Detecting Axions from Neutron Stars with Radio Telescopes

Sankarshana Srinivasan

Jodrell Bank Centre for Astrophysics, University of Manchester

September 8, 2022

Based on Battye, Garbrecht, McDonald, **Srinivasan** (2020) (1910.11907), Battye, Garbrecht, McDonald, **Srinivasan** (2021) (2104.08290), Battye, Darling, McDonald, **Srinivasan** (2022) (2107.01225)

Plan

- QCD axion as a dark matter candidate
- Resonant conversion
- Neutron star magnetospheres

2 The 1D Case

- Doppler broadening
- Ray-tracing
- Constraints from observational data

3 Time Domain

- Matched Filters
- Application to Data
- Preliminary Results
- Future Potential

4 Conclusion

(日)

QCD axion as a dark matter candidate

CP violating term in QCD

$$\mathcal{L}_{
m QCD} = \mathcal{L}_{
m PERT} + rac{g_{
m S}^2}{34\pi^2} ilde{\mathcal{F}}^{\mu
u} \mathcal{F}_{\mu
u} \,,$$

- NDM experiments constrain $|\theta| < 10^{-10}$
- θ promoted to field in PQ mechanism that contains a symmetry that is broken in the early Universe.
- Axion becomes massive in the QCD phase transition.

QCD axion as a dark matter candidate

Set $\Omega_a h^2 = \Omega_{CDM} h^2 = 0.12$ (Planck Collaboration, 2018) Assumption \rightarrow Axion is produced non-thermally

- Misalignment: $m_{
 m a}\sim 20\,\mu{
 m eV}$
- String decay $100 \, \mu \mathrm{eV} \le m_\mathrm{a} \le 400 \, \mu \mathrm{eV}$

Sankarshana Srinivasan | Jodrell Bank Centre for Astrophysics, University of Manchester | September 8, 2022

Axion Electrodynamics

$$\begin{split} \nabla \cdot \mathbf{E} &= \rho - g_{\mathrm{a}\gamma\gamma} \mathbf{B} \cdot \nabla a \,, \\ \nabla \times \mathbf{B} - \dot{\mathbf{E}} &= \mathbf{J} + g_{\mathrm{a}\gamma\gamma} \dot{a} \mathbf{B} - g_{\mathrm{a}\gamma\gamma} \mathbf{E} \times \nabla a \,, \\ \nabla \cdot \mathbf{B} &= 0 \,, \\ \dot{\mathbf{B}} + \nabla \times \mathbf{E} &= 0 \,. \end{split}$$

Assume background is dominated by B-field

$$\begin{split} \mathbf{B} &= \mathbf{B}_0 + \mathbf{B} \;, \\ \mathbf{E} &= 0 + \mathbf{B} \quad \left(\mathbf{E}_0 = 0 \right) , \\ \mathbf{J} &= \sigma \mathbf{E} \,. \end{split}$$

where σ is conductivity set by plasma.

イロト イポト イヨト イヨト

Equations of Motion

Equations of motion read

$$\Box \mathbf{a} + m_{\mathrm{a}}^{2} \mathbf{a} = g_{\mathrm{a}\gamma\gamma} \mathbf{E} \cdot \mathbf{B}_{0} ,$$
$$\Box \mathbf{E} + \nabla (\nabla \cdot \mathbf{E}) + \sigma \cdot \dot{\mathbf{E}} = -g_{\mathrm{a}\gamma\gamma} \ddot{\mathbf{a}} \mathbf{B}_{0} ,$$

Assume following geometry where all fields depend on one propagation variable \boldsymbol{z}

$$\begin{aligned} \mathbf{a} &= \mathbf{a}(z) \,, \qquad \mathbf{E} &= \mathbf{E}(z) \,, \\ \mathbf{B}_0 &= \mathbf{B}_0(z) \implies \mathbf{B}_0(z) \cdot \nabla \left[\nabla \cdot \mathbf{E}(z) \right] = 0 \,, \end{aligned}$$

where $\sigma \mathbf{E} = i \frac{\omega_{\text{pl}^2}}{\omega^2} \mathbf{E}_{||}$, and $\mathbf{E}_{||}$ is component of \mathbf{E} along \mathbf{B}_0 .

イロト イポト イヨト イヨト

Equations of motion

$$\left(\begin{array}{cc} \partial_z^2 - m_{\rm a}^2 + \omega^2 & \omega g_{{\rm a}\gamma\gamma} B_0(z) \\ \omega g_{{\rm a}\gamma\gamma} B_0(z) & \partial_z^2 - \omega_{\rm pl}^2(z) + \omega^2 \end{array} \right) \left(\begin{array}{c} a \\ \mathcal{E} \end{array} \right) = 0 \,,$$

where $\mathcal{E} = \mathbf{E}_{||}/\omega$ and $\omega_{\rm pl} = e^2 n_{\rm e}/m_{\rm e}$ (Pshirkov et al (2009), Lai & Heyl (2006), Kadota et al (2018)).

