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Two parts

Fermion correlations (from the path integral)
As for topological quantization

Theta vacua and wave functionals (in canonical quantization)
As for the �rst postulate of QM (normalizable states)



Outline: Fermion correlations

I. CP -odd Lagrangians, correlations & e�ective operators
CP -odd invariants in QCD and potentially related observables
→ Fermion correlations

II. Topological term
Path integral, boundary con�gurations, integer topological charges

III. Green's functions for fermions
Euclidean Green's function in �xed instanton background

IV. Interferences within the topological sectors
Integration over collective coordinates, e.g. instanton locations, leads to
correlation functions in a �xed topological sector

V. Interferences among di�erent topological sectors (are immaterial)
Taking the in�nite-volume limit before summing over the topological sec-
tors, there is alignment of the chiral CP phases in the fermion sector



I. CP -odd Lagrangians, correlations & e�ective operators

CP -odd Lagrangian terms in the strong interactions:

L ⊃ −
Nf∑
j=1

ψ̄jmje
iαjγ

5
ψj +

1

16π2
θ trFµνF̃

µν

Chiral symmetry of the fermions is anomalous −→
Rephasing invariant: θ̄ = θ + ᾱ, where ᾱ =

∑Nf
j=1 αj , −→ θ is an angle

[Fujikawa (1979,80)]



E�ective 't Hooft vertex

Instanton e�ects described by e�ective 't Hooft vertex: ['t Hooft (1976,86)]

L+
1

16π2
θ trFµνF̃

µν → L− ΓNf eiξ

Nf∏
j=1

(ψ̄jPLψj)− ΓNf e−iξ

Nf∏
j=1

(ψ̄jPRψj)

(ΓNf some coe�cient)

ξ should be expressed in terms of parameters of the fundamental theory

Two options:
ξ = θ (in general misaligned with masses) → CP violation
ξ = −ᾱ (present claim, aligned with mass terms) → no CP violation

Note: For both θ̄ remains the only rephasing invariant CP phase
Both comply with χral anomaly∏Nf
j=1 ψj →

∏Nf
j=1 eiβγ5ψj ,

∏Nf
j=1 ψ̄j →

∏Nf
j=1 ψ̄j eiβγ5

ᾱ→ ᾱ− 2Nfβ, θ → θ + 2Nfβ, θ̄ → θ̄

}
For inva-

riant L

In principle, we could have ξ = cαᾱ+ cθθ for integer cα,θ (α, θ are angular variables)

with cα + cθ = 1. We shall see that this general case is not realized in the explicit

calculation.



The e�ective vertex is chosen so that it generates the following
correlation functions at tree level:

〈
Nf∏
j=1

ψj(xj)ψ̄j(x
′
j)〉inst =

e−iξ

Nf∏
j=1

PLj + eiξ

Nf∏
j=1

PRj

 H̄(x1, . . . , x
′
1, . . .)

Cf. leading contribution to two-point function

〈ψi(x)ψj(x
′)〉 =iS0inst ij(x, x

′)

iS0inst ij(x, x
′) =(−γµ∂µ + imie

−iαiγ
5
)

ˆ
d4p

(2π)4
e−ip(x−x′) δij

p2 −m2
i + iε

So ξ = θ/ξ = −ᾱ implies CP -violation/no CP -violation

Take Nf = 1 from here onwards

Calculations e.g. of neutron EDM implicitly assume ξ = θ
[e.g. Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

Only one explicit calculation based on dilute instanton gas �nding ξ = θ
['t Hooft (1986)]



II. Topological term

Theta-term/topological term is a total divergence

1

4
trFµνF̃µν = ∂µKµ Kµ = εµναβtr

[
1

2
Aν∂αAβ +

1

3
AνAαAβ

]
→ Equivalent to a surface term, i.e. the �ux of the current through the

boundary of the integration volume

So does it vanish?

