








Two parts

m Fermion correlations (from the path integral)
As for topological quantization

m Theta vacua and wave functionals (in canonical quantization)
As for the first postulate of QM (normalizable states)



Outline: Fermion correlations

II.

I1I.

Iv.

C P-odd Lagrangians, correlations & effective operators
CP-o0dd invariants in QCD and potentially related observables
— Fermion correlations

Topological term

Path integral, boundary configurations, integer topological charges

Green’s functions for fermions

Euclidean Green’s function in fixed instanton background

Interferences within the topological sectors

Integration over collective coordinates, e.g. instanton locations, leads to
correlation functions in a fixed topological sector

Interferences among different topological sectors (are immaterial)
Taking the infinite-volume limit before summing over the topological sec-
tors, there is alignment of the chiral C'P phases in the fermion sector



I. CP-odd Lagrangians, correlations & effective operators

C'P-odd Lagrangian terms in the strong interactions:
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Chiral symmetry of the fermions is anomalous —

S : = _ _ N .

Rephasing invariant: § = 6 + &, where & = Y./, aj, — 0 is an angle
] j=

[Fujikawa (1979,80)]



Effective 't Hooft vertex
Instanton effects described by effective 't Hooft vertex: rt moofs (1976,56)]
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(', some coefficient)

& should be expressed in terms of parameters of the fundamental theory

Two options:
& = 0 (in general misaligned with masses) — C'P violation
& = —a (present claim, aligned with mass terms) — no C'P violation

Note: For both @ remains the only rephasing invariant C P phase
Both comply with yral anomaly

H;'szl Y — vazfl eiﬁ%i/}j, vazfl 1/_1]' — H 1/1 e'B7s } For ;nza—
pu rian
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In principle, we could have & = co@ + o0 for integer cq,0 (o, 6 are angular variables)
with cq 4+ cg = 1. We shall see that this general case is not realized in the explicit

calculation.



The effective vertex is chosen so that it generates the following
correlation functions at tree level:
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Cf. leading contribution to two-point function
(i(2);(2")) =iSoinstij(x, )
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So £ = 0/¢ = —a implies C P-violation/no C P-violation
Take Ny = 1 from here onwards

Calculations e.g. of neutron EDM implicitly assume & = 0
le.g. Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]
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Only one explicit calculation based on dilute instanton gas finding £ = 6

[’t Hooft (1986)]



IT1. Topological term

Theta-term /topological term is a total divergence
1 . 1 1
Zter,Fw/ = 8/‘K/J' K/‘L = ew,a,gtr §AV8QA/B + gAVAaAﬁ

— Equivalent to a surface term, i.e. the flux of the current through the
boundary of the integration volume

So does it vanish?

u
.. Ouv Ty . .
Cf. anti-instanton: A, = —-22 2" (extended solution to Euclidean
Y] $2 +p2
EOMS) [Belavin, Polyakov, Schwarz, Tyupkin (1975)]

Surface term decays as 1/|z|> — surface integral does not need to vanish



For 22 — o0, the instanton field becomes a pure

gauge:
. m{;ﬁz&m Space
Ay = — 2(0,0)07" where Q € SU(2)
g
1 _ _ _
Ky = zeuatrl(Q 19,0)(2710,Q)(Q719,9)]
dosq dwez
Winding number—topological quantization ﬁ
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93
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Integrand is a Haar measure and maps S — S3

(Anti-)instanton is a configuration with winding number An = (—)1

Theta term contributes to the action though being a total derivative



Boundary configurations for the path integral

The parameter 6 can be viewed as an angular variable
(forced by the anomalous chiral current). —

Requires An € Z (“topological quantization”) — exp(iS)|g = exp(iS)|g+2r

Readily built into the path integral without constraining
boundary conditions by hand:

(Relatively) nonvanishing contributions in nfinite spacetime only from
classical saddle points and fluctuations about these

Vanishing physical fields on the boundary of the infinite spacetime
volume (VT — oo) are the only boundary configurations leading to
saddle points with finite Euclidean action in R

(= multi-instanton solutions to the EOMS). [cf. Coleman (1985)]
There is no such restriction/principle to fixed physical bes. for finite VT .

