Equations of Motion

Equations of motion read

Oa+ m2a = gu,E - By,
OE+V(V-E)+0-E=—g.,3Bo,

Assume following geometry where all fields depend on one propagation
variable z

a
Bo

a(z), E=E(z2),
Bo(z) = Bo(z)- V[V -E(2)] =0,

where cE = iwcif E| |, and E|| is component of E along Bo.
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction = Resonant conversion

Equations of motion

02 — m2 + w? WgayyBo(z) a\ _g

Wy Bo(2z) 02 — wi(2) + w? E)
where £ = E||/w and wy, = e?n./me (Pshirkov et al (2009), Lai & Heyl
(2006), Kadota et al (2018)).

WKB approximation allows reduction to 1st order (See Battye, Garbrecht,
McDonald, Srinivasan (2020) for details)

B ngw B?(z¢)w?

Posy = :
T (@) 1k
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction = Neutron star magnetospheres

Neutron star magnetosphere

Rapidly rotating remnants of dead stars, high B—fields. Goldreich Julian
model for charge density

QB

Ne =

2me ’

B= Bof—: is the magnetic field and Q = 27 /P is frequency of NS of
period P

Rotation Axis Magnetic Axis

ine-of-sight
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction = Neutron star magnetospheres

Neutron star magnetosphere

Set wpl(rc) = m, to obtain the resonant conversion region

1 1 1
m By \2/P\ 2 1 2
aAxX A — =
my** ~ 85 ueV <1014G> <1S> <1—|— 3cosa> ;
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduct n star magnetospheres

Hook et al (2018)

Slide courtesy : Jamie McDonald
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Detecting Axions from Neutron Stars with Radio Telescopes = Introduction = Nei

Hook et al (2018)

on star magnetospheres
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The 1D Case = Doppler broadening

Detecting Axions from Neutron Stars with Radio Telescopes

Doppler Broadening

0

©

«

Af  Qr, ~ 1074, to be compared with estimate directly from DM

f
velocity dispersion ATf =Av? ~ 1077
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Detecting Axions from Neutron Stars with Radio Telescopes The 1D Case = Ray-tracing

Ray-tracing

See also Leroy et al (2020) (1912.08815 straight line trajectories), Witte
et al (2021) (2104.07670) ,

dP/d)
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Detecting Axions from Neutron Stars with Radio Telescopes The 1D Case = Ray-tracing

Ray-tracing

Dispersion Relation: g, k"k" + wg(t, x)=0
<~ ~~

gravity inhomogeneous
S 1 dP
obs = 5aar— 2\ 7g )
D?Afops <4\ dQ
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Ray-tracing

eutron Stars with Radio Telescopes
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Detecting Axions from Neutron Stars with Radio Telescopes

Ray-tracing

The 1D Case

Ray-tracing
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Detecting Axions from Neutron Stars with Radio Telescopes The 1D Case = Ray-tracing

Ray-tracing

Slide courtesy : Jamie McDonald

Pulse Profiles
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Our Work: signal more pulsed due to strong + time-dependent lensing!
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Detecting Axions from Neutron Stars with Radio Telescopes The 1D Case Constraints from observational data

Constraints from observational data

Data from Very Large Array of magnetar (PSR J1745 2900) at galactic
centre (Jeremy Darling at UC Boulder)

ma [;11631\/]

10—6,

10-8
-10
10710 S O s
10—12 v e Yy "

10_14 ------ Radial Trajectories (Model B) -
Radial Trajectories (Model C)

Jayy (95% confidence limit) [GeV~!]

. . -- CAST Exclusion This work (Model A)
10-16; m ADMX This work (Model B)
HAYSTAC This work (Model C)
Radial Trajectories (Model A)
1018 ‘
10° 10!

Frequency [GHZz]

Battye, Darling, McDonald, Srinivasan (2022) (2107.01225)

Sankarshana Srinivasan = Jodrell Bank Centre for Astrophysics, University of Manchester = September 8, 2022



Detecting Axions from Neutron Stars with Radio Telescopes Time Domain

Why a time-domain analysis?

m Huge amounts of archival data available on many pulsars

m Pulsars are well-characterised in the time-domain, noise levels are
well-controlled

m In case of large time variations in axion signal, easier detection in
comparison to a total flux measurement

September 8, 2022
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain

Time-domain analysis

Typical time-domain data contains average baseline subtraction
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain

Signal Characterisation
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain = Matched Filters
Matched Filters

Signal amplitude Sy with shape F(p) as a function of set of parameters p.

_F'cd
- FTC-1F’

o= (FTC_1F>_1/2 :

So

So FTCc1d
o (FTcR)?
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Time Domain = Matched Filters

Power (normalised)

Power (normalised)
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain = Matched Filters

Testing filter response

Inject signal into random Gaussian noise with amplitude set by threshold
in pulsar data catalogue

6=45",a=80" 6=45",a=80"

a [deg]
6 [deg]
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain = Application to Data

Data from JBCA catalogue

768 frequency channels, of which ~ 300 are RFI dominated (these have

been excised), 1024 time channels
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Detecting Axions from Neutron Stars with Radio Telescopes = Time Domain = Preliminary Results

Constraining observing angles

cos p = cos acos 6 + sin asin § cos(W /2) .

97 hemn
2¢cP

m The pulse width W is measured, tightly constrained.

m Currently, pulsar magnetosphere simulations are at odds with previous
data on p.

B a>20° = h~3200m
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Detecting Axions from Neutron Stars with Radio Telescopes = Time Domain = Preliminary Results

Constraining observing angles
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain

Applying filter to data

Preliminary Results

Apply filter to data, scan over (a, 6, m,).
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Detecting Axions from Neutron Stars with Radio Telescopes = Time Domain = Preliminary Results

Upper Limit

Upper limit inferred by comparing measured SNR when signal is injected
to when it is not
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Constraints proportional to size of time-variation
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain

Upper Limit

Preliminary Results
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Detecting Axions from Neutron Stars with Radio Telescopes Time Domain = Future Potential

Future?

m Interferometers like MeerKat can bring down noise level by factor 10,
while SKA can in principle achieve noise levels of 10 uJy.

m Strategic optimisation of target objects can result in signal factors of
100 stronger

m Archival data on magnetars to be explored

m Population study?
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Detecting Axions from Neutron Stars with Radio Telescopes = Conclusion

Conclusion

m Indirect detection efforts complement laboratory searches, can
potentially accelerate detection.

m Resonance and large magnetic fields make neutron stars great
candidates.

m Needs better modelling of pulsar magnetosphere.
m Typical observations are in time domain, need better optimisation for
targets based on time-variation.

m Current Ray-tracing simulations are state-of-the-art, but does 1D
probability need to be updated?

Sankarshana Srinivasan = Jodrell Bank Centre for Astrophysics, University of Manchester = September 8, 2022



	Introduction
	QCD axion as a dark matter candidate
	Resonant conversion
	Neutron star magnetospheres

	The 1D Case
	Doppler broadening
	Ray-tracing
	Constraints from observational data

	Time Domain
	Matched Filters
	Application to Data
	Preliminary Results
	Future Potential

	Conclusion