Cf. anti-instanton: Aµ
u
v = −

σµν
u
vxν

x2 + ρ2
(extended solution to Euclidean

EOMs) [Belavin, Polyakov, Schwarz, Tyupkin (1975)]

Surface term decays as 1/|x|3 → surface integral does not need to vanish



For x2 →∞, the instanton �eld becomes a pure
gauge:

Aµ →−
i

g
(∂µΩ)Ω−1 where Ω ∈ SU(2)

Kµ →
1

6
εµνλρtr[(Ω

−1∂νΩ)(Ω−1∂λΩ)(Ω−1∂ρΩ)]

Winding number�topological quantization

∆n =
1

16π2

ˆ
d4xFµνF̃µν =

1

4π2

˛

S3

d3σK⊥

Integrand is a Haar measure and maps S3 → S3

(Anti-)instanton is a con�guration with winding number ∆n = (−)1

Theta term contributes to the action though being a total derivative



Boundary con�gurations for the path integral

The parameter θ can be viewed as an angular variable
(forced by the anomalous chiral current). −→

Requires ∆n ∈ Z (�topological quantization�) → exp(iS)|θ = exp(iS)|θ+2π

Readily built into the path integral without constraining

boundary conditions by hand:

(Relatively) nonvanishing contributions in in�nite spacetime only from
classical saddle points and �uctuations about these

Vanishing physical �elds on the boundary of the in�nite spacetime
volume (V T →∞) are the only boundary con�gurations leading to
saddle points with �nite Euclidean action in R4

(≡ multi-instanton solutions to the EOMs). [cf. Coleman (1985)]

There is no such restriction/principle to �xed physical bcs. for �nite V T .

Indeed, for pure gauge con�gurations → ∆n ∈ Z (as discussed above)

Consequence: In the path integral, sum over all topological sectors
∆n, weigh these by exp(i∆nθ)



III. Green's functions for fermions

Goal: Fermion correlations

Plan of calculation

Obtain correlation functions from Green's functions in �xed
background of instantons and anti-instantons

Interfere all instanton con�gurations

First, within one topological sector

Then over the di�erent sectors

Euclidean Green's function SE(xE, xE′) satis�es

( /D
E

+mR + iγ5mI)S
E(xE, xE′) = δ4(xE − xE′)

Spectral sum (�rst massless case):

/D
E
ψ̂E
λ =

(
/∂

E
+ γE

mA
E
m

)
ψ̂E
λ = λEψ̂E

λ

−→ SE(xE, xE′) =
∑̂
λE

ψ̂E
λ (xE)ψ̂E†

λ (xE′)

λE



Spectral sum for m = 0 is ill-de�ned because of the fermionic zero mode
λE = 0 in the instanton background

Euclidean index theorem: ∆n equals di�erence between number of
right-handed and left-handed zero modes

→ One left (right)-handed zero-mode for ∆n = −1 (∆n = 1)

Left-handed zero mode ['t Hooft (1976)]

ψ̂E
0L(xE) =

 χE
0 (xE)(

0
0

)  , where χE
0 (xE) =

%u

π [%2 + (xE)2]
3
2

, uαb = εαb

Include mass @ �rst order in perturbation theory (∆n = −1
background) [Shifman, Vainshtein, Zakharov (1979)]

SE(xE, xE′) =
ψ̂E

0 (xE)ψ̂E†
0 (xE′)

me−iα
+
∑̂
λE 6=0

ψ̂E
λ (xE)ψ̂E†

λ (xE′)

λE



Green's function in n-instanton, n̄-anti-instanton background

iSn,n̄(x, x′) ≈ iS0inst(x, x
′)+

n̄∑
ν̄=1

ϕ0L(x− x0,ν̄)ϕ†0L(x′ − x0,ν̄)

me−iα

+

n∑
ν=1

ϕ0R(x− x0,ν)ϕ†0R(x′ − x0,ν)

meiα

Comments:

For small masses, zero-modes dominate close to the cores of the
instantons, far away from the instantons the solution goes to the
zero-instanton con�guration [Diakonov, Petrov (1986)]

Alignment of phase α between Lagrangian mass and
instanton-induced χSB −→ No indication of CP violation here

Should be expected�θ-phase has not entered calculation thus far

cf.

iS0inst(x, x
′) = (−γµ∂µ + ime−iαγ5

)

ˆ
d4p

(2π)4
e−ip(x−x′) 1

p2 −m2 + iε
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IV. Interferences within the topological sectors

Within a topological sector, interfere/sum/integrate over

all instanton/anti-instanton numbers n+ n̄ with ∆n = n− n̄ �xed

locations of all instantons/anti-instantons

remaining collective coordinates

−→ Dilute instanton gas approximation

Can also obtain coincident fermion correlations using the index theorem
and anomalous current only