Indeed, for pure gauge configurations — An € Z (as discussed above)

Consequence: In the path integral, sum over all topological sectors
An, weigh these by exp(iAnf)



ITI. Green’s functions for fermions

Goal: Fermion correlations

Plan of calculation

m Obtain correlation functions from Green’s functions in fixed
background of instantons and anti-instantons

m Interfere all instanton configurations

m First, within one topological sector
m Then over the different sectors

Euclidean Green’s function S¥(z¥, 2"') satisfies
(ZDE + mpg + 17°m) ST (2, 2) = 64 (2" — 2
Spectral sum (first massless case):

PPk = (9" +7EAE)¢E - A%E
— SE E E/ i¢A E/)




Spectral sum for m = 0 is ill-defined because of the fermionic zero mode
AF = 0 in the instanton background

Euclidean index theorem: An equals difference between number of
right-handed and left-handed zero modes

— One left (right)-handed zero-mode for An = —1 (An

I
—
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Left-handed zero mode [t mooft (1976)]
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ng(xE) = 0 , where X(];:(ng) = — . uth — cob
0 w e + (aP)2]}
Include mass @ first order in perturbation theory (An = —1

background) [Shifman, Vainshtein, Zakharov (1979)]
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Green’s function in n-instanton, n-anti-instanton background

(ac - wo,a)sogL(x’ - xO,l‘/)
me—ia

7
1Spn(z, ") ~ 1Soinst (z, )+ Z POL

©or (T — $0,V)90$R(93, = )
+ Z meia

Comments:

m For small masses, zero-modes dominate close to the cores of the
instantons, far away from the instantons the solution goes to the
zero-instanton configuration [piakonov, Petrov (1986)]

m Alignment of phase o between Lagrangian mass and
instanton-induced xSB — No indication of C'P violation here

m Should be expected—#-phase has not entered calculation thus far



Green’s function in n-instanton, n-anti-instanton background

n T /
® T — 20,7 )P\ T — Zo,p
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instantons, far away from the instantons the solution goes to the

zero-instanton configuration [piakonov, Petrov (1986)]

m Alignment of phase o between Lagrangian mass and
instanton-induced xSB — No indication of C'P violation here

m Should be expected—#-phase has not entered calculation thus far



Green’s function in n-instanton, n-anti-instanton background
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Comments:

m For small masses, zero-modes dominate close to the cores of the
instantons, far away from the instantons the solution goes to the
zero-instanton configuration [piakonov, Petrov (1986)]

m Alignment of phase o between Lagrangian mass and
instanton-induced xSB — No indication of C'P violation here

m Should be expected—#-phase has not entered calculation thus far



IV. Interferences within the topological sectors

Within a topological sector, interfere/sum /integrate over
m all instanton/anti-instanton numbers n + 7 with An =n — 7 fixed
m locations of all instantons/anti-instantons

m remaining collective coordinates

— Dilute instanton gas approximation

Can also obtain coincident fermion correlations using the index theorem
and anomalous current only



Evaluate correlation and partition function first for fixed An
(W(@)P(2")) an
=Y [ PAwDIDG wla)ia)e AT

n,n>0
n—n=An
1 n n
4 4 : /
= ¥ o 11 / d*z0d% 5 | | ] / d*zo,dQyJ, | 1S (z,2')

« e—SE (n+n) e—i(ﬁ—n) (a+0) (_@w) (4n)