WKB approximation allows reduction to 1st order (See Battye, Garbrecht, McDonald, **Srinivasan** (2020) for details)

$$P_{\mathrm{a}
ightarrow\gamma} = rac{\pi g_{\mathrm{a}\gamma\gamma}^2 B^2(z_\mathrm{c}) \omega^2}{|\left(\omega_\mathrm{pl}^2(z_\mathrm{c})
ight)'|k_\mathrm{a}}\,.$$

(日) (同) (三) (三)

Neutron star magnetosphere

Rapidly rotating remnants of dead stars, high B-fields. Goldreich Julian model for charge density

$$m_{\rm e}=rac{\mathbf{\Omega}\cdot\mathbf{B}}{2\pi e}\,,$$

 $\mathbf{B} = \mathbf{B}_0 \frac{R^3}{r^3}$ is the magnetic field and $\Omega = 2\pi/P$ is frequency of NS of period P

Neutron star magnetosphere

Set $\omega_{\rm pl}(r_{\rm c})=m_{\rm a}$ to obtain the resonant conversion region

$$m_{\rm a}^{\rm max} \approx 85\,\mu{\rm eV}\left(\frac{B_0}{10^{14}\,{\rm G}}\right)^{\frac{1}{2}} \left(\frac{P}{1\,{\rm s}}\right)^{-\frac{1}{2}} \left(1+\frac{1}{3}\cos\alpha\right)^{\frac{1}{2}}\,,$$

Hook et al (2018)

Slide courtesy : Jamie McDonald

Radial Trajectories : $S = \frac{2\rho_{\rm DM}P_{\rm a\gamma}v_{\rm c}r_{\rm c}^2}{D^2\Delta f_{\rm obs}}$.

Hook et al (2018)

3

ヘロト 人間 ト 人造 ト 人造 ト

Doppler Broadening

 $\frac{\Delta f}{f} \sim \Omega r_{\rm c} \approx 10^{-4}$, to be compared with estimate directly from DM velocity dispersion $\frac{\Delta f}{f} = \Delta v^2 \sim 10^{-7}$

イロト イヨト イヨト イヨト

See also Leroy et al (2020) (1912.08815 straight line trajectories), Witte et al (2021) (2104.07670) ,

3

3

イロト イヨト イヨト イヨト

Slide courtesy : Jamie McDonald

Pulse Profiles

Our Work: signal more pulsed due to strong + time-dependent lensing!

不同 トイモトイモト

Constraints from observational data

Data from Very Large Array of magnetar (PSR J1745 2900) at galactic centre (Jeremy Darling at UC Boulder)

Battye, Darling, McDonald, Srinivasan (2022) (2107.01225)

Why a time-domain analysis?

- Huge amounts of archival data available on many pulsars
- Pulsars are well-characterised in the time-domain, noise levels are well-controlled
- In case of large time variations in axion signal, easier detection in comparison to a total flux measurement

Time-domain analysis

Typical time-domain data contains average baseline subtraction

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Signal Characterisation

ヘロト 人間 トメ ヨトメ ヨト

Matched Filters

Signal amplitude S_0 with shape $\mathbf{F}(\mathbf{p})$ as a function of set of parameters \mathbf{p} .

$$\mathbf{d} = S_0 \mathbf{F}(\mathbf{p}) + \hat{\mathbf{n}} \,,$$

$$S_0 = \frac{\mathbf{F}^T C^{-1} \mathbf{d}}{\mathbf{F}^T C^{-1} \mathbf{F}},$$
$$\sigma = \left(\mathbf{F}^T C^{-1} \mathbf{F}\right)^{-1/2},$$
$$q = \frac{S_0}{\sigma} = \frac{\mathbf{F}^T C^{-1} \mathbf{d}}{\left(\mathbf{F}^T C^{-1} \mathbf{F}\right)^{1/2}}.$$

1

イロト イポト イヨト イヨト

Matched Filters

Testing filter response

Inject signal into random Gaussian noise with amplitude set by threshold in pulsar data catalogue

Data from JBCA catalogue

768 frequency channels, of which \sim 300 are RFI dominated (these have been excised), 1024 time channels

Surviving data is Gaussian

イヨト イモト イモト

Constraining observing angles

$$\cos \rho = \cos \alpha \cos \theta + \sin \alpha \sin \theta \cos(W/2).$$

$$ho \simeq \sqrt{rac{9\pi h_{
m em}}{2cP}}.$$

- The pulse width W is measured, tightly constrained.
- Currently, pulsar magnetosphere simulations are at odds with previous data on ρ .
- $\alpha > 20^{\circ} \implies h \approx 3200 \,\mathrm{m}$

Constraining observing angles

Э

ヘロト 人間 ト 人造 ト 人造 ト

Applying filter to data

Apply filter to data, scan over (α, θ, m_a) .

イロト イボト イヨト イヨト

Upper Limit

Upper limit inferred by comparing measured SNR when signal is injected to when it is not

Constraints proportional to size of time-variation

イロト イボト イヨト イヨト

Upper Limit

- Interferometers like MeerKat can bring down noise level by factor 10, while SKA can in principle achieve noise levels of $10 \mu Jy$.
- Strategic optimisation of target objects can result in signal factors of 100 stronger
- Archival data on magnetars to be explored
- Population study?

Conclusion

- Indirect detection efforts complement laboratory searches, can potentially accelerate detection.
- Resonance and large magnetic fields make neutron stars great candidates.
- Needs better modelling of pulsar magnetosphere.
- Typical observations are in time domain, need better optimisation for targets based on time-variation.
- Current Ray-tracing simulations are state-of-the-art, but does 1D probability need to be updated?

イロト イポト イヨト イヨト