Evaluate correlation and partition function �rst for �xed ∆n

〈ψ(x)ψ̄(x′)〉∆n

=
∑
n̄,n≥0

n−n̄=∆n

ˆ
DAn̄,nDψ̄Dψ ψ(x)ψ̄(x′)e−SE[A,ψ̄,ψ]

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

 n̄∏
ν̄=1

ˆ

V T

d4x0,ν̄dΩν̄Jν̄

 n∏
ν=1

ˆ

V T

d4x0,νdΩνJν

 iSn̄,n(x, x′)

× e−SE (n̄+n)e−i(n̄−n)(α+θ)(−Θ$)(n̄+n)

DAn̄,n: Gauge �eld �uctuations about saddle with n instantons, n̄ anti-instantons
dΩνJν : Non-translational zero modes & Jacobians for all zero modes

Θ,$ : Reduced fermion & gauge/ghost determinants in instanton background
iSn̄,n(x, x

′): Fermion propagator in n instantons, n̄ anti-instanton background
SE[A, ψ̄, ψ]: Full action functional

SE: Euclidean action for one (anti-)instanton



Likewise, partition function:

Z∆n =
∑
n̄,n≥0

n−n̄=∆n

ˆ
DAn̄,nDψ̄Dψ e−SE[A,ψ̄,ψ]

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

(
−
´
dΩ J V T Θ$ e−SE

)(n̄+n)
e−i(n̄−n)(α+θ)



Integrate out locations of the instantonˆ

V T

d4x0,ν̄ iS(x, x′)

≈
ˆ

V T

d4x0,ν̄

[
iS0inst(x, x

′)+
ϕ0L(x− x0,ν̄)ϕ†0L(x′ − x0,ν̄)

me−iα
+ · · ·

]
=V T (iS0inst(x, x

′) + · · · )+m−1eiαh(x, x′)PL

Dots represent contributions from the zero modes of the
(anti)-instantons whose centres were not integrated over

h(x, x′) is de�ned as a block-diagonal matrix (with two identical blocks):

h(x, x′)PL =

ˆ

V T

d4x0,ν̄ ϕ0L(x− x0,ν̄)ϕ†0L(x′ − x0,ν̄)

h(x, x′)PR =

ˆ

V T

d4x0,ν̄ ϕ0R(x− x0,ν̄)ϕ†0R(x′ − x0,ν̄)

h̄(x, x′) ≡
´
dΩh(x, x′)´

dΩ



Integrating over all locations −→ Correlation function for �xed ∆n:

〈ψ(x)ψ̄(x′)〉∆n

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

[
h̄(x, x′)

( n̄

me−iα
PL +

n

meiα
PR

)
(V T )n̄+n−1 + iS0inst(x, x

′) (V T )n̄+n
]

× (iκ)n̄+n(−1)n+n̄ei∆n(α+θ)

=

[(
eiαI∆n+1(2iκV T )PL + e−iαI∆n−1(2iκV T )PR

) iκ

m
h̄(x, x′) + I∆n(2iκV T )iS0inst(x, x

′)

]
× (−1)∆nei∆n(α+θ)

where iκ =
´
dΩ J Θ$ e−SE and Iν(x) is the modi�ed Bessel function

Sum is dominated by particular value of n ≈ n̄: [Diakonov, Petrov (1986)]

〈n〉 =

∑∞
n=0 n

(κV T )n

n!∑∞
n=0

(κV T )n

n!

= κV T ,

√
〈(n− 〈n〉)2〉
〈n〉

=
1√
κV T

Cf. limx→∞ I∆n(ix e−i0+
)/I∆n′(ix e−i0+

) = 1

−→ No relative CP phase between mass and instanton induced breaking
of χral symmetry�alignment in in�nite-volume limit



Correspondingly, partition function for �xed ∆n: [cf. Leutwyler, Smilga (1992)]

Z∆n = I∆n(2iκV T ) (−1)∆nei∆n(α+θ)

Note: The topological phase ei∆n(α+θ) multiplies 〈ψ(x)ψ̄(x′)〉∆n and
Z∆n entirely�not just the contributions induced by instantons.

Other correlation functions (n point, stress-energy, for some observer,...)
are calculated from the Feynman diagram with the Green's function in
the n instanton, n̄ anti-instanton background.
Then it remains to average over n, n̄, locations and remaining collective
coordinates.