DAs.n: Gauge field fluctuations about saddle with n instantons, i anti-instantons
dQ,J,: Non-translational zero modes & Jacobians for all zero modes
O,w : Reduced fermion & gauge/ghost determinants in instanton background
iS7 n(z,2"):  Fermion propagator in n instantons, fi anti-instanton background
Sg[A,,v):  Full action functional
Se:  Euclidean action for one (anti-)instanton



Likewise, partition function:

Zan= Y. / DAy DYDyp e840V

n,m>0
n—n=An
- ¥ % (= fAQ T VT © e 5e) "1 gilnn)(ato)

n,m>0
n—n=An



Integrate out locations of the instanton
/d4$0,l, iS(x, )
VT

T
T — 20,0 r — To.p
~ /d4960,f/ [iSOinst(x,.’L'/)—f—(pOL( 0.)Pou( 0, )+

me—ia
vT

=VT (iSpinst (@, ') + - - - )+m L' (z, 2") Py,
Dots represent contributions from the zero modes of the
(anti)-instantons whose centres were not integrated over

h(z,z") is defined as a block-diagonal matrix (with two identical blocks):

he,2')P = / 20,5 por (% — T0.0) by (2" — 70.0)
vT

h(z,2")Pgr = / d*zo,5 or (T — $0,;)<P$R(90, — Z0,5)
VT

h(z, 2" Eif df}};(é’ )



Integrating over all locations — Correlation function for fixed An:
(W (@) (a"))an
1 = / n n At+n— . / n+n
=3 [ A ) ( Pt~ P ) (V)™ 4 iSins (2,2') (V)]

R mefioc
nigLEAon % (im)ﬁ-ﬁ-n(_l)n-kﬁeiAn(a-&-G)

= [(eiaIAnH(QinVT)PL + e*ialAn,l(zinVT)PR) B (@, 2') + Tan(2i6VT)iSomst (x, x')}
m
% (_1)An,eiAn(o+9)

where ik = [dQJ ©we " and I,(x) is the modified Bessel function

Sum is dominated by particular value of n & 7: [piakonov, Petrov (1986)]

Tttt =) 1
(n) = W =rVT, ) = T

Cf. limy—so0 Inn(iz e 0 /Tnp (i e 07) = 1

— No relative C'P phase between mass and instanton induced breaking
of xral symmetry—alignment in infinite-volume limit



Correspondingly, partition function for fixed An: [cr. Leutwyler, Smilga (1992)]
Tan = IAH(QIKVT) (71)AneiAn(u+9)

Note: The topological phase 2™+ multiplies ()(2)¢(2'))an and
Zan entirely—not just the contributions induced by instantons.

Other correlation functions (n point, stress-energy, for some observer,...)
are calculated from the Feynman diagram with the Green’s function in
the n instanton, n anti-instanton background.

Then it remains to average over n, n, locations and remaining collective
coordinates.

There is no C'P violation/misalignment of phases to this end. It remains
to consider the interference between the topological sectors.



Can interference between topological sectors be observed?

LXK

m Effective action well-defined An=-7
for each sector @ !.

separately—barriers of infinite
action separate sectors of

different An @(‘E

m Possible to observe the
interference between the

topological sectors of different @(‘g
An? Superobserver?

QA

Adn=g

Qg

Am=+4

2 PPeirIgp muripnju

Q¢

Topological phases ¢2™@+0) appear globally for each topological sector.
An observer made up of local quantum fields cannot access separate
sectors.

Anyway: Turns out interferences are immaterial in the limit VT — oo



V. Interferences among topological sectors (are immaterial)

Topological quantization <+ Interference between sectors for V1" — oo

Fermion correlator

N ow,
(W(@)P() =lim _lim 2=An==NEV)ian
=iSpinst (¢, 2') + ikh(z, 2 )m 177 (same as for fixed An)

. . i 4 ip(z—z
Recall: iSpinst (z, 2) = (—y#8,, + ime™107") [ (§W€’4e ip(e—z )m

— No relative C'P-phase between mass and instanton term



Limits ordered the other way around

First sum over all An as well:

3 % [B(x,x’)(n m e P+ nm e T Pr) (V)™ 't iSoimet (2, 2') (VT)’”"]
a,n>0 _ .
= % (_mi“i)n+nelAn(o¢+9)

= [— (e_wPL + eiGPR) EFb(m,x/) + iS0inst (@, ') g ZirV T cos(a+0)
m

1 ; n —i(n— —2ikVT cos(a
Z — Z W(—MVT)"JF% i(A—n)(a+0) _ ,—2irVT cos(at0)
n,n

Then, VT — oo trivial as V'T-dependence cancels
— Relative C'P phase leading to C' P-violating observables

However: The order of limits is not a choice but dictated by the fact that
boundary conditions for the topological sectors are imposed at infinity.

Quantum mechanical systems: For a finite number of degenerate
minima, there is only a finite number of classes of tunneling transitions.
— Order of limits not an issue



Effective operators

Effective interactions in the theory with fermions (present analysis)
— Effective operators in yral perturbation theory
— Observables such as neutron EDM, ' — 7w

VT — oo before ., YA, before VI — oo

L — L —P(z)Tel’y(x) L — L+ P(z)Te 0y (x)
Alignment with ¢¥m exp(iay®)y Misaligned with ¢m exp(iay®)1)
No C'P-violating observables C P-violating observables

N - N —
Nf flavours: £ — L — FNfe_“" Hj:fl(iijij) - FNfela Hj:fl(¢jPR¢j)



Effective chiral Lagrangian

U :erﬁq) chiral condensate
7T0+%77+\/§77’ Vvert V2K*
o= Vv2r~ —7r°+%n+\/gn’ V2 K°
VK" V2R —Zn+ /2

Chiral Lagrangian (lowest order terms):

L :fTr 0, U0 UT + fiBO Te(MU +UTMT)
+Ae € f2det U + |A|e' f2 det UT
Consider M, |Ael¢ as symmetry breaking sources. There are
m U(3)4 invariant terms
m U(3)a breaking terms depending on the same parameter
M = diag{m,e'“*, mg4e'*®, mge'*s} as the quark masses in the
fundamental theory (systematic construction by promotion of M to
a spurion)

m U(1)a breaking terms depending on the parameter |\|e'¢



Now which is ¢ in the effective chiral Lagrangian?

Transformation of U under chiral field redefinitions:

arg U = arg((z) Pryp(z)) = U — e2PU = detU — ? NP det U

Further the Lagrangian then remains invariant with

0 —0+2N;3 sothat a— a—2N.3
—
Both, £ = —a or £ = 0 once more comply with the chiral anomaly and

leave § = # + & rephasing invariant. The high energy theory must tell us
which is &.

The 't Hooft operator—which transforms under chiral rotations in the
same way as det U—comes with ¢!¢ = e71% (given the correct order of
limits).

So we have to set £ = —a, by the same logic that leads to the
identification of M with the quark masses.



Outline: Theta vacua and wave functionals

I.  Theta vacuum, standard story
Superposition of an infinite number of field eigenstates & its open ends

II. Canonical quantization of the gauge field
Wave functional representation of the state; gauge redundancy

III. Quantum states on a circle
How the spectrum for a potential on a circle is different the spectrum a
peridoc potential in a crystal

IV. Back to gauge theory

Implication for C'P violation in the strong interactions



I. Theta vacuum, standard story

The action & path integral are a first-principle definition of the theory.
However, vacuum states (i.e. field functionals) are sometimes used.

Consider initial and final states, taking x4 — £o0
— Construct from pure gauge configurations on these surfaces, with

4 ~ . .
An =163 /d 2F L = ne —n_s gauge invariant
1
Moo =73 / d30 K| Chern-Simons number, not gauge invariant
zt=+0c0

Gauge transformations 2 change ni., by same number of integer units
N_so — 1)

new — (] (field eigenstates)

Construct ground states from prevacua:

Gauge invariant (up to phase) state [6) = 3" e7"%|n)
n

[Callan, Dashen, Gross (1976); Jackiw, Rebbi (1976); Jackiw (1980)]



Two shortcomings

The prevacua |n) are field eigenstates, very different from the ground
state
Resolutions:
m Take T'— oo in the path integral to project on the ground state:
lvac) = e HT S ™™ n), T — oo (c¢f. VT — oo in previous part)
n

m Or construct a wave functional [sackiw, Rebbi (1976); Jackiw (1980)]

States are not normalizable in the proper sense because

(0]10"Y = 6(6 — ') (ct. e.q. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]
Without ado, this contradicts 1st postulate of quantum mechanics.
Possible resolutions:

m Construct wave packets—not acceptable however because gauge
invariance should be exact

m Use gauge fixing in order to normalize states—to be discussed in
this talk



Two shortcomipes
B. STATEMENT OF THE POSTULATES
The prevacua |n)

1. Description of the state of a system
state
. In chapter I, we introduced the concept of the quantum state of a particle.
Resolutlons: We first characterized this state at a given time by a square-integrable wave
function. Then, in chapter II, we associated a ket of the state space &, with
m Take T' — oo each wave function : choosing | ) belonging to &, is equivalent to choosing

|VaC> . e—HT the corresponding function ¥(r) = {r|y >. Therefore, the quantum state of
- a particle at a fixed time is characterized by a ket of the space &, In this

form, the concept of a state can be generalized to any physical system.

m Or construct
First Postulate: At a fixed time ?,, the state of a physical system is defined
by specifying a ket | ¥/(¢,) > belonging to the state space &.

States are not nor?
<0|0l> = 5(0 — 9/) [ [Cohen-Tanoudji, Diu, Lalog]

Without ado, this contradicts 1st postulate of quantum mechanics.
Possible resolutions:
m Construct wave packets—not acceptable however because gauge
invariance should be exact

m Use gauge fixing in order to normalize states—to be discussed in
this talk



Two shortcomings

The prevacua |n) are field eigenstates, very different from the ground
state
Resolutions:
m Take T'— oo in the path integral to project on the ground state:
lvac) = e HT S ™™ n), T — oo (c¢f. VT — oo in previous part)
n

m Or construct a wave functional [sackiw, Rebbi (1976); Jackiw (1980)]

States are not normalizable in the proper sense because

(0]10"Y = 6(6 — ') (ct. e.q. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]
Without ado, this contradicts 1st postulate of quantum mechanics.
Possible resolutions:

m Construct wave packets—not acceptable however because gauge
invariance should be exact

m Use gauge fixing in order to normalize states—to be discussed in
this talk



IT. Canonical quantization of the gauge field
Minkowski spacetime, no sources —>
gE* =—8/0t A
=V x A% —1/2 fobe A x A
Canonical momentum conjugate to Ao
— — 92 —
gl = —FE* + S?QBG
The corresponding operator must observe the commutation relations:
(A (@), T3 ()] = 6966 — &), (1% (@), 117 (7)) = 0
These commutators hold for (A arbitrary) I = o + QHLE“ .

i Aa 8
Hamiltonian density:

M=o (B4 (B) = 5 ((gi(;}a Lo mE) + <éa>2>

[Jackiw (1980)]




Wave functional in gauge theory

Gn: “large” gauge transformation that changes the Chern—Simons
number by n units

Since [Gp, H| = 0, it is possible to find states/wave functionals that
simultaneously satisfy

HY =EV
gnql(ga) :eiHG/W(A'a)
States with this property constitute subspaces invariant under the action
of the Hamiltonian, i.e. ' is protected by a superselection rule.