There is no CP violation/misalignment of phases to this end. It remains
to consider the interference between the topological sectors.



Can interference between topological sectors be observed?

E�ective action well-de�ned
for each sector
separately�barriers of in�nite
action separate sectors of
di�erent ∆n

Possible to observe the
interference between the
topological sectors of di�erent
∆n? Superobserver?

Topological phases ei∆n(α+θ) appear globally for each topological sector.
An observer made up of local quantum �elds cannot access separate
sectors.

Anyway: Turns out interferences are immaterial in the limit V T →∞



V. Interferences among topological sectors (are immaterial)

Topological quantization↔ Interference between sectors for V T →∞

Fermion correlator

〈ψ(x)ψ̄(x′)〉 = lim
N→∞
N∈N

lim
V T→∞

∑N
∆n=−N 〈ψ(x)ψ̄(x′)〉∆n∑N

∆n=−N Z∆n

=iS0inst(x, x
′) + iκh̄(x, x′)m−1e−iαγ5

(same as for �xed ∆n)

Recall: iS0inst(x, x
′) = (−γµ∂µ + ime−iαγ5

)
´ d4p

(2π)4 e−ip(x−x′) 1
p2−m2+iε

−→ No relative CP -phase between mass and instanton term



Limits ordered the other way around

First sum over all ∆n as well:∑
n̄,n≥0

1

n̄!n!

[
h̄(x, x′)(n̄m−1eiαPL + nm−1e−iαPR) (V T )n̄+n−1+ iS0inst(x, x

′) (V T )n̄+n
]

× (−miκ)n̄+nei∆n(α+θ)

=

[
−
(

e−iθPL + eiθPR

) iκ

m
h̄(x, x′) + iS0inst(x, x

′)

]
e−2iκV T cos(α+θ)

Z →
∑
n,n̄

1

n!n̄!
(−iκV T )n̄+ne−i(n̄−n)(α+θ) = e−2iκV T cos(α+θ)

Then, V T →∞ trivial as V T -dependence cancels
−→ Relative CP phase leading to CP -violating observables

However: The order of limits is not a choice but dictated by the fact that
boundary conditions for the topological sectors are imposed at in�nity.

Quantum mechanical systems: For a �nite number of degenerate
minima, there is only a �nite number of classes of tunneling transitions.
→ Order of limits not an issue



E�ective operators

E�ective interactions in the theory with fermions (present analysis)
−→ E�ective operators in χral perturbation theory
−→ Observables such as neutron EDM, η′ → ππ

V T →∞ before
∑

∆n

L → L− ψ̄(x)Γeiαγ5
ψ(x)

Alignment with ψ̄m exp(iαγ5)ψ

No CP -violating observables

∑
∆n before V T →∞

L → L+ ψ̄(x)Γe−iθγ5
ψ(x)

Misaligned with ψ̄m exp(iαγ5)ψ

CP -violating observables

Nf �avours: L → L− ΓNf e−iᾱ
∏Nf
j=1(ψ̄jPLψj)− ΓNf eiᾱ

∏Nf
j=1(ψ̄jPRψj)



E�ective chiral Lagrangian

U =U0e
i
fπ

Φ
chiral condensate

Φ =


π0 + 1√

3
η +

√
2
3
η′

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η +

√
2
3
η′

√
2K0

√
2K−

√
2 K̄0 − 2√

3
η +

√
2
3
η′


Chiral Lagrangian (lowest order terms):

L =
f2
π

4
Tr ∂µU∂

µU † +
f2
πB0

2
Tr(MU + U †M †)

+|λ|e−iξf4
π detU + |λ|eiξf4

π detU †

Consider M , |λ|eiξ as symmetry breaking sources. There are

U(3)A invariant terms

U(3)A breaking terms depending on the same parameter
M = diag{mueiαu ,mde

iαd ,mse
iαs} as the quark masses in the

fundamental theory (systematic construction by promotion of M to
a spurion)

U(1)A breaking terms depending on the parameter |λ|eiξ



Now which is ξ in the e�ective chiral Lagrangian?