(NB: ¢’ is independent of € in the Lagrangian and 6y in the canonical
momentum)



Abstract formulation
Wave funcion(al): (V)

Let T be a translation of V that corresponds to a unitary operator G(T)

acting on U: . R
U(TV)=G(T)¥(V)

Eigensystem of G(T):
Uy(TV) =Wy (V) =
Ty(T™V) =G™(T)¥y(V) = ™ Wy(V)  for integer n
(The correspondence is: V < A G*(T) < G,)

Define a function N (V) with the property N(TV) = N(V)+1

— Wy(V) =gp(V)eN (V)6
s Wy(TV) =g (V)N +1?

where 1y is periodic in T

QpG(TV) le(TV)H\IJ (TV)—e i(N (\7) +1)6 19\11 (‘7) 1N(V)9\I]9( ) ¢0(

‘7

)



Crystal or circle?

Let H(TV) = H(V). The functionals Wg(V) with above periodicity
properties can be viewed as Bloch states.

Bloch states live on a crystal: 7

TV is a different site than V'
Vi)

‘," ~ / \ / \ / \ ’ soe

In contrast: In gauge theory TV is a redundant description of the

configuration V—corresponding to ¢ — ¢ + 27n on a circle
[see e.g. Shifman, Advanced QFT (2012)]

On a crystal: Bloch states do not correpsond to normalized wave
functions, these are rather wave packets made up of Bloch states.

On a circle: Truncation of the inner product according to a single period
leads to properly normalizable states, corresponding to gauge fixing:

/ A7 O (VYW (T) =1, <0>=/ A7 O (V)Ow (V)

0<N(V)<1 0<N(V)<1



ITI. Quantum states on a circle

Quantization on a single period appears to resolve the issue of
improperly normalizable states and also seems to be appropriate in view
of the physical redundancy of gauge field configurations.

Surely, the spectrum on a circle should differ from one in a crystal. But
how and why exactly?

Essence of the problem is captured by particle on a circle, angular
coordinate ¢, gauge transformation T"¢ = @ + 27n

Lagrangian:

1
L= §mR2(gb + w)2 +V(p)

2w is a total derivative corresponding to a 6-term

oL
Canonical momentum: m, = e mR%(p + w)
1 1 1
Hamiltonian: H = m,¢ — L = oy (7 — mR2w)2 - §mR2w2 +V(p)
m
Momentum operator: [p, 7] =1 = m, = —i0, — mR%wp



Potential at rest and moving

Hamilton operator (wp absorbed in w, constant terms dropped):

11

. 1 5 \?

For w = 0, standard case of circle with a potential at rest:
11 (1.}
H=-—— |20
2mR? (i SO) V)
Time independent Schrédinger equation:
11 (1)
—— | -0
2 mR? <i @) V()

For potential moving at constant wy, this leads to stationary solutions

Y(p) = E¥(p)

2
L 1 (?880) + V(e +wyt)| Y(p +wyt) = EY(p + wyt)

2mR2 \i




Galilei transformation on a circle

Unitary operator for boosts

U(w) = ¢“M where M = nt — mR2p

7’ =71 +mR%w U(w)eUT (w) =p + wt
o ¢+ wt U(w)nUt(w) =r + mR*w
mR2 2

U(w)i(p) = e mBwee =55y 1 ot)

Transformation of the previous solution for wy # 0:
R2w3t

. .m v ,mR2w2t
U(—wp)ih(p + wpt) = eMPvee™ =570 (p) = 712 ¢/(p)

This solves the Schrodinger equation

11 (1 s \?
QmiRQ f&p—mR wy +V(g0)

1

V' (0) = EY'(p)

— Intuitive interpretation of wy/ or # term



Periodicity condition

Hamiltonian

11

1 2
=5 (T% - mR2w> +V(p)

For w =0, ¥(p) = ¥ (¢ + 27n) appears to be the correct periodicity
condition (cf. embedding of the circle in two dimensions)