Transformation of U under chiral �eld rede�nitions:

argU = arg〈ψ̄(x)PRψ(x)〉 ⇒ U → e2iβU ⇒ detU → e2iNfβ detU

Further the Lagrangian then remains invariant with

θ → θ + 2Nfβ so that ᾱ→ ᾱ− 2Nfβ

−→
Both, ξ = −ᾱ or ξ = θ once more comply with the chiral anomaly and
leave θ̄ = θ + ᾱ rephasing invariant. The high energy theory must tell us
which is ξ.

The 't Hooft operator�which transforms under chiral rotations in the
same way as det U�comes with eiξ = e−iᾱ (given the correct order of
limits).

So we have to set ξ = −ᾱ, by the same logic that leads to the
identi�cation of M with the quark masses.



Outline: Theta vacua and wave functionals

I. Theta vacuum, standard story
Superposition of an in�nite number of �eld eigenstates & its open ends

II. Canonical quantization of the gauge �eld
Wave functional representation of the state; gauge redundancy

III. Quantum states on a circle
How the spectrum for a potential on a circle is di�erent the spectrum a
peridoc potential in a crystal

IV. Back to gauge theory
Implication for CP violation in the strong interactions



I. Theta vacuum, standard story

The action & path integral are a �rst-principle de�nition of the theory.
However, vacuum states (i.e. �eld functionals) are sometimes used.

Consider initial and �nal states, taking x4 → ±∞
→ Construct from pure gauge con�gurations on these surfaces, with

∆n =
1

16π2

ˆ
d4xFµνF̃µν = n∞ − n−∞ gauge invariant

n±∞ =
1

4π2

ˆ

x4=±∞

d3σK⊥ Chern�Simons number, not gauge invariant

Gauge transformations Ω change n±∞ by same number of integer units

Construct ground states from prevacua:
n−∞ → |n〉
n∞ → 〈n|

(�eld eigenstates)

Gauge invariant (up to phase) state |θ〉 =
∑
n

e−inθ|n〉

[Callan, Dashen, Gross (1976); Jackiw, Rebbi (1976); Jackiw (1980)]



Two shortcomings

The prevacua |n〉 are �eld eigenstates, very di�erent from the ground
state
Resolutions:

Take T →∞ in the path integral to project on the ground state:
|vac〉 = e−HT

∑
n

e−inθ|n〉, T →∞ (cf. V T →∞ in previous part)

Or construct a wave functional [Jackiw, Rebbi (1976); Jackiw (1980)]

States are not normalizable in the proper sense because
〈θ|θ′〉 = δ(θ − θ′) [cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

Without ado, this contradicts 1st postulate of quantum mechanics.
Possible resolutions:

Construct wave packets�not acceptable however because gauge
invariance should be exact

Use gauge �xing in order to normalize states�to be discussed in
this talk

[Cohen-Tanoudji, Diu, Laloë]
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this talk
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Two shortcomings
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II. Canonical quantization of the gauge �eld

Minkowski spacetime, no sources −→

g ~Ea =−∂/∂t ~Aa

g ~Ba =∇× ~Aa − 1/2 fabc ~Aa × ~Ab

Canonical momentum conjugate to ~Aa:

g~Πa = − ~Ea +
g2

8π2
θ ~Ba

The corresponding operator must observe the commutation relations:

[Aa,i(~x),Πb,j(~x ′)] = iδijδabδ3(~x− ~x ′) , [Πa,i(~x),Πb,j(~x ′)] = 0

These commutators hold for (θΠ arbitrary) ~Πa =
δ

iδ ~Aa
+ θΠ

g

8π2
~Ba .

Hamiltonian density:

H =
1

2

(
( ~Ea)2 + ( ~Ba)2

)
=

1

2

((
g

δ

iδ ~Aa
− g2

8π2
(θ − θΠ) ~Ba

)2

+ ( ~Ba)2

)
[Jackiw (1980)]



Wave functional in gauge theory

Gn: �large� gauge transformation that changes the Chern�Simons
number by n units

Since [Gn,H] = 0, it is possible to �nd states/wave functionals that
simultaneously satisfy

HΨ =EΨ

GnΨ( ~Aa) =einθ′Ψ( ~Aa)

States with this property constitute subspaces invariant under the action
of the Hamiltonian, i.e. θ′ is protected by a superselection rule.
(NB: θ′ is independent of θ in the Lagrangian and θΠ in the canonical
momentum)



Abstract formulation

Wave funcion(al): Ψ(~V )