However:
= Galilei-boosts lead more generally to 1h(p) = e~ 2mmmE oy (o 4 27
m Invariance of QM expectation values under ¢ — ¢ + 27n likewise
only requires periodicity up to a phase

m Space is not necessarily simply connected

What is the physical /mathematical interpretation of the less general

periodicity and how to generalize it to w # 07



Consistent time evolution
Heisenberg equation for operator O (exp(iy)):
; d ; 1

H AN i) _
1,0(9)] = So(r) - L

1 0? ~ 1 0 ~ 0 0 -
— = [0 — —— [ Z0(e?) ) = —iw [0 (el?
2mR? <8g020(e )> mR? <8<p (e )> Do 1w (8@ (e )>
10 0
iomR2w H ip 7i<me2w¢) Y ) e ip P
O(p)e [H,0(e¥)] e (#) = =55,2) { 5,0(<7) ) 2(%)
For energy-eigenstate wave-functions that work for the truncated inner
product:

0= (d/dtO(c¥)) = / dy 6 () (d/dt O(¢#)) ()
— 0<p<2m
P(p) = e_imR%‘P(I)(go) where ®(p) € R and ®(p) = P(p + 27)

Then, the integrand is a total derivative, and boundary terms vanish by
the periodicity of ®(¢p).




Consistent time evolution
Heisenberg equation for operator O (exp(iy)):

[H ol ioN] d 7a WA 1) 1 |—/1 0 . D2 \2 n/Jicp)]

Eigensystem of Hamiltonian:

m Forw=0in H = ¢(¢) = (¢ + 27n) .
T mForw#0in H = (p) = e2mmmBy (o 4 27n) (e )>
so that the w-phases compensate

| N

—
. . . 10 0 -
d iomR2w H.O(e¥ 71(,0mR2UJ¢) Y ) —0O(e¥ P
(e [H,0(e¥)] e (#) = =55,2) { 5,0(<7) ) 2(%)
For energy-eigenstate wave-functions that work for the truncated inner
product:

0= (d/dt (%)) = / dy 6% () (4/dt O(6%)) v()
— 0<p<2m
P(p) = e_imRQ“‘PQ)@p) where ®(p) € R and ®(p) = P(p + 27)

Then, the integrand is a total derivative, and boundary terms vanish by
the periodicity of ®(¢p).




Consistent time evolution
Heisenberg equation for operator O (exp(iy)):
; d ; 1

H AN i) _
1,0(9)] = So(r) - L

1 0? ~ 1 0 ~ 0 0 -
— = [0 — —— [ Z0(e?) ) = —iw [0 (el?
2mR? <8g020(e )> mR? <8<p (e )> Do 1w (8@ (e )>
10 0
iomR2w H ip 7i<me2w¢) Y ) e ip P
O(p)e [H,0(e¥)] e (#) = =55,2) { 5,0(<7) ) 2(%)
For energy-eigenstate wave-functions that work for the truncated inner
product:

0= (d/dtO(c¥)) = / dy 6 () (d/dt O(¢#)) ()
— 0<p<2m
P(p) = e_imR%‘P(I)(go) where ®(p) € R and ®(p) = P(p + 27)

Then, the integrand is a total derivative, and boundary terms vanish by
the periodicity of ®(¢p).




Physics picture

Take H = —1 ng 92 4+ V(¢) (w =0 can always be achieved by boosts)

Y(p) = o2minmR? “ih(p + 2mn) — wave with crystal momentum o w

Schrédinger equation is to be solved on the full range ¢ € R

Truncation of the inner product is only consistent with operator
equations of motion for wave functions with w =0

For w # 0 consistent
time evolution follows
for normalizable wave
packets—these are not
fully invariant under
discrete translations
(large gauge
transformations), and
their overall hull moves
in time
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IV. Back to gauge theory

For the Hamiltonian

_ L (B2 (o) = L 6 _ & o5
H_2((E) +(B )>_2 ((gi(gjfa 87T2GB

)+ <éa>2>

The wave functionals with the property G, ¥(A%) = e "W (A%) are the
only ones that are consistent with time evolution, gauge invariance and

that are properly normalizable.