Let T be a translation of ~V that corresponds to a unitary operator G(T )
acting on Ψ:

Ψ(T ~V ) = G(T )Ψ(~V )

Eigensystem of G(T ):

Ψθ(T ~V ) =eiθΨθ(~V ) ⇒
Ψθ(T

n~V ) =Gn(T )Ψθ(~V ) = einθΨθ(~V ) for integer n

(The correspondence is: ~V ↔ ~Aa, Gn(T )↔ Gn)

De�ne a function N(~V ) with the property N(T ~V ) = N(~V ) + 1

−→ Ψθ(~V ) =ψθ(~V )eiN(~V )θ

−→ Ψθ(T ~V ) =ψθ(~V )ei(N(~V )+1)θ

where ψθ is periodic in T :

ψθ(T ~V )=e−iN(T ~V )θΨθ(T ~V )=e−i(N(~V )+1)θeiθΨθ(~V )=e−iN(~V )θΨθ(~V )=ψθ(~V )



Crystal or circle?

Let H(T ~V ) = H(~V ). The functionals Ψθ(~V ) with above periodicity
properties can be viewed as Bloch states.

Bloch states live on a crystal:
T ~V is a di�erent site than ~V

In contrast: In gauge theory T ~V is a redundant description of the
con�guration ~V�corresponding to ϕ→ ϕ+ 2πn on a circle
[see e.g. Shifman, Advanced QFT (2012)]

On a crystal: Bloch states do not correpsond to normalized wave
functions, these are rather wave packets made up of Bloch states.

On a circle: Truncation of the inner product according to a single period
leads to properly normalizable states, corresponding to gauge �xing:ˆ

0≤N(~V )<1

d~V Ψ∗(~V )Ψ(~V ) = 1 , 〈O〉 =

ˆ

0≤N(~V )<1

d~V Ψ∗(~V )OΨ(~V )



III. Quantum states on a circle

Quantization on a single period appears to resolve the issue of
improperly normalizable states and also seems to be appropriate in view
of the physical redundancy of gauge �eld con�gurations.

Surely, the spectrum on a circle should di�er from one in a crystal. But
how and why exactly?

Essence of the problem is captured by particle on a circle, angular
coordinate ϕ, gauge transformation Tnϕ = ϕ+ 2πn

Lagrangian:

L =
1

2
mR2(ϕ̇+ ω)2 + V(ϕ)

2ωϕ̇ is a total derivative corresponding to a θ-term

Canonical momentum: πϕ =
∂L

∂ϕ̇
= mR2(ϕ̇+ ω)

Hamiltonian: H = πϕϕ̇− L =
1

2

1

mR2

(
πϕ −mR2ω

)2 − 1

2
mR2ω2 + V(ϕ)

Momentum operator: [ϕ, πϕ] = i ⇒ πϕ = −i∂ϕ −mR2ωB



Potential at rest and moving

Hamilton operator (ωB absorbed in ω, constant terms dropped):

H = πϕϕ̇− L =
1

2

1

mR2

(
1

i
∂ϕ −mR2ω

)2

+ V(ϕ)

For ω = 0, standard case of circle with a potential at rest:

H =
1

2

1

mR2

(
1

i
∂ϕ

)2

+ V(ϕ)

Time independent Schrödinger equation:[
1

2

1

mR2

(
1

i
∂ϕ

)2

+ V(ϕ)

]
ψ(ϕ) = Eψ(ϕ)

For potential moving at constant ωV , this leads to stationary solutions[
1

2

1

mR2

(
1

i
∂ϕ

)2

+ V(ϕ+ ωVt)

]
ψ(ϕ+ ωVt) = Eψ(ϕ+ ωVt)



Galilei transformation on a circle

Unitary operator for boosts

U(ω) = eiωM whereM = πt−mR2ϕ

π 7→π′ = π +mR2ω

ϕ 7→ϕ′ + ωt

U(ω)ϕU †(ω) =ϕ+ ωt

U(ω)πU †(ω) =π +mR2ω

U(ω)ψ(ϕ) = e−imR2ωϕe−imR
2ω2t
2 ψ(ϕ+ ωt)

Transformation of the previous solution for ωV 6= 0:

U(−ωV)ψ(ϕ+ ωVt) = eimR2ωVϕe−i
mR2ω2

V t
2 ψ(ϕ) =: e−i

mR2ω2
V t

2 ψ′(ϕ)

This solves the Schrödinger equation[
1

2

1

mR2

(
1

i
∂ϕ −mR2ωV

)2

+ V(ϕ)

]
ψ′(ϕ) = Eψ′(ϕ)

−→ Intuitive interpretation of ωV/ or θ term



Periodicity condition

Hamiltonian

H =
1

2

1

mR2

(
1

i
∂ϕ −mR2ω

)2

+ V(ϕ)

For ω = 0, ψ(ϕ) = ψ(ϕ+ 2πn) appears to be the correct periodicity
condition (cf. embedding of the circle in two dimensions)

However:

Galilei-boosts lead more generally to ψ(ϕ) = e−2πinmR2ωθψ(ϕ+ 2πn)

Invariance of QM expectation values under ϕ→ ϕ+ 2πn likewise
only requires periodicity up to a phase

Space is not necessarily simply connected

What is the physical/mathematical interpretation of the less general
periodicity and how to generalize it to ω 6= 0?



Consistent time evolution

Heisenberg equation for operator O (exp(iϕ)):[
H,O

(
eiϕ
)]

=
d

dt
O
(
eiϕ
)

=
1

2mR2

[(
1

i

∂

∂ϕ
+mR2ω

)2

,O
(
eiϕ
)]

=− 1

2mR2

(
∂2

∂ϕ2
O
(
eiϕ
))
− 1

mR2

(
∂

∂ϕ
O
(
eiϕ
)) ∂

∂ϕ
− iω

(
∂

∂ϕ
O
(
eiϕ
))

−→
Φ(ϕ)eiϕmR2ω

[
H,O

(
eiϕ
)]

e−iϕmR2ωΦ(ϕ) = −1

2

∂

∂ϕ
Φ(ϕ)

(
∂

∂ϕ
O
(
eiϕ
))

Φ(ϕ)

For energy-eigenstate wave-functions that work for the truncated inner
product:

0 =
〈
d/dtO

(
eiϕ
)〉

=

ˆ

0≤ϕ<2π

dϕψ∗(ϕ)
(
d/dtO

(
eiϕ
))
ψ(ϕ)

−→
ψ(ϕ) = e−imR2ωϕΦ(ϕ) where Φ(ϕ) ∈ R and Φ(ϕ) = Φ(ϕ+ 2π)

Then, the integrand is a total derivative, and boundary terms vanish by
the periodicity of Φ(ϕ).

Eigensystem of Hamiltonian:

For ω = 0 in H ⇒ ψ(ϕ) = ψ(ϕ+ 2πn)

For ω 6= 0 in H ⇒ ψ(ϕ) = e2πinmR2ωψ(ϕ+ 2πn)
so that the ω-phases compensate
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For ω 6= 0 in H ⇒ ψ(ϕ) = e2πinmR2ωψ(ϕ+ 2πn)
so that the ω-phases compensate



Physics picture

Take H = −1
2

1
mR2∂

2
ϕ + V(ϕ) (ω = 0 can always be achieved by boosts)

ψ(ϕ) = e2πinmR2ωψ(ϕ+ 2πn) −→ wave with crystal momentum ∝ ω

Schrödinger equation is to be solved on the full range ϕ ∈ R

Truncation of the inner product is only consistent with operator
equations of motion for wave functions with ω = 0

For ω 6= 0 consistent
time evolution follows
for normalizable wave
packets�these are not
fully invariant under
discrete translations
(large gauge
transformations), and
their overall hull moves
in time



IV. Back to gauge theory

For the Hamiltonian

H =
1

2

(
( ~Ea)2 + ( ~Ba)2

)
=

1

2

((
g

δ

iδ ~Aa
− g2

8π2
θ ~Ba

)2

+ ( ~Ba)2

)

The wave functionals with the property GnΨ( ~Aa) = e−inθΨ( ~Aa) are the
only ones that are consistent with time evolution, gauge invariance and
that are properly normalizable.

These exhibit no CP violation (θ can be simultaneously boosted away
from Hamiltonian and wave functional):

K( ~Aa) =
1

8π2
εijk
ˆ

d3x

(
1

2
Aa,i∂jA

a,k − 1

6
fabcAa,iAb,jAc,k

)
Ψ′( ~Aa) =eiθK( ~Aa)Ψ( ~Aa) ⇒ GnΨ′ = Ψ′

H′ =eiθK( ~Aa)He−iθK( ~Aa) =
1

2

(
−g2 δ2

δ ~Aa
2 + ( ~Ba)2

)



Conclusion

There is no CP-violation in QCD with massive quarks.