These exhibit no C'P violation (6 can be simultaneously boosted away

from Hamiltonian and wave functional):

K(A’a) :% eijk/d?)x <; Aa,iajAa,k _ éfabcAa,iAb,jAc,k>

8

W/(ga) :eieK(A‘a)\Ij(A‘a) = gn‘ll/ _ \I//

KA iok(Aay 1 52
H =K AN 3o 10K (AT — = (—92 2

2 5A’a

+ (éa)2>



Conclusion

There is no CP-violation in QCD with massive quarks.

Based on challenges to standard calculations:

m Path integral
What would be the reason to impose topological quantization on a
finite surface? Integer topological sectors only follow in infinite
spacetime (save periodic boundary conditions), the latter can be
viewed as a tool to project on the ground state.

m Theta vacua:
The description of the vacuum by states that are not properly
normalizable is in contradiction with the postulates of QM. Gauge
fixing leads to normalizable states, and consistent QM time
evolution in the canonical formalism requires the restriction to
C P-conserving theories.






V. Finite sub(volumes)

Boundary conditions at infinity crucial for alignement of the C'P phases

Calculations in finite spacetime volumes should also be possible
m for subvolumes of spacetime (— open boundary conditions),

m for periodic boundary conditions, e.g. on a torus as in lattice field
simulations.

Note: On a torus, An is topologically conserved.
Lattice simulations sample over An because of finite lattice spacing.

Topology “freezes” in the continuum limit.



Finite vs infinite spacetime volume—cluster decomposition

Consider expectation value of an operator O in spacetime volume €2,
interfere different topological sectors AN [Weinberg QFT]

z f(An) f D¢ O e~5l?]

<O>Q = Alrim An=—N
Nen Z f(An) f Depe—Sald]
An=—N

Factorize path integral into volume con‘crlbu‘clons7 Q=0 UQq:
(O1)g = lim lim (Assume An(Q2) = Anq (1) + Ang(Qs))

Ng—oo Nj—o00
NoeN NjeN
Ny Ny
2. S f(Any 4+ Ang) [ DpOyeulll [ DpeSeald)
Ani=—Nj Ang=—Ny Anl AnQ
Ny Ny
S f(Ani+Any) [ Doe Sl [ DgeSld)

Anj=—Nj Ang=—Ngy Any Ang

Independence of (O7)q from the fluctuations in {2y is achieved if the
contributions from 5 cancel (absorb determinant phases in f):

F(Any + Ans) = f(Any) f(Any) = f(An) = elBAn(@t?)



Now keep An fixed, €5 either finite or infinite:

> f(An) [ DpOre Suldl [ Depe=50:19]
<01>Q :Anlzfoo Ang Ang=An—An;
S f(An) f D¢e—591[¢] f Dpe 522 (4]
Any=—oc0 Ang Ang=An—An;
> f(AR)Ian—an, (2ikQ2) [ DpOre 9 [¢]
_ Anyi=—o00 Any
> f(An)Ian—an, (2i6Q2) [ D¢ e~ [4]
Anyj=—oc0 Ang
< Corresponds to
—Sq, (4]
Mé,m{ DoOre™™ finite VT, = 0 ALz
Q>0 i [ Dep =501 191 Result also holds for
Anj=—00 Any Q2 — 00, An free

Path integral makes sense for finite subvolumes with open boundary conditions

= lattice simulations sampling over topological sectors An without phases

The theory with fixed An (gauge invariant) in large but finite volumes complies
with cluster decomposition [cf. Leutwyler, Smilga (1992)]. Lattice results with frozen
topology are therefore okay up to finite volume effects.

For Q25 — oo, the result does not depend on whether An is fixed or free.