Based on challenges to standard calculations:

Path integral

What would be the reason to impose topological quantization on a
�nite surface? Integer topological sectors only follow in in�nite
spacetime (save periodic boundary conditions), the latter can be
viewed as a tool to project on the ground state.

Theta vacua:

The description of the vacuum by states that are not properly
normalizable is in contradiction with the postulates of QM. Gauge
�xing leads to normalizable states, and consistent QM time
evolution in the canonical formalism requires the restriction to
CP -conserving theories.



THANK YOU!THANK YOU!



V. Finite sub(volumes)

Boundary conditions at in�nity crucial for alignement of the CP phases

Calculations in �nite spacetime volumes should also be possible

for subvolumes of spacetime (→ open boundary conditions),

for periodic boundary conditions, e.g. on a torus as in lattice �eld
simulations.

Note: On a torus, ∆n is topologically conserved.

Lattice simulations sample over ∆n because of �nite lattice spacing.

Topology �freezes� in the continuum limit.



Finite vs in�nite spacetime volume�cluster decomposition

Consider expectation value of an operator O in spacetime volume Ω,
interfere di�erent topological sectors ∆n: [Weinberg QFT]

〈O〉Ω = lim
N→∞
N∈N

N∑
∆n=−N

f(∆n)
´

∆n

DφO e−SΩ[φ]

N∑
∆n=−N

f(∆n)
´

∆n

Dφ e−SΩ[φ]

Factorize path integral into volume contributions, Ω = Ω1 ∪ Ω2:
(Assume ∆n(Ω) = ∆n1(Ω1) + ∆n2(Ω2))〈O1〉Ω = lim

N2→∞
N2∈N

lim
N1→∞
N1∈N

N1∑
∆n1=−N1

N2∑
∆n2=−N2

f(∆n1 + ∆n2)
´

∆n1

DφO1 e−SΩ1
[φ]
´

∆n2

Dφ e−SΩ2
[φ]

N1∑
∆n1=−N1

N2∑
∆n2=−N2

f(∆n1 + ∆n2)
´

∆n1

Dφ e−SΩ1
[φ]
´

∆n2

Dφ e−SΩ2
[φ]

Independence of 〈O1〉Ω from the �uctuations in Ω2 is achieved if the
contributions from Ω2 cancel (absorb determinant phases in f):

f(∆n1 + ∆n2) = f(∆n1)f(∆n2)⇒ f(∆n) = ei∆n(α+θ)



Now keep ∆n �xed, Ω2 either �nite or in�nite:

〈O1〉Ω =

∞∑
∆n1=−∞

f(∆n)
´

∆n1

DφO1 e−SΩ1
[φ]

´
∆n2=∆n−∆n1

Dφ e−SΩ2
[φ]

∞∑
∆n1=−∞

f(∆n)
´

∆n1

Dφ e−SΩ1
[φ]

´
∆n2=∆n−∆n1

Dφ e−SΩ2
[φ]

=

∞∑
∆n1=−∞

f(∆n)I∆n−∆n1(2iκΩ2)
´

∆n1

DφO1 e−SΩ1
[φ]

∞∑
∆n1=−∞

f(∆n)I∆n−∆n1(2iκΩ2)
´

∆n1

Dφ e−SΩ1
[φ]

≈
Ω2�Ω1

∞∑
∆n1=−∞

´
∆n1

DφO1 e−SΩ1
[φ]

∞∑
∆n1=−∞

´
∆n1

Dφ e−SΩ1
[φ]

Path integral makes sense for �nite subvolumes with open boundary conditions
=̂ lattice simulations sampling over topological sectors ∆n without phases

The theory with �xed ∆n (gauge invariant) in large but �nite volumes complies

with cluster decomposition [cf. Leutwyler, Smilga (1992)]. Lattice results with frozen
topology are therefore okay up to �nite volume e�ects.

For Ω2 →∞, the result does not depend on whether ∆n is �xed or free.

Corresponds to
�nite V T , θ = 0

Result also holds for
Ω2 →∞, ∆n free